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Background: Increasing digitalisation in the medical domain gives rise to large amounts of 17 

healthcare data which has the potential to expand clinical knowledge and transform patient 18 

care if leveraged through artificial intelligence (AI). Yet, big data and AI oftentimes cannot 19 

unlock their full potential at scale, owing to non-standardised data formats, lack of technical 20 

and semantic data interoperability, and limited cooperation between stakeholders in the 21 

healthcare system. Despite the existence of standardised data formats for the medical 22 

domain, such as Fast Healthcare Interoperability Resources (FHIR), their prevalence and 23 

usability for AI remains limited. 24 

Objective: We developed a data harmonisation pipeline (DHP) for clinical data sets relying on 25 

the common FHIR data standard.  26 

Methods: We validated the performance and usability of our FHIR-DHP with data from the 27 

MIMIC IV database including > 40,000 patients admitted to an intensive care unit. 28 

Results: We present the FHIR-DHP workflow in respect of transformation of “raw” hospital 29 

records into a harmonised, AI-friendly data representation. The pipeline consists of five key 30 

preprocessing steps: querying of data from hospital database, FHIR mapping, syntactic 31 

validation, transfer of harmonised data into the patient-model database and export of data 32 

in an AI-friendly format for further medical applications. A detailed example of FHIR-DHP 33 

execution was presented for clinical diagnoses records. 34 

Conclusions: Our approach enables scalable and needs-driven data modelling of large and 35 

heterogenous clinical data sets. The FHIR-DHP is a pivotal step towards increasing 36 

cooperation, interoperability and quality of patient care in the clinical routine and for 37 

medical research. 38 

 39 
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2 

 

Introduction 43 

 44 

The increasing digitalisation of healthcare creates vast amounts of clinical data that are 45 

collected and stored in an Electronic Health Record (EHR). Patient information from all 46 

medical domains is captured in diverse sets of data recorded in standalone systems. With 47 

the prevalent use of EHRs in healthcare organisations, there is abundant opportunity for 48 

additional application of EHR data in clinical and translational research. For instance, such 49 

data can be used to develop artificial intelligence (AI) algorithms which have the potential to 50 

transform patient care and medical research. Resource intensive and inefficient clinical 51 

workflows could be optimised by the analysis of historical data with AI applications (1,2). In 52 

particular, the time-consuming and high-priced process of identifying and enrolling the right 53 

patients into a clinical trial manually can be reduced significantly by automation (3,4). 54 

However, the exchange of medical data remains limited due to the lack of data 55 

interoperability between healthcare providers, owing to outdated IT infrastructure, 56 

inconsistencies in data formats, poor data quality, inadequate data exchange solutions and 57 

data silos (5,6). To achieve data interoperability, the following steps must be incorporated: i) 58 

integration of isolated data silos, ii) safe exchange of data and iii) effective use of the 59 

available data (7). Each of these operations includes database schema matching (8) and 60 

schema mapping (9), which allow translation of the relationships between the source 61 

database and the target data standard. 62 

Employing a harmonised data format will facilitate the exchange of medical data, enabling 63 

wide-ranging data-driven collaborations within the private and public healthcare sectors. 64 

Data interoperability requires EHR data to be structured in a common format and in 65 

standardised terminologies. Standardisation is often performed by adopting the Health Level 66 

7 (HL7) Fast Healthcare Interoperability Resources (FHIR) model (10), which is supported by 67 
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numerous healthcare institutions and vendors of clinical information systems (11). FHIR is an 68 

international industry standard with the benefit of integrating diverse sets of data in well-69 

defined exchangeable segments of information, which are known as FHIR resources. 70 

Therefore, FHIR facilitates interoperability between healthcare organisations and allows 71 

third-party developers to provide medical applications which can be easily integrated into 72 

existing systems. FHIR enables the harmonization of data and thus allows standardized data 73 

processing and also the rollout of AI applications across different clinics and hospitals 74 

regardless of which information system they use. Therefore, FHIR forms an important 75 

component for the scalable development and deployment of AI in clinics and hospitals.  76 

However, to apply AI, the input data needs to be adapted to the AI algorithms. The 77 

conventional AI frameworks such as Tensorflow (14) and Pytorch (15) require data to take a 78 

tensor form which is a vector or matrix of n-dimensions that represents various types of data 79 

(e.g., tabular, time series, image, text). FHIR facilitates the application of AI in medical 80 

domain as it provides needed interoperability for a standardised access of EHR data. FHIR 81 

format’s multi-layered nested structure requires case-specific data pre-processing to use it 82 

for AI algorithms. Depending on the AI application and the chosen data source, a custom 83 

data preprocessing pipeline needs to be designed, which leads to diminished AI scalability. 84 

Up to the present time, a number of studies have attempted to solve this problem. Prior 85 

research addressed this problem in different forms, but focuses on individual use cases and 86 

thus constrains the basic idea of FHIR to be independent of the use case.. There have been a 87 

few attempts to flatten the hierarchical FHIR structure and transform it into NDJSON-based 88 

data format (16) or tabular format saved in CSV files (17). Such formats are more AI-friendly 89 

as they represent the data in a more accessible and standardised form for an application of 90 

common AI frameworks. Nonetheless, the NDJSON-based FHIR data transformation 91 
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approach (16) does not provide data selection criteria and filtering capabilities. The 92 

approach presented in (17) requires expert knowledge of FHIRPath query language.  93 

In this paper, we address the challenge of data interoperability in the healthcare sector by 94 

proposing a FHIR Data Harmonisation Pipeline (DHP) that provides EHR data in an AI-friendly 95 

format. The newly developed FHIR-DHP represents a data workflow solution that includes 96 

the aforementioned operations such as data exchange, mapping, and export. Data privacy is 97 

a delicate topic in healthcare and is of great ethical concern (18). Given the degree of 98 

automation, such pipeline should allow preprocessing of unseen data in an isolated hospital 99 

environment, which makes the harmonisation privacy-preserving. In this setting, direct 100 

access to the sensitive data would not be required to run the standardisation pipeline. FHIR-101 

based data preprocessing pipelines have already been implemented in different contexts: as 102 

electronic data capture (12), as a natural language processing tool (13) and as a 103 

standardisation protocol based on the Resource Description Framework (RDF) (6). Despite 104 

their immense benefit of processing EHR data, existing approaches are limited to specific use 105 

cases or require considerable data preparation to perform standardisation. Moreover, their 106 

final output is not easily accessible by common data preprocessing tools and thus hinders 107 

the application of AI. 108 

 109 

Methods 110 

 111 

FHIR-DHP Development 112 

In our work, we propose a generic solution to harmonise hospital EHR data. The FHIR-DHP 113 

was designed based on the Extract-Transform-Load (ETL) framework (19) in which the data is 114 

pulled out (i.e. queried) from diverse sources, processed into the desired format and loaded 115 

into a data warehouse, namely the ”patient-model DB”. As the hospital database (DB) 116 
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contains highly sensitive patient data, it is located behind the hospital’s security 117 

infrastructure and is completely isolated from outside access. Therefore, an edge-118 

computation solution was designed, bringing the FHIR-DHP into the hospital’s own 119 

infrastructure. The edge-computation solution represents a set of frameworks which 120 

perform data querying, preprocessing, storage and export. In this setting, direct access to 121 

the sensitive data is not required to run the standardisation pipeline. The queries to the data 122 

are defined beforehand based on the database documentation. 123 

To bring the data into a harmonised form we used Fast Healthcare Interoperability 124 

Resources (FHIR) data model which is applied by mapping the relationships between the 125 

source database and the desired data standard. The FHIR standard is straightforward to 126 

implement because it provides a choice of JavaScript Object Notation (JSON), Extensible 127 

Markup Language (XML), or Resource Description Format (RDF) for data representation. The 128 

mapping pipeline was developed in Python programming language to translate queried 129 

hospital data into matchig FHIR concepts and save the resulting resources in JSON format. 130 

The conversion to FHIR was designed to only support a core standard of the FHIR format to 131 

allow generic data preprocessing. 132 

Syntactic validation of FHIR resources is necessary in the remote data standardisation 133 

scenario to prevent errors. For instance, conversion of data types can sometimes lead to 134 

wrong values, especially with date features. Automatic syntactic validation allows logging of 135 

occurred errors and improvement of standardisation pipeline when working with unseen 136 

data. After the mapped data is validated, FHIR resources should be sent to the database for 137 

storage to allow fast and easy retrival of preprocessed data for AI applications.  138 
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In the final stage of data export, we designed the output that provides the benefits of the 139 

original FHIR format with a high level of clinical detail, yet which is also easily accessible for 140 

computational tools. Moreover, we wanted to restructure the data representation in a way 141 

which supports efforless data selection and filtering capabilities and which would not require 142 

knowledge of FHIRPath query language. Consequently, such output format would enable 143 

smooth conversion of data into a “tensor” format required by conventional AI frameworks.  144 

FHIR-DHP Validation 145 

To demonstrate and evaluate how the FHIR-DHP works, we used the openly available 146 

Medical Information Mart for Intensive Care IV (MIMIC IV) database (20). MIMIC IV includes 147 

patient data from over 40,000 individuals admitted to intensive care units at a tertiary 148 

academic medical center in Boston, MA. We selected a wide range of tables from MIMIC IV 149 

which cover most of the events occurring during the hospital stay as well as core patient 150 

details, information about admissions and hospital transfers (further referred as core tables). 151 

The event tables include laboratory results, diagnoses, prescriptions and other details as 152 

shown in Table 1. MIMIC IV includes so-called reference tables containing matching 153 

dictionaries with medical terms which are used in the hospital records. 154 

 155 

Table 1. The table lists selected core and event MIMIC IV tables as well as the reference dictionary tables 156 

which were merged together with core and event tables for FHIR mapping. 157 

Selected core and event 

MIMIC IV tables 

Selected MIMIC IV 

reference tables 

Patient  

Admissions  

Transfers  

Chartevents d_items 

Labevents d_labitems 

Procedureevents d_items 

Prescriptions  

Inputevents d_items 

Microbiologyevents  

Outputevents d_items 

Procedures_icd d_icd_procedures 

Diagnoses_icd d_icd_diagnoses 
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 158 

The selected tables were mapped to FHIR standard. Automatic semantic validation is 159 

unfeasible, so two of the authors manually validated the mapping semantics independently 160 

of each other. There are many tools which perform automatic syntactic validation, such as 161 

the Python-based package fhir.resources used herein (21). To evaluate the exporting of data 162 

from the patient-model DB, we retrieved diagnoses records. 163 

 164 

Results 165 

FHIR-DHP Architecture 166 

 167 

The approach presented herein represents a scalable protocol for harmonising hospital EHR 168 

datasets based on five stages from data query to data export in a standardised format.  169 

 170 

1. Querying data from the hospital database 171 

To connect the FHIR-DHP pipeline to the hospital DB, a communication server is employed. 172 

This server runs all necessary queries to retrieve the patient data. The query execution can 173 

be run at regular intervals as well as in batches of patients, so as not to overload the data 174 

pipeline. Furthermore, the queries pre-structure the data according to their semantic 175 

relations before proceeding to data mapping.  176 

2. Mapping data to FHIR 177 

FHIR allows describing data formats and elements which are recorded as "resources" and an 178 

application of a programming interface (API) for exchanging EHRs. To perform the mappings, 179 

semantics of features from the source database and FHIR concepts are explored as well as 180 

relationships between the data tables. Consequently, the mappings between the database 181 
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tables and FHIR resources are defined. Features where a matching FHIR concept is not found 182 

are excluded. The resulting FHIR resources are then saved in JSON format. 183 

 184 

3. Syntactic validation of FHIR mappings 185 

During validation, mapped data is ensured to have the correct data types as well as the 186 

syntactic format where the hierarchy is maintained and entries follow FHIR standard 187 

specifications. All mappings are validated first during the development stage to identify 188 

structural errors and data type inconsistencies. A validation algorithm is incrorporated into 189 

the pipeline to confirm the correctness of transformed data in the remote data 190 

standardisation scenario.  191 

 192 

4. Transferring FHIR resources to patient-model DB 193 

The database of choice for the patient-model is Postgres (22) which is an open-source 194 

relational database management system (RDBMS) featuring SQL compliance and storage of 195 

JSON documents. PostrgreSQL allows handling both small and large workloads. The database 196 

for FHIR resources is used to harmonise the locally available data only once to allow further 197 

application of various medical AI-based solutions. The data is stored according to FHIR 198 

resource type where each resource is saved in a separate JSON structure. 199 

5. Exporting data into custom JSON format 200 

To export the data from the patient-model DB, the selection is performed by outlining the 201 

tables and features of interest in a configuration file which is then used to determine which 202 

data is queried from the patient-model DB. Following that, the data is exported into the 203 

custom JSON file adhering to specific formatting rules in respect of its key-value structure. To 204 

create a custom JSON structure, FHIRPath queries were written to retrieve all elements from 205 

FHIR resources. Such transformation flattens the hierarchical structure of FHIR resources and 206 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 13, 2022. ; https://doi.org/10.1101/2022.11.07.22281564doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.07.22281564


 9

makes the data more accessible for common data preprocessing tools. The final flattened 207 

output does not require expert knowledge of FHIRPath query language and supports 208 

effortless data selection and filtering. The resulting file allows uncomplicated conversion of 209 

data into a “tensor” format required by conventional AI frameworks and fast data selection 210 

based on four keys: feature_name, table_name, value and metadata.  211 

In Figure 1, we demonstrate how the FHIR-DHP recodes nested FHIR syntax to more 212 

accessible features in an AI-friendly format. Example FHIR concepts from an Observation 213 

resource are given in Figure 1a where the code’s entity “text” defines the record or 214 

measurement label. The entity “text” is often duplicated in the item “display”. However, 215 

depending on the coding system this “display” item can change, whereas “text” always stays 216 

the same and is therefore used as a feature name. The information from the FHIR resource is 217 

grouped into four concept-keys such as feature name (ex. “Blood pressure”), value (ex. 218 

“114”), table name (ex. “observation”) and metadata (Figure 1b). For a given FHIR resource 219 

type, the metadata may include concepts such as dates, references, coding system details, 220 

resource ID amongst other things. As an output, feature names together with a 221 

corresponding value and available metadata are provided in a custom JSON structure (Figure 222 

1c). The defined format allows uncomplicated data selection and aggregation based on 223 

resource type (ex. "table_name”), feature name and value. Additional information in a 224 

standardised format can be easily accessed from the metadata key and allows further data 225 

manipulation.  226 

 227 
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 228 
Figure 1. Conceptual overview for an exemplary FHIR structure and hospital record which are transformed 229 

from FHIR standard to an AI-friendly format. 230 

 231 

FHIR-DHP Validation 232 

The MIMIC IV data was queried accordingly to the defined FHIR mappings. The core and 233 

event MIMIC IV tables were merged with reference tables to contain complete description 234 

of the hospital records. As a result, the data was grouped and restructured into the 235 

information blocks required in FHIR standard. Manual independent validation of the 236 

mapping semantics resulted in slight descrepancies which were subsequently resolved to 237 

value feature name

Blood pressure

metadata

114
subject

effectiveDateTime

id

(b) Example of an
exported FHIR resource

into an AI-friendly format 

888923

    2015-02-07
T13:28:17-05:00 

551de230bc5ef

(c) Example in custom JSON
format

(a) Example FHIR concepts from an
Observation Resource

...

table name

observation
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adhere closely to the FHIR standard. The automatic syntactic validation allowed prompt 238 

verification of standardisation operations. 239 

Table 2 shows to which FHIR resources the MIMIC IV tables were mapped. The largest 240 

proportion of tables (4 out of 12 tables) were mapped to the Observation FHIR resource type 241 

which included lab, microbiology, output and charted events collected throughout the 242 

patient stay. The information on admissions and transfers was translated into the Encounter 243 

FHIR resource (2 out of 12 tables). Procedure events and ICD codes (2 out of 12 tables) were 244 

stored in the Procedure FHIR resource. Given that the prescriptions table contains 245 

medication requests (1 out of 12 tables) and inputevents table holds records of medication 246 

administration (1 out of 12 tables), these tables were mapped to corresponding FHIR 247 

resource types. Finally, the Condition FHIR resource was used to map the table with patients’ 248 

diagnoses details (1 out of 12 tables). 249 

Table 2. Overview of mappings performed on the selected MIMIC DB tables to FHIR resource types. 250 

MIMIC IV DB FHIR Resource Type 

Patients  Patient  

Admissions  Encounter  

Transfers  Encounter  

Chartevents Observation  

Labevents Observation 

Procedureevents Procedure 

Prescriptions MedicationRequest 

Inputevents MedicationAdministration 

Microbiologyevents Observation  

Outputevents Observation  

Procedure_icd  Procedure  

Diagnoses_icd  Condition  

 251 

In Table 3, we demonstrate how the mapping of the MIMIC IV “diagnoses_icd” table to 252 

Condition FHIR resource was conducted. Multiple columns of the “diagnoses_icd” table such 253 

as “icd_code”, “icd_version” and “long_title” were mapped to FHIR “condition.code” 254 

concept, which has a nested structure and provides keys to store the exact ICD code, version 255 
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of the coding system and the code title. The full diagnosis title was mapped both to the 256 

“display” and “text” entities. 257 

 Table 3. Mapping of “diagnoses_icd” table to Condition FHIR resource. 258 

MIMIC format FHIR resource format 

mimic.diagnoses_icd.subject_id  fhir.condition.subject  

mimic.diagnoses_icd.hadm_id  fhir.condition.encounter  

mimic.diagnoses_icd.icd_code   fhir.condition.code_code  

mimic.diagnoses_icd.icd_version  fhir.condition.code_version  

mimic.diagnoses_icd.long_title  fhir.condition.code_display  

mimic.diagnoses_icd.long_title fhir.condition.code_text 

 259 

Figure 2 shows an example of how queried diagnoses records are harmonised to an AI-260 

friendly format. The standardisation follows the described FHIR-DHP stages. At first, the raw 261 

data from tables “diagnoses_icd” and “d_icd_diagnoses” is queried (Figure 2a) and merged 262 

accordingly to the defined FHIR mappings. Then the features are renamed as defined in 263 

Table 3 for FHIR Condition resource and required entities such as “resourceType” and “id” 264 

are created (Figure 2b). Finally, the values are placed into a nested FHIR structure (Figure 265 

2c), and subsequently the data is transformed into JSON format (Figure 2d), which can be 266 

automatically validated (Figure 2e) and saved in the patient-model DB. When the resource is 267 

not approved in terms of its syntactic quality, e.g. data type, nested structure or cardinality, 268 

an error is raised which prevents further saving of this resource in the patient-model DB 269 

(Figure 2e). Otherwise, the resource is transferred into a storage (Figure 2f) and the 270 

requested data is exported in a custom AI-friendly JSON format (Figure 2g).  271 

We provide an example of further two-step transformation of harmonised example 272 

diagnoses data to a “tensor” format in Supplementary Material, chapter A. 273 

 274 
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 275 
 276 
Figure 2. Flow chart showing an example diagnoses data being processed through the five stages in FHIR-277 
DHP. The first stage includes querying of the diagnoses records (a), at the second stage the data is 278 
mapped to FHIR standard (b-c), and the third stage carries out the syntactic resource validation. If the 279 
FHIR resource is successfully validated, it is being transferred into the patient-model DB (f) and then 280 
exported in a custom AI-friendly JSON format (g). 281 
 282 

 283 

 284 

a) Queried diagnosis records

b) Translated column names into corresponding FHIR concepts

c) Converted values into FHIR standard

d) Final FHIR resources saved in JSON format

Patient
Model DB

Validation
failed 

Validation
succeeded 

f)  Transfering FHIR resources
to Patient-Model DB

g)  Exporting data from FHIR
format into an AI-friendly JSON file

e) Validation of FHIR resources

Querying Data
from Remote  
Hospital DB

Mapping Data
to FHIR

Standard

Syntactic
Validation of the
FHIR Mappings

Transfering
Data to Patient-

Model DB

Exporting Data
into custom
JSON File
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Discussion 285 

 286 

Harmonisation of EHR data is a crucial step towards increasing cooperation, interoperability 287 

and quality of patient care in the clinical routine and  medical research. To drive 288 

harmonisation of medical data forward, we developed the FHIR-DHP and evaluated it on key 289 

MIMIC IV tables. A detailed example of data standardisation was presented for clinical 290 

diagnoses records from the MIMIC IV database. The FHIR-DHP allows querying of health data 291 

in an isolated environment employing an edge-computation solution and a communication 292 

server which retrieve patient data and pre-structure it for further mapping to the FHIR 293 

standard. A validation step ensures syntactic compliance and initiates transfer of formatted 294 

data to the patient-model DB. The data export provides FHIR resources in a custom JSON file 295 

format.  296 

Owing to the FHIR format’s multi-layered nested structure, its accessibility for AI algorithms 297 

is low as it requires transformation into a format compatible with common data 298 

preprocessing tools. Up to the present time, a number of studies have attempted to solve 299 

this problem. However, the final output of these studies has not supported data selection 300 

criteria and filtering capabilities (16) and requires expert knowledge of FHIRPath query 301 

language (17). Here, we introduce a custom JSON format which represents a higher level of 302 

abstraction to support easier data selection based on four keys: feature_name, table_name, 303 

value and metadata. Moreover, the newly developed JSON structure fits the expected data 304 

format of common data preprocessing frameworks, which are designed to work efficiently 305 

with tabular data. As a result, the ouput presented facilitates generic and fast deployment of 306 

AI and patient cohort identification algorithms.  307 
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In comparison to (12,13), the details of FHIR-DHP execution inside the hospital environment 308 

to protect data privacy are discussed. This step, though crucial, is often omitted and left out 309 

of the published standardisation protocols. The edge-computation solution sets up the FHIR-310 

DHP in a privacy-preserving way where preprocessing of the patient-related data is 311 

performed inside the hospital and is completely isolated from outside access. So-called 312 

federated learning (FL) framework (23) can be integrated into FHIR-DHP workflow to run 313 

algorithms locally using the data on the on-premise component in the respective hospitals 314 

and to merge model parameters centrally in the cloud without any patient data leaving the 315 

hospital. The FL framework requires data to be in a consistent format across various hospital 316 

systems. The developed pipeline achieves such a format and enables scaling of AI 317 

applications. Furthermover, given the degree of automation, the setup of the pipeline 318 

facilitates preprocessing of unseen data in an isolated hospital environment, which makes 319 

the harmonisation privacy-preserving. 320 

To the date of publication of this paper, there are only two studies attempting to perform 321 

mapping of MIMIC IV database (24,25). In (24), the mapping was performed on fewer tables 322 

than our approach (8 versus 12 tables). The FHIR mappings from (25) have been recently 323 

released and were not yet widely validated. Similarly to (12,13,24), FHIR-DHP includes 324 

verification of the performed FHIR mapping which is essential to ensure validity of data 325 

transformation. An automated syntactic verification of translated to FHIR data is crucial to 326 

adhere to FHIR version updates. Moreover, in comparison to (12,13,24), FHIR-DHP 327 

represents a generic approach to standardise EHR data and can be applied to various 328 

hospital database systems. 329 

The FHIR-DHP allows integration into the hospital data management system which facilitates 330 

the development and application of advanced AI and patient cohort identification algorithms 331 
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without compromising on data privacy protection laws. With the introduction of the FHIR-332 

DHP into the hospital environment, a number of patient stay parameters can be potentially 333 

optimised using AI-based algorithms. For example, the length of stay as well as mortality 334 

could be reduced (26) and patients suitable for trial treatment could be automatically and 335 

efficiently identified (27). In consequence the financial impact on medical providers in 336 

respect of personnel time and resources would decrease considerably. The FHIR-DHP aims to 337 

bring healthcare closer to digital transformation and thus towards Healthcare 4.0 (28) by 338 

making EHR data usable “from bedside-to-bench”. By inverting the idea of translational 339 

research, in contrast to “from bench-to-bedside", accessing the full potential of medical big 340 

data with AI will further inform and advance basic research.  341 

There are several limitations that we would like to emphasise. FHIR-DHP only works with a 342 

core standard of the FHIR format. Those core FHIR resource types have a bounded set of 343 

concepts which presents a constraint to mapping accuracy. Although the standard resources 344 

can be expanded using profiling technique or FHIR extensions, the use of those would make 345 

the FHIR-DHP less generic. Hence, we implemented the mapping using only the standard 346 

FHIR resources and omitted some of the MIMIC IV data features which did not have a 347 

matching concept in FHIR. Additionally, the FHIR mapping step is subject to the extent of the 348 

detail of the database documentation used to infer semantic and syntactic properties of the 349 

data. A solution for an automatic concept recognition can potentially solve this problem. The 350 

existing approach in (6) is limited to a small number of FHIR resources and requires an 351 

extensive data preparation. Further experiments in this direction could alleviate the concept 352 

matching problem and the requirement for a detailed database description. Moreover, the 353 

validation and robustness of FHIR-DHP needs to be tested on other EHR datasets to evaluate 354 
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its generic setup. In addition, to validate the FHIR-DHP compatibility with machine learning 355 

pipelines, further experiments are needed. 356 

The proposed FHIR-DHP pipeline highlights the therein featured essential data 357 

standardisation stages and holds the potential to becoming an interoperable harmonisation 358 

system with an AI-friendly data format. FHIR-DHP enables interoperability and cooperation 359 

between clinical institutions, rapid patient cohort identification for clinical trials and unlocks 360 

the potential of big medical data. 361 

Conclusions 362 

 363 

We provide a comprehensive approach to transforming unstandardised EHR data into a 364 

harmonised multi-layered nested FHIR format and then to a more readable, more efficient 365 

AI-friendly JSON structure. We developed a five-stage data harmonisation pipeline, which 366 

includes validation checks. The AI-friendly format of patient data allows generic and fast 367 

integration of both AI and patient cohort identification algorithms. Harmonised and 368 

standardised health care data is of great value to advancing efficiency in big data processing, 369 

cooperation and multi-center data exchange in the clinical sector, in order to boost medical 370 

research, patient care and clinical trial cohort identification. The next steps would include 371 

validating our approach in a hospital environment and applying privacy-preserving FL 372 

framework to make use of advanced AI deployment.  373 
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