
Technical Skill Assessment in Minimally Invasive Surgery Using Artificial Intelligence: 

A Systematic Review 

 

Romina Pedrett, MD1, Pietro Mascagni, MD, PhD2,3, Guido Beldi, MD1, Nicolas Padoy, PhD2,4, Joël L. 

Lavanchy, MD1,2 

 

1 Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 

Switzerland 

2 IHU Strasbourg, France 

3 Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy 

4 ICube, University of Strasbourg, CNRS, France 

 

Correspondence and requests for reprints to: 

Joël L. Lavanchy, MD 

Department of Visceral Surgery and Medicine 

Inselspital, Bern University Hospital 

Freiburgstrasse 

3010 Bern, Switzerland 

joel.lavanchy@insel.ch 

 

Joël Lavanchy was funded by the Swiss National Science Foundation (grant No P500PM_206724). This 

work was partially supported by French state funds managed by the ANR within the Investments for the 

future program under Grant ANR-10-IAHU-02 (IHU Strasbourg). 

 

Running head: Technical Skill Assessment Using AI  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2022. ; https://doi.org/10.1101/2022.11.08.22282058doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.11.08.22282058
http://creativecommons.org/licenses/by/4.0/


2 

 

Mini Abstract 

Technical skill assessment in minimally invasive surgery is time consuming and costly. Artificial 

intelligence is a promising technology to facilitate and automate technical skill assessment. Therefore, this 

article systematically reviews artificial intelligence applications for the assessment of technical skills in 

minimally invasive surgery. 

 

Abstract 

Objective: To review artificial intelligence (AI) based applications for the assessment of technical skills 

in minimally invasive surgery. 

Background: As technical skill assessment in surgery relies on expert opinion, it is time-consuming, 

costly, and often lacks objectivity. Analysis of routinely generated data by AI methods has the potential 

for automatic technical skill assessment in minimally invasive surgery. 

Methods: A systematic search of Medline, Embase, Web of Science and IEEE Xplore was performed to 

identify original articles reporting the use of AI in the assessment of technical skill in minimally invasive 

surgery. Risk of bias (RoB) and quality of included studies were analyzed according to Quality 

Assessment of Diagnostic Accuracy Studies criteria and the modified Joanna Briggs Institute checklists, 

respectively. Findings were reported according to the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses statement. 

Results: In total, 1467 articles were identified, 37 articles met eligibility criteria and were analyzed. 

Motion data extracted from surgical videos (49%) or kinematic data from robotic systems or sensors 

(46%) were the most frequent input data for AI. Most studies used deep learning (73%) and predicted 

technical skills using an ordinal assessment scale (73%) with good accuracies in simulated settings. 

However, all proposed models were in development stage, only 8% were externally validated and 16% 

showed a low RoB. 
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Conclusion: AI is promising to automate technical skill assessment in minimally invasive surgery. 

However, models should be benchmarked on representative datasets using predefined performance 

metrics and tested in clinical implementation studies.  
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INTRODUCTION 

The assessment of technical skill is of major importance in surgical education and quality improvement 

programs given the association of technical skills with clinical outcomes1–4. This correlation has been 

demonstrated amongst others in bariactric1, upper gastrointestinal2 and colorectal surgery3,4. In addition, 

data from the American Colleges of Surgeons National Surgical Quality Improvement Program revealed 

that surgeon’s technical skills as assessed by peers during right hemicolectomy are correlated with 

outcomes in colorectal as well as in non-colorectal surgeries performed by the same surgeon3, showing the 

overarching impact of technical skills on surgical outcomes. 

To date, technical skills are assessed through direct observations of surgeons’ performance or 

retrospectively by reviewing surgical video recordings. Generally, this process involves either classifying 

skill levels in ordinal scales (e.g., novice, intermediate and expert) through unstructured observations or 

assessing performance intervals through the use of structured, validated checklists (e.g., Objective 

Structured Assessment of Technical Skills (OSATS)5, Global Evaluative Assessment of Robotic Skills 

(GEARS)6 (Figure 1). Therefore, technical skill assessment is complex and time consuming, hence costly. 

Moreover, technical skill assessment is limited by inter-observer variability and reviewer bias7. 

The growing adoption of minimally invasive surgery and recent developments in artificial intelligence 

(AI) could lead to automatic, objective, and consistent technical skill assessment in surgery. 

As in minimally invasive surgery the surgical field is visualized by cameras, surgical videos are easily 

recorded and readily available at a large scale. Surgical videos can be used to extract information about 

technical skills. In robotic surgery the movements of the surgeon are translated to robotic arms holding the 

endoscope and the instruments. This allows the extraction of kinematic data such as moving trajectories 

directly form the robotic system. Based on kinematic data performance metrics of technical skills were 

developed8. 
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AI is a very promising technology that is widely adopted in medicine9,10. For example, AI is able to 

detect diabetic retinopathy11,12 and to screen for lung cancer13
 and malignant skin cancer14 with an 

accuracy comparable to expert clinician screening. 

Two subfields of AI are particularly used to extract and analyze motion data from surgical videos or 

robotic systems: machine learning (ML) and deep learning (DL). ML can be defined as computer 

algorithms that learn distinct features iterating over data without explicit programming. DL designates 

computer algorithms that analyze unstructured data using neural networks (NN). NN are computer 

algorithms designed in analogy to the synaptic network of the human brain. The input data is processed 

through multiple interconnected layers of artificial neurons, each performing mathematical operations on 

the input data to predict an output. The predicted output is compared to the human labeled output to 

optimize the operations of the NN, which makes it a self-learning system. From an AI perspective 

technical skill assessment is a classification (prediction of expert levels) or a regression task (prediction of 

a score). Figure 2 illustrates how different input data types are processed by AI models to predict technical 

skills. 

The aim of this systematic review was to analyze studies using AI for technical skill assessment in 

minimally invasive surgery.  
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METHODS 

This systematic review is reported in accordance with the PRISMA (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses)15 guidelines and was prospectively registered at PROSPERO 

(2021 CRD42021267714). 

Literature search 

A systematic literature search of the databases Medline/Ovid, Embase/Ovid, Web of Science and IEEE 

Explore was conducted on August 25th, 2021. The first three databases account for biomedical literature 

and IEEE Explore for technical literature. A librarian of the University Library, University of Bern 

performed the literature search combining the following terms using Boolean operators: 1) Minimally 

invasive surgery including endoscopic, laparoscopic, or robotic surgery, and box model trainer. 2) AI 

including machine learning, supervised learning, unsupervised learning, computer vision and 

convolutional neural networks. 3) Technical skill assessment including surgical skill assessment, surgical 

performance assessment, and task performance analysis. The full-text search terms can be found in the 

Supplementary. The literature search was re-run prior to final analysis on February 25th, 2022. 

Eligibility criteria 

Studies presenting original research on AI applications for technical skills assessment in minimally 

invasive surgery including box model trainers published within the last 5 years (08/2016-02/2022) in 

English language were included. Review articles, conference abstracts, comments, and letters to the editor 

were excluded.  

Study selection 

Before screening, the identified records were automatically deduplicated using the reference manager 

program Endnote™ (Clarivate Analytics). After removal of the duplicates, two authors (R.P. & J.L.L.) 

independently screened the titles and abstracts of the identified records for inclusion using the web-tool 

Rayyan (https://www.rayyan.ai)16. Disagreement of the two authors regarding study selection was settled 
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in joint discussion. Of all included records the full-text articles were acquired. Articles not fulfilling the 

inclusion criteria after full-text screening were excluded. 

Data extraction 

Besides bibliographic data (title, author, publication year, journal name), the study population, the 

setting (laparoscopic/robotic simulation or surgery), the task assessed (e.g., peg transfer, cutting, knot-

tying), the data input (motion data from video recordings, kinematic data from robotic systems or sensors), 

the dataset used, the assessment scale (ordinal scale vs. interval scale), the AI models used (ML or DL), 

the performance and the maturity level (development, validation, implementation) of AI models were 

extracted from the included studies. 

Performance metrics 

Performance metrics included accuracy, precision, recall, F1-score, and Area Under the Curve of 

Receiver Operator Characteristic (AUC-ROC). Accuracy is the proportion of correct predictions among 

the total number of observations. Precision is the proportion of true positive predictions among all (true 

and false) positive predictions and referred to as the positive predictive value. Recall is the proportion of 

true positive predictions among all relevant observations (true positives and false negatives) and referred 

to as sensitivity. F1-score is the harmonic mean of precision and recall and is a measure of model 

performance. A ROC curve plots the true positive against the false positive predictions at various 

thresholds and the AUC describes performance of the model to distinguish true positive from false 

positive predictions. 

Risk of bias and quality assessment 

The risk of bias of the included studies was assessed using the modified version of Quality Assessment 

of Diagnostic Accuracy Studies (QUADAS-2) criteria17. The quality of studies was evaluated using the 

modified Joanna Briggs Institute critical appraisal checklist for cross-sectional research in ML as used 

in18,19.  
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RESULTS 

The literature search retrieved a total of 1467 studies. After removing all duplicates, the remaining 

1236 studies were screened by title and abstract. Thereafter, 88 studies remained, of which 51 were 

excluded after full-text screening. In summary, 37 studies20–56 met eligibility criteria and thus were 

included into this systematic review (Figure 3). Out of these 37 studies, six (16%)27,35,41,47,52,54 were 

obtained during the re-run prior to final analysis six months after the initial literature search was 

conducted. Table 1 gives an overview on the 37 studies included in this systematic review (for full 

information extracted see Supplementary Table S1). 

Settings and tasks:  

Most often, motion data from surgical videos or kinematic data from robotic systems or sensors were 

collected from simulators rather than during actual surgical procedures. The most common simulators 

used were robotic box models (51%, n=19) 21,23–26,28,29,31,35,38,41,45,47–49,52,54–56. Laparoscopic simulators were 

the second most common setting for data collection (32%, n=12)20,27,30,32,33,36,37,40,43,50,51,53. 

The most common tasks assessed were suturing (62%, n=23)21,23,25,26,28–31,33,35,37,38,40,41,47,49–56, knot-tying 

(41%, n=15)21,23,25,26,28,29,35,38,40,41,47,49,52,55,56 and needle passing (35%, n=13)21,23,25,28,29,35,38,41,47,49,52,55,56. 

Other tasks assessed were peg transfers (19%, n=7)24,30,33,36,37,43,51 and pattern cutting (19%, 

n=7)20,27,30,32,33,37,51. All of these tasks are part of the Fundamentals of Laparoscopic Surgery program, a 

well-established and validated training curriculum for laparoscopic surgery57,58. 

Eight studies (22%)22,34,39,42,44–47 used data of real surgical procedures. Six (16%)22,34,39,42,46,47 of them 

using videos of laparoscopic surgeries as for example laparoscopic cholecystectomies34,42 or laparoscopic 

pelvic lymph node dissections22. Two studies (5%)44,45 used video data obtained from robotic surgeries 

such as robotic prostatectomy44 or robotic thyroid surgery45. The tasks assessed in surgical procedures 

ranged from entire interventions to specific steps (e.g., lymph node dissection22, clip application42). 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2022. ; https://doi.org/10.1101/2022.11.08.22282058doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.08.22282058
http://creativecommons.org/licenses/by/4.0/


9 

 

Input data and datasets:  

Three different types of input data were used throughout the 37 studies: video data (49%, 

n=18)20,22,27,30,31,33,34,37–39,42,44–47,51,52,54, kinematic data (46%, n=17)21,23–26,28,29,35,40,41,43,48–50,53,55,56 and 

functional near-infrared spectroscopy (fNIRS) data (5%, n=2)32,36. Video recordings either from 

endoscopic laparoscopic/robotic camera or external cameras are used in 18 studies (49%). Kinematic data 

was obtained from DaVinci robotic systems (Intuitive Surgical Inc., CA, USA) in 13 studies (35%)21,23–

26,28,29,35,41,48,49,55,56 and from external sensors in four studies (11%)40,43,50,53. For example, electromyography 

sensors (Myo armband, Thalmic Labs, Ontario, CA)40, optical sensors (Apple Watch, Apple, CA, USA)43 

or magnetic sensors attached to the instruments50,53 were used as external sensors to collect kinematic data. 

Two studies32,36 recorded fNIRS data from participants while they performed laparoscopic tasks. For 

example, Keles et al.36 collected fNIRS data using a wireless, high density NIRS device, measuring 

functional brain activation of the prefrontal cortex. The NIRS device was adjacent to the surgeons’ 

foreheads while they performed different laparoscopic tasks. 

Publicly available datasets were used in 16 studies (43%)21,23,25,26,28,29,31,34,35,38,41,47,49,52,55,56. Of those, the 

JIGSAWS (Johns Hopkins University and Intuitive Surgical, Inc. Gesture and Skill Assessment Working 

Set)59 dataset was most frequently used (n=15, 41%)21,23,25,26,28,29,31,35,38,41,47,49,52,55,56. It contains video and 

kinematic data together with human annotated skill ratings of eight surgeons performing three surgical 

tasks in five-fold repetition in a robotic box model trainer. One study34 extended the publicly available 

m2cai16-tool dataset60 with locations of surgical tools and published it as m2cai16-tools-localisation 

dataset. Though, most studies (n=21, 57%) created private datasets, that were not publicly released. Most 

datasets (n=34, 92%) were monocentric. However, three studies (8%) used a multicentric dataset: French, 

et al.30 used a multi-institutional dataset from three centers, Kitagutchi, et al.39 draw a sample form a 

national Japan Society of Endoscopic Surgeons database, and Law, et al.44 used a part of a statewide 

national quality improvement database collected by the Michigan Urological Surgical Improvement 

Collaborative. Three of the 37 studies included (8%)29,47,49, reported external validation on a second 

independent dataset. 
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Assessment:  

Technical surgical skills can be assessed using expert levels (ordinal scale) or proficiency scores 

(interval scale) (Figure 1). In 27 of the studies (73%) an ordinal scale was applied20,21,25–31,35–38,40–45,48,49,51–

56. In twelve studies (32%) participants were categorized in two different skill levels20,26,30,35–37,41,42,44,48,51,53 

and in 14 studies (38%) into three different expert levels (novice, intermediate, 

expert)21,25,28,29,31,38,40,43,45,49,52,54–56. Ten studies (27%) applied different proficiency scores: Pelvic 

Lymphadenectomy Assessment and Completion Evaluation (PLACE61), Fundamentals of Laparoscopic 

Surgery (FLS62), Endoscopic Surgical Skill Qualification System (ESSQS63), Objective Structured 

Assessment of Technical Skills (OSATS64), and Global Evaluative Assessment of Robotic Skills 

(GEARS6)22–24,32,33,39,46,47,50,54. 

AI models: 

All AI models in this review are either ML- or DL-based. ML was applied in 12 studies 

(32%)24,26,29,30,35,36,40,42,47,48,50,51 and DL in 27 studies (73%)20–23,25,27,28,31–34,37–46,49,52–56. Two studies (5%) 

used a combination of ML and DL models42,44. 

Performance: 

The most common performance metrics reported in the studies included in this systematic review is 

accuracy (n=30, 81%)20–22,24–26,28–32,35–42,44,45,48–56. Accuracies of the best performing models range between 

0.7 – 1. Other performance metrics reported include F1-score (n=6, 16%)31,35,38,43,50,51, recall (n=4, 

11%)24,31,38,40, sensitivity (n=4, 11%)20,32,50,51, specificity (n=4, 11%)20,32,50,51, and AUC-ROC (n=4, 

11%)20,35,50,51. Four studies (11%)23,27,33,34 did not report a performance metric at all.  

Risk of bias and quality assessment: 

Six of the included studies (16%)24,37,39,40,42,50 had an overall low probability of bias in the risk of bias 

assessment. The other studies had one (n=10, 27%), two (n=9, 24%), three (n=8, 22%), four (n=3, 8%) or 

five criteria (n=1, 3%) at risk of bias. The full risk of bias assessment table is presented in the 
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Supplementary (Table S2). The quality assessment of the included studies is displayed in Figure 4. All 

proposed AI models were in a developmental preclinical stage of maturity, none was implemented in 

routine clinical use. 

 

DISCUSSION 

This systematic review of AI applications for technical skill assessment in minimally invasive surgery 

included 37 studies. Technical surgical skills were assessed in 51% of studies in robotic simulators, in 

32% of studies in laparoscopic simulators, and in 22% of studies in actual surgical procedures. The input 

data to AI models were video data (49%), kinematic data from robotic systems or sensors (46%), and 

fNIRS data (2%). Technical skills were classified in 73% of studies using skill levels and in 27% of 

studies using proficiency scores. In total, 32% of AI models were ML-based and 73% of AI models were 

DL-based. Most studies (81%) reported accuracy as performance metric. Overall, 84% of studies were at 

risk of bias and only 3 studies tested their AI model for external validity using a second independent 

dataset. None of the proposed models was implemented in routine clinical use. 

The comparability of studies included in this systematic review is limited due to several fundamental 

differences between them. Most studies (57%) use private datasets of different settings, tasks, and sizes. 

However, 15 studies included in this systematic review used JIGSAWS, a robotic simulator dataset and 

the most frequently used dataset in technical skill assessment. The use of simulators for technical skill 

assessment has advantages and disadvantages. On the one hand, simulators allow to control the 

experimental setting and enable reproducibility of studies. On the other hand, box model trainers simulate 

surgical tasks and have only a restricted degree of realism. In addition, simulators are well established in 

surgical training but have limited significance in the assessment of fully trained surgeons. The use of 

video recordings and motion data of actual surgeries as input data improves the validity of technical skill 

assessment models. However, in actual surgeries the experimental setting cannot be standardized and 

therefore, lacks reproducibility. 
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Moreover, the comparison of studies is impaired by the different scales and scores used to measure 

technical skill. Some studies use ordinal scales with different numbers of skill levels (good vs. bad20,26,35–

37,41,42,44,48,51,53, novice vs. intermediate vs. expert21,25,28–31,38,40,43,45,49,52,54–56) others use different interval 

scales (OSATS scores28,40,50, GEARS scores24,54, or Likert scales42). This finding represents the general 

difficulty to define and measure technical surgical skills. 

Most of the studies included in this systematic review have methodologic limitations. Overall, 84% of 

studies included in this review are at risk of bias. The quality assessment of the included studies revealed 

that only 32% of studies discussed the findings and implications in detail. Furthermore, only three studies 

included in this review have a multicentric dataset. Only three of the AI models studied are validated on 

an independent external dataset. Therefore, it is questionable whether the AI models included in this 

review would generalize to other settings, tasks, and institutions. Out of 37 included studies, 30 report on 

accuracy. However, there is a large variation of reported performance metrics among studies included in 

this systematic review. Due to the novelty of AI application in the healthcare domain and in surgery in 

particular, the literature lacks standards in the evaluation of AI methods and their performance. There is an 

urgent need for the application of guidelines to assess AI models and for studies comparing them head-to-

head. Guidelines for early stage clinical evaluation of AI65 and clinical trials involving AI66 have been 

published recently. However, the studies included in this review are all at a preclinical stage where these 

guidelines do not apply. A multi-stakeholder initiative recently introduced guidelines and flowcharts on 

the choice of AI evaluation metrics in the medical image domain67. For surgical video analysis this effort 

still needs to be taken68. To overcome the limitations of the proposed AI models for technical skill 

assessment, valid and representative datasets using predefined performance metrics, and external 

validation in clinical implementation studies will be essential. 

Looking at the educational benefits of AI algorithms, the current models allow an estimation of 

individual skill levels in comparison with the population the algorithm was trained on. However, no direct 

or concrete feedback on how to improve technical skills is provided. Potentially training AI models on 
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assessment scores divided in different domains of technical skills (e.g. bimanual dexterity, tissue 

handling,) could help to give automated but actionable feedback. 

In conclusion, AI has great potential to automate technical skill assessment in minimally invasive 

surgery. Various AI models, that analyze surgical video or movement data from simulators or actual 

surgical procedures and correlate them with technical surgical skills, have been studied. However, the 

studies included in this review lack standardization of datasets, performance metrics and external 

validation. Therefore, we advocate for benchmarking of AI models on valid and representative datasets 

using predefined performance metrics and testing in clinical implementation studies.  
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TABLES AND FIGURES 

Figure 1: Human technical skill assessment in minimally invasive surgery. 

Figure 2: Automated technical skill assessment in minimally invasive surgery by artificial 

intelligence. 

Figure 3: PRISMA flow diagram of the study selection process (from PRISMA Statement 

202015). 

Figure 4: Quality assessment of the included studies. The numbers within the bars represent the 

respective number of studies. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2022. ; https://doi.org/10.1101/2022.11.08.22282058doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.08.22282058
http://creativecommons.org/licenses/by/4.0/


 

Table 1: Information summary of all studies included in this review 

Of note, to ensure legibility the data provided in Table 1 is limited to accuracy metrics of the best performing model presented in each study. For full information extracted see Supplementary Material 

Table S2. Abbreviations: na = not available, LS = laparoscopic simulator, Lap = laparoscopic surgery, RS = robotic simulator, Rob = robotic surgery, PC = pattern cutting, SU = suturing, NP = needle-passing, KT 

= knot-tying, PT = peg transfer, VR = video recordings, KD (dv) = kinematic data collected by daVinci systems, fNIRS = functional near-infrared spectroscopy, KD (s) = kinematic data collected by external 

sensors, DL = deep learning, ML = machine learning, N = novice, I = intermediate, E = expert, PLACE = Pelvic Lymphadenectomy Assessment and Completion Evaluation, GEARS = Global Evaluative 

Assessments of Robotic Skills, FLS = Fundamentals of Laparoscopic Surgery, ESSQS = Endoscopic Surgical Skill Qualification System, OSATS = Objective Structured Assessment of Technical Skills, dev = 

development. 

Author Year Popul

ation 

Setting Tasks Input 

Data 

Dataset Assessment AI 

model  

Accuracy Maturity 

level 

Alonso-Silverio et al. 
20

 2018 20 LS PC VR private binary (experienced, non-experienced) DL 0.94 dev 

Anh et al.
21

 2020 8 RS SU, NP, KT KD (dV) JIGSAWS N, I, E DL 0.97 dev 

Baghdadi et al.
22

  2018 na Lap Pelvic lymph node dissection VR private PLACE score DL 0.83 dev 

Benmansour et al.
23

 2018 6 RS SU, NP, KT KD (dV) JIGSAWS Custom score DL na dev 

Brown et al.
24

 2017 38 RS PT KD (dV) private GEARS score (1-5: exact rating) ML 0.75 dev 

Castro et al.
25

 2019 8 RS SU, NP, KT KD (dV) JIGSAWS N, I, E DL 0.98 dev 

Fard et al.
26

 2017 8 RS SU, KT KD (dV) JIGSAWS binary (N, E) ML 0.9 dev 

Fathabadi et al.
27

 2021 na LS PC VR private Level A (excellent) - E (very bad)  DL na dev 

Fawaz et al.
28

 2019 8 RS SU, NP, KT KD (dV) JIGSAWS N, I, E DL 1 dev 

Forestier et al.
29

  2018 8 RS SU, NP, KT KD (dV) JIGSAWS N, I, E ML 0.96 dev 

French et al.
30

 2017 98 LS PT, SU, PC VR private binary (N, E) ML 0.9 dev 

Funke et al.
31

 2019 8 RS SU VR JIGSAWS N, I, E DL 1 dev 

Gao et al.
32

 2020 13 LS PC fNIRS data private FLS score: pass/fail DL 0.91 dev 

Islam et al.
33

 2016 52 LS PT, SU, PC VR private Custom score DL na dev 

Jin et al.
34

 2018 na Lap Lap cholecystectomy VR m2cai16-tools-location unknown DL na dev 

Juarez-Villalobos et al.
35

 2021 8 RS SU, NP, KT KD (dV) JIGSAWS binary (N, E) ML 1 dev 

Keles et al.
36

 2021 33 LS PT, threading fNIRS data private binary (student vs. attending) ML ∼ 0.9  dev 

Kelly et al.
37

 2020 na LS PT, SU, PC, Clipping VR private binary (N, E) DL 0.97 dev 

Khalid et al.
38

 2020 8 RS SU, NP, KT VR JIGSAWS N, I, E DL 0.77 dev 

Kitaguchi et al.
39

 2021 na Lap Lap colorectal surgery VR private ESSQS score DL 0.75 dev 

Kowalewski et al.
40

 2019 28 LS SU, KT KD (s) private N, I, E DL 0.7 dev 

Lajkó et al.
41

 2021 8 RS SU, NP, KT KD (dV) JIGSAWS binary (N, E) DL 0.84 dev 

Lavanchy et al.
42

 2021 40 Lap Lap cholecystectomy VR private binary (good vs. poor) ML, DL 0.87 dev 

5-point Likert scale (+/- 1 point) 0.7 

Laverde et al.
43

  2018 7 LS PT KD (s) private N, I, E DL na dev 

Law et al.
44

 2017 12 Rob Robotic prostatectomy VR private binary (good vs. poor) ML, DL 0.92 dev 

Lee et al.
45

 2020 1/ na RS, Rob Robotic thyroid surgery/simulation VR private N, I, E DL 0.83 dev 

Liu et al.
46

 2020 na Lap Lap gastrectomy VR private modified OSATS score DL na dev 

Liu et al.
47

 2021 8 / na RS, Lap SU, NP, KT / Lap surgery gastric cancer VR JIGSAWS modified OSATS score ML na dev 

Lyman et al.
48

 2021 2 RS SU of hepaticojejunostomy KD (dV) private binary (N, I) ML 0.89 dev 

Nguyen et al.
49

 2019 8 RS SU, NP, KT KD (dV) JIGSAWS N, I, E DL 0.98 dev 

Oquendo et al.
50

 2018 32 LS SU KD (s) private OSATS scores (+/- 4 points) ML 0.89 dev 

Pérez-Escamirosa et al.
51

 2019 43 LS PT, SU, PC VR private binary (experienced vs. non-experienced) ML 0.98 dev 

Soleymani et al.
52

 2021 8 RS SU, NP, KT VR JIGSAWS N, I, E DL 0.97 dev 

Uemura et al.
53

 2018 67 LS SU KD (s) private binary (N, E) DL 0.79 dev 

Wang Y. et al.
54

 2021 18 RS SU VR private N, I, E DL 0.83 dev 

GEARS score (+/- 1 point) 0.86 

Wang Z. et al.
55

 2018 8 RS SU, NP, KT KD (dV) JIGSAWS N, I, E DL 0.95 dev 

Wang Z. et al.
56

 2018 8 RS SU, NP, KT KD (dV) JIGSAWS N, I, E DL 0.96 dev 
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