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Abstract

The COVID-19 pandemy has created a radically new situation where most countries provide
raw measurements of their daily incidence and disclose them in real time. This enables new
machine learning forecast strategies where the prediction might no longer be based just on the
past values of the current incidence curve, but could take advantage of observations in many
countries. We present such a simple global machine learning procedure using all past daily
incidence trend curves. Each of the 27,418 COVID-19 incidence trend curves in our database
contains the values of 56 consecutive days extracted from observed incidence curves across 61
world regions and countries. Given a current incidence trend curve observed over the past four
weeks, its forecast in the next four weeks is computed by matching it with the first four weeks
of all samples, and ranking them by their similarity to the query curve. Then the 28 days
forecast is obtained by a statistical estimation combining the values of the 28 last observed days
in those similar samples. Using comparison performed by the European Covid-19 Forecast Hub
with the current state of the art forecast methods, we verify that the proposed global learning
method, EpiLearn, compares favorably to methods forecasting from a single past curve.

Author summary

Forecasting the short time evolution of the COVID-19 daily incidence is a key issue in the
epidemic decision making policy. We propose a machine learning method which forecasts the
future values of the daily incidence trend based on the evolution of other incidence trend curves
that were similar to the current one in the past. Using comparison performed by the European
Covid-19 Forecast Hub with the current state of the art forecast methods, we verify that the
proposed global learning method, EpiLearn compares favorably to methods that forecast from a
single past curve.

Introduction

The COVID-19 epidemic has provided us with information on the evolution of the daily
incidence in many different countries and epidemic scenarios. Given the enormous global
impact of COVID-19, a large number of researchers have studied the problem of predicting the
incidence curve. For example, the European Covid-19 Forecast Hub [1] gathers a variety of
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prediction models based on many different techniques. These methods observe the past of daily
incidence in a given country and forecast its future evolution in the weeks to come. The
prediction is generally made for the next four weeks. Most of these methods base their forecast
on the observation of only the past values of the current incidence curve, that is, the one that
they want to extend towards the future.

The main objective of this paper is to introduce a prediction method that learns the future
of a given incidence trend curve from the past evolution of other many incidence trend curves.
Our method can be seen as an extension of the “method of analogues”, inspired from
meteorology and first introduced for epidemiologic forecasting in [2] in predicting influenza
activity.

This method uses vectors selected from historical influenza time series that match current
activity. The authors applied it to forecasting the incidences of influenza in France and in the
country’s 21 administrative regions, using a series of data for 938 consecutive weeks of
surveillance between 1984 and 2002, and compared the results with those for autoregressive
models. They reported that for 1- to 10-week-ahead predictions, the correlation coefficients
between the observed and forecasted regional incidences was significantly superior with the
method of analogues than for autoregressive models. The method compares fixed incidence
intervals to a query interval by their Euclidean distance, and obtains a prediction as a weighted
mean of the incidences that follow the nearest neighbors. Nevertheless, a major difference of
their method with ours is that they restrict their comparison to the past history of each
incidence curve. Hence, their learning set is considerably smaller than the one that uses many
regions or countries: It assumes the observation of a several years period and takes advantage of
the periodicity of influenza.

The sophisticated extension of the method of analogues proposed in [3] also uses historical
data (up to 20 years) to obtain predictive distributions for incidence in individual weeks using a
kernel conditional density estimation (KCDE). Then these individual distributions are tied into
joint distributions using copulas, to predict the timing of and incidence in the peak week of the
season. Like in [2], the method is applied to a single time series and therefore requires a much
longer observation period that the one that could be used for COVID-19 so far. Arguably the
closest method to our proposed one is the neural method of [4]. The authors introduce a new
neural forecasting model called Attention Crossing Time Series, that makes forecasts via
comparing patterns across time series obtained from multiple regions. It interprets the
attention mechanism [5] as an application of the “method of analogues”. The model is
demonstrated to outperform many recent SEIR models.

In a nutshell, our proposed learning method uses all past incidence trend curves that are
similar on 28 consecutive days to the last 28 last days of the trend incidence curve that is to be
extended towards the future. To demonstrate the method, we use as learning database a
collection of 27,418 COVID-19 past incidence trend curves across 61 world regions and
countries. These trend curves are computed by the EpiInvert method [6] from the original raw
incidence curves communicated by the governments. A raw incidence curve is not the adequate
input for forecasting because of its high noise and weekly oscillation. The weekly seasonality
depends on each country, thus hindering comparison between raw incidence curves. Trend
curves instead, being freed from seasonality and noise, are much more suitable to forecasting.
Nevertheless, as we will show later, a daily forecast of the raw incidence can be deduced from
its forecasted trend using the estimated seasonality.

Let us denote by s = (s1, s2, . . . , s28), the last 28 values of the current incidence trend that

we want to extrapolate, and by sf = (sf1 , s
f
2 , ..., s

f
28) the forecast for the next 28 days proposed

in this work. Each of the 27,418 incidence trend curves in our database contains the values of
56 consecutive days extracted from observed past incidence curves. We predict the evolution of
the current incidence trend curve from the median of the 28 last days of the 27,418 database
curves, where the median is computed on the 121 most similar curves. The similarity to the
query of these candidate curves is measured on its first 28 days, which are matched to the 28
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last observed days of the query curve s that we want to extrapolate. In summary, the 28 future
samples sf of the current curve s are obtained as the median of the corresponding days 29 to 56
of the most similar past curves1.

We also compute empirical confidence intervals for the incidence trend forecast by applying
the proposed method to the incidence curves of our database and obtaining a distribution of
the forecast error as a function of the number of days passed from the current day (the last day
of the used incidence curve). In Fig 1 we illustrate the results of the proposed method for four
countries, using their incidence curves up to May 5, 2022. This figure displays in black the raw
input incidence curves, which show a strong weekly periodic bias. In the case of France for
example, there is a strong deficit on week-ends compensated by a peak on Mondays. For our
prediction, we therefore use a smooth incidence trend curve (in red), that is easier to extend
and forecast than the original raw incidence. The usual way to compute an incidence trend
curve is to apply a 7 or 14 days sliding average to the original raw incidence, which reduces the
weekly effects [7]. In our method, we use the more sophisticated EpiInvert method introduced
in [6, 8] and available as a CRAN R package [9]. This method is summarily described in the
Material and Methods section. Fig 1 shows in blue the forecast curve, that can be compared to
the magenta ground truth that became later available. In light blue, the figure also displays the
predicted raw incidence curve where the weekly bias learned by EpiInvert in the immediate
past is also applied. In these relatively favorable examples, picked from large countries with
large incidence and at a time of regular daily measurements, the error between ground truth
and prediction seems acceptable. Nevertheless, the error on the fourth week can exceed 25%.
This is not surprising, given the high variability of the possible futures illustrated for the same
countries and times in Fig 3. In this introduction we do not present the many alternative
forecasting methods. Instead, we review them in detail in the discussion section. The methods
that were publicly available through the European Covid-19 Forecast Hub are quantitatively
compared with our method through the unbiased metrics of the hub. Our learning technique is
different in structure from most previous methods introduced in the literature. We involve no
parametric model for the incidence curve. Our method produces a daily forecast of the future,
whereas most COVID-19 incidence analysis methods [7, 10] aim to forecast the 7-day sliding
average of the daily incidence.

The particular significance of this study lies in the novelty of our machine learning approach
that provides a daily forecast of the current incidence curve based on its similarity with many
different incidence curves in the past. The unbiased comparison with other methods in the
context of the European Covid-19 Forecast Hub confirms the good performance of the proposed
method.

Material and Methods

Data sources The incidence trend database has been built using the daily incidence data, up
to May 5, 2022, provided by Our World in Data in [11] for the following countries and regions:
Argentina, Austria, Bangladesh, Belgium, Brazil, Canada, Chile, Colombia, Cuba, Czech
Republic, Denmark, Germany, France, Greece, Hungary, India, Iraq, Iran, Ireland, Israel, Italy,
Japan, Jordan, Kazakhstan, Malaysia , Mexico, Nepal, Netherlands, Peru, Philippines, Poland,
Romania, Russia, Serbia, Slovakia, South Africa, South Korea, Spain, Sweden, Switzerland,
Thailand, Tunisia, Turkey, Ukraine, United Arab Emirates, United Kingdom, USA , Vietnam,
Africa, South America, North America, Asia, Europe, European Union, Oceania, and the world.

The database provided by Our World in Data in [11] includes COVID-19 information about
confirmed cases, deaths, vaccinations, testing and government responses. Confirmed cases and
deaths are collected by Johns Hopkins University by date of report, rather than date of
test/death. Therefore, the number they report on a given day does not necessarily represent the

1Alternatively, we also tested a weighted average of all curves instead of the median, but it has a slightly
inferior performance.
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Fig 1. 28-day forecast of the daily incidence for four countries, using the data up
to May 5, 2022. The current original raw incidence curve which suffers from periodic weekly
effects. In red the current incidence trend computed by EpiInvert [6], in blue the forecast of
the incidence trend curve by EpiLearn, in magenta the ground truth given by the incidence
trend curve obtained 50 days later and in light blue the forecast of the raw incidence using Eq
(8). The cyan shaded area represents a 95% empirical confidence interval of the incidence trend
forecast. The discontinuity at the past-future junction in Germany is due to a sharp drop of the
incidence after the last observed day. When recalculating the incidence trend curve, the values
of the past days are also changed by smoothing, thus creating the observed gap.

actual number on that date, because of the long reporting chain that exists between a new
case/death and its inclusion in statistics. This also means that time series can show sudden
changes (negative or positive) when a country corrects historical data, because it had previously
under-or -over estimated the number of cases/deaths. The comparative results with other
methods, presented in the comparative results part of the Results section, have been obtained
by using the raw evaluation scores published by the European Hub, [1], in the file
https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/

tree/main/evaluation/scores.csv. These results cannot be manipulated and they use the
version of the data that have been available in real time when producing forecasts.

April 25, 2023 4/21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2022.11.05.22281904doi: medRxiv preprint 

https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/tree/main/evaluation/scores.csv
https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/tree/main/evaluation/scores.csv
https://doi.org/10.1101/2022.11.05.22281904
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data preprocessing method The infectiousness of individuals at time t is characterized by
the reproduction number Rt, defined as the average number of cases generated by an infected
person at time t, and by the (observable) serial interval Φs which represents the time
distribution of the delay of the onset of symptoms between primary and secondary cases. For
Covid 19, this serial interval was measured accurately in [12] on nearly 1000 verified
transmission pairs. We use this distribution in the EpiInvert method.

Our forecast model uses the EpiInvert method, which aim it is to invert the fundamental
renewal equation [13,14] linking Rt, Φ and the incidence it of new daily cases,

it=
∑
s

it−sRt−sΦs for t = 0, .., tc, (1)

where tc is the current time. The EpiInvert method introduced in [8] and extended in [6, 9] is a
deconvolution + denoising procedure to solve the functional equation (1). EpiInvert estimates
both Rt and a restored it corrected for the weekend bias. To remove the weekend effect, it
computes a 7-day quasi-periodic multiplicative factor qt. From the observed incidence curve
and the serial interval, Rt and qt are jointly estimated by minimizing

E(R, q)=

tc∑
t=0

(
qti

0
t−
∑
sqt−si

0
t−sRt−sΦs

median(t−τ,t](i0)

)2

+ wR

tc∑
t=1

(Rt−Rt−1)2 + wq

tc∑
t=7

(qt−qt−7)2, (2)

where median(t−τ,t](i
0) is the median of i0t in the interval (t− τ, t] used to normalize the energy

with respect to the size of it (the value of τ is fixed to 21 (3 weeks) in the experiments). The
total number of cases is preserved by adding to (2) the constraint on qt :

tc∑
t=tc−T+1

i0t =

tc∑
t=tc−T+1

qti
0
t , (3)

where T is a period of analysis empirically fixed to T = 56 days. The minimization of the above
energy yields estimates of Rt, and a quasi-periodic bias correction factor qt, as the third term in
the functional forces the values qt − qt−7 to be small. The parameters wR and wq are
regularization weights with default values wR = wq = 5. Their values were proven in [8] to be
nearly optimal for Covid-19 incidence curves.

By minimizing this energy (2) under the constraint (3), we obtain the reproduction number
Rt and the seasonality bias correction coefficients qt. An incidence ît corrected of the weekly
bias is obtained as ît = qti

0
t . The final restored incidence it that we use for forecasting is

obtained by applying the renewal equation (1) to the bias corrected incidence qti
0
t , namely

it =:
∑
s

qt−si
0
t−sRt−sΦs.

Software EpiLearn, the forecasting model presented in this work and including the
preprocessing step described above, is implemented in the publicly available EpiInvert CRAN R
package [9]. In this package, EpiLearn is executed using the EpiInvertForecast R function. In
the vignette https://ctim.ulpgc.es/covid19/EpiInvertForecast.html a description, with
examples, of EpiInvertForecast usage is presented.

Forecasting method

Next, we present the proposed method, let us, first, to introduce the following notation to
manage the incidence curves and their forecast:

• so = (so1, . . . , s
o
28) : the current raw incidence curve in the last 28 days.
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• so,f = (so,f1 , . . . , so,f28 ) : the forecast of the current raw incidence curve for the next 28
days in the future.

• s = (s1, . . . , s28) : the current trend curve in the last 28 days.

• sf = (sf1 , . . . , s
f
28) : the forecast of the incidence trend curve for the next 28 days in the

future.

• {ik = (ik1 , . . . , i
k
56)}Nk=1 : the collection of incidence trend curves in the database.

• {sk = (ik1 , . . . , i
k
28)}Nk=1 : the first 28 days of the database incidence trend curves that we

use for comparison purposes with the current curve s.

• {sf,k = (sf,k1 , . . . , sf,k28 )}Nk=1 : the forecast of the database curves for the last 28 days using
as current curve the first 28 days.

• Ed = {ed,k =
|sf,kd −i

k
d+28|

sf,kd

}Nk=1 : empirical distribution of the relative forecast error for the

database curves in the forecast day d = 1, . . . , 28.

Incidence trend curves database construction using EpiInvert

Our proposed method, EpiLearn, uses a world-wide database of raw incidence curves from 61
countries and regions up to May 5, 2022. For each country or region, and for each day, starting
150 days after the beginning of the epidemic, we take the raw incidence data up to that day.
Then, the resulting curve is further processed by applying the EpiInvert incidence
decomposition algorithm [6] (see the Material and Methods section) and we keep the last 56
values of the estimated incidence trend curve. To add a curve of this type to the database, we
impose that the mean of the 56 values of the sequence must be larger than 1000. Taking into
account that we normalize all database curves, the magnitude of the curves therefore has no
influence in the forecast estimation. This amounts to making the assumption that the incidence
curve evolution has the same behavior in large countries than in small countries. We impose
this minimum 1000 cases average condition because for very small averages the registered
incidence curves are often very noisy and unreliable. Indeed, small averages often correspond to
non-threatening or neglected stages of the epidemic.

Normalization of the database incidence curves

EpiInvert is magnitude-invariant, that is, multiplying the raw incidence values by a scalar
factor multiplies the estimated EpinInvert incidence trend values by the same scalar factor. Our
forecast method preserves this magnitude-invariance by normalizing the magnitude of the
incidence trend curves.

Let N be the number of incidence trend curves stored in the database (in our case
N =27,418). For k = 1, 2, .., N , ik = (ik1 , i

k
2 , ..., i

k
56) corresponds to the last 56 days of the

incidence trend curve computed by EpiInvert and stored in the database. Each ik has been
normalized by multiplying it by a scale factor so that the average of the first 28 values be equal
to 1: ∑28

j=1 i
k
j

28
= 1. (4)

Computing the distance between curves

We denote by ŝ the present-day incidence trend curve for the country being predicted, that has
been normalized in the same way, so that

ŝ =
28∑28
j=1 sj

s. (5)
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We compare the normalized vectors ŝ and sk (the first 28 values of ik) through the following
magnitude-invariant distance average,

d(̂s, sk, µ) =

∑28
j=1 e

−µ(28−j)|ŝj − skj |
28

, (6)

where the parameter µ ≥ 0 governs the exponentially weighted moving average. The larger the
value of µ, the lower this weight for the more remote days, as is classical in control theory [15]
and in epidemiological forecasting [16]. As shown below, by minimizing the forecast error, we
obtain the optimal value µ = 0.0475. Fig 2 shows the function f(x) = e−0.0475x which
determines the weight assigned to each day in the past in the distance estimation.
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0.8
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Days before forecast date

W
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0 6 13 20 27
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Fig 2. Weighting function. Shape of the functions e−0.0475x which determines the weight
assigned to each day in the past in the distance estimation (6) for the proposed forecast method.

Forecasting using a median of the closest database curves

First, we select in the database the Nmedian, the curves {skn}n=1,..,Nmedian
that are closest to

the current one, using the similarity criterion (6). Nmedian is a parameter of the method. The

median forecast of sf = (sf1 , s
f
2 , ..., s

f
28) for the next 28 days is defined by

sfd = median

{
s28

skn28
iknd+28

}
n=1,..,Nmedian

for d = 1, .., 28. (7)

As EpiInvert also computes multiplicative weekly seasonality correction factors, qt, we
additionally compute a forecast, so,f , of the raw incidence curve, so, by dividing the forecasted
incidence trend curve by the corresponding seasonality factors,

so,fd =
sfd

q22+d%7
for d = 1, .., 28. (8)

where % is the modulus operator. By using q22+d%7 as future seasonality factors we are simply
making a 7-periodic extrapolation of the last seasonality factors estimated by EpiInvert.

Fig 3 illustrates the proposed learning procedure. For four countries, it shows the current
incidence trend by EpinInvert, its 5 closest curves in the database for their first four weeks, and
the forecast, computed as the median of the 121 closest curves in their last four weeks. For
France, the UK and the USA, we can observe that among the most similar curves there are
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curves with a strong growth. These curves correspond to the first wave of the omicron variant
in Romania, Hungary and Italy that occurred by the end of 2021. These examples show that
very close curves in the past can evolve very differently in the future. In particular, the
methods studied in this paper, which forecast the evolution of the incidence only using past
incidence data, may be subject to large errors in forecasting.

Germany United Kingdom

France USA

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58
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Fig 3. Illustration of the variability of closest curves. For France, the USA, Germany
and the United Kingdom: in black, the normalized curve ŝ of the last 28 values of the
incidence trend curve up to May 5, 2022, in red the normalized forecasting curve û obtained by
EpiLearn. Are also displayed in a blue scale the five curves ik in the database with the lowest
distance d(̂s, ik, µ) to the incidence trend curve ŝ. The lighter the blue, the larger the distance
to the input curve.

Choice of the method parameters

We have to choose the parameters of the method, Nmedian and µ. For each curve
ik = (ik1 , . . . , i

k
56) in the database, we use as current incidence curve the first 28 days of ik, that

is, sk = (ik1 , . . . , i
k
28). The forecast of sk is given by

sf,kd = median

{
sk28
skn28

iknd+28

}
n=1,..,Nmedian

for d = 1, .., 28, (9)

where {skn}Nmedian
n=1 are the Nmedian closest curves, in the database, using the distance (6), to
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sk (removing from the choice a neighborhood of k in the database). For each forecast day
d = 1, .., 28, the relative forecast error is given by

ed,k =
|sf,kd − ikd+28|

sf,kd
. (10)

We define the method’s median forecast error by

ForecastError(Nmedian, µ) = median

{
1

14

14∑
d=1

ed,k

}
k=1,..,N

. (11)

By minimizing this median error, we obtained the optimal values Nmedian = 121 and
µ = 0.0475. We optimized the parameters Nmedian and µ using the first 14 forecast days
because the expected error in the next 14 days is so large that we prefer to focus on the
optimization for the first 14 days. We could also optimize the above parameters for the whole
28 forecast days. In that case, we obtain as optimal values Nmedian = 128 and µ = 0.1075
which are slightly different from the ones obtained for the first 14 days.

Empirical confidence intervals.

For each forecast day d, we compute empirical confidence intervals using the distribution of
relative errors for the database given by Ed = {ed,k}Nk=1, using the estimated optimal values for
the parameters Nmedian and µ.

Assuming that the distribution of the relative forecast error for the current incidence trend
curve s is similar to the one obtained for the database and determined by Ed, we can empirically
approximate the percentiles of the forecast distribution, Fd, of the current curve, using the
percentiles of Ed. Indeed, let us denote by Pp(X) the p-th percentile of a distribution X, then

Pp(Fd) ≈ sfd + sfdPp(Ed) (12)

where sfd is the forecast estimated by the proposed method. A 95% central confidence interval
for the incidence trend value is for example given by (P0.025(Fd), P0.975(Fd)). In Fig 4 we
display the confidence intervals of Ed for the proposed forecast method. As expected, the size
of the confidence intervals increases with the forecast day d and is quite large after 28 days.
Notice that the mean and the median (P0.50(Ed)) of Ed are very different due to the
asymmetry of the distribution Ed. The mean is closer to the upper end of the forecast interval
than the median. The fact that the median of the error is very close to zero confirms the
consistency of the method.

Results

Comparative results in the context of the European Covid-19
Forecast Hub

The question arises of how to compare all methods, in theory and in practice. For a practical
comparison, we take advantage of the fact that a wide variety of forecasts are submitted to the
European COVID-19 Forecast Hub [17] and to the COVID-19 Forecast Hub [18]. A study on
the methodology to evaluate and compare forecast has been proposed in [19], using the data of
this Hub. As developed in [1], the European Covid-19 Forecast Hub provides short-term
forecasts of Covid-19 cases and deaths across Europe. It is supported by teams working on
pandemic modeling and sharing their forecast of the weekly accumulated incidence with
horizons of 1 to 4 weeks. Each week starts on Sunday and ends on Saturday. At the time of
writing, many countries do not provide data during the week-end, and some countries only
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Fig 4. Error statistics. Illustration of some statistics of the Ed = {ed,k} distribution defined
by (10) for the entire database: the red curve indicates the mean of the distribution that is
greatly affected by the skewness of the distribution, which justifies using the median (the curve
in green) instead of the mean. The median is indeed very close to zero, which proves the
consistency of the approximation adopted in Eq (12). From the outside to the inside, the
shaded areas represent the estimated (1− αk)× 100% central prediction intervals (lαk

, uαk
) for

αk = 0.05, 0.1, 0.2, ..., 0.9.

provide a weekly estimate. This fact has no influence for method preprocessing the data by a 7
day sliding average. Nevertheless, since we use daily estimates, a single weekly estimate has a
negative impact on the quality of our forecast. To address this issue, when a country provides
data on a day, but not on the previous days, we distribute equally the last accumulated value
over the previous uninformed days before applying EpiInvert.

Since EpiLearn forecasts the daily incidence, the weekly forecast is obtained by summing
the forecasted raw daily incidence given by (8). The quantiles of the associated weekly
distributions are computed on the registered database of incidence curves by extending the
procedure of the previous section which computes the confidence intervals of the forecasted
incidence curve. In this case, we aggregate to the weekly scale first and then compute quantiles.

The European Hub encourages teams to provide, for each model, m, each horizon week,
h = 1, 2, 3, 4, and each forecast target, n, the prediction of the weekly incidence, fm,h,n, and 23
quantiles of the associated distribution. These quantiles correspond to the predictive median,
M , and eleven (1− αk)× 100% central prediction intervals (lαk

, uαk
), with

αk = 0.02, 0.05, 0.1, 0.2, ..., 0.9, where lαk
and uαk

are (respectively) the αk/2 and (1− αk/2)
quantiles of F . The following weighted interval score, WISm,h,n (see [20]), is proposed to
evaluate the distribution accuracy:

WISm,h,n =
1
2 |oh,n −M |+

∑11
k=1

αk

2 (uαk
− lαk

) + (lαk
− oh,n)+ + (oh,n − uαk

)+

11.5
(13)

where oh,n is the observed outcome, (.)+ is defined as (x)+ = x if x > 0 and 0 otherwise. The
lower the value of WISm,h,n, the better the score associated to the forecast distribution
determined by the quantiles of F .

The prediction accuracy of a model is measured using two indicators: the first one is
|fm,h,n − oh,n|, that is, the absolute value of the difference between the observed value oh,n and
the prediction fm,h,n. The second indicator measures the quality of the confidence intervals and
is given by WISm,h,n. To compare the prediction accuracy of different models, we have to take
into account that, in general, each team provides a different number of forecast targets. We
started for example submitting forecast to the European Hub by August 2022, but other teams
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started submitting up to 2 years earlier. Furthermore, not all teams provide a forecast for all
horizons and for all countries. Thus, defining a fair comparison of models requires some caution.
To address this issue, the European Hub uses the following procedure (we explain the procedure
for the comparison of |fm,h,n − oh,n|, but the comparison of WISm,h,n is equivalent). Consider

two models m and m′, a week horizon h ∈ {1, 2, 3, 4} and {(fm,h,n, fm′,h,n, oh,n)}Nm,m′,h
k=1 where

Nm,m′,h is the number of forecast targets that have been handled by both models. The pairwise
comparison of both models is then defined by the ratio

θm,m′,h =

∑Nm,m′,h
k=1 |fm,h,n − oh,n|∑Nm,m′,h
k=1 |fm′,h,n − oh,n|

, (14)

which is smaller than 1 if m′ is more accurate than m, and larger than 1 otherwise.
Subsequently, we compute for each model m the geometric mean of the results achieved for all
different pairwise comparisons,

θm,h =

 M ′∏
m′=1

θm,m′,h

 1
M′

, (15)

where M ′ is the number of models, m′ 6= m, which have forecast targets in common with model
m. It follows that θm,h is a measure of the relative skill of model m with respect to the set of
all other models in the week horizon h. The relative performance of model m is computed with
respect to θb,h, the score of the baseline model, as

θ∗m,h =
θm,h
θb,h

, (16)

where the baseline model b is nothing but the constant prediction extending the last observed
weekly value [21].

The ratio θ∗m,h is called the relative MAE, rel ae, of model m in the week horizon h. A
score of 0 < rel ae < 1 means that model m is better than the baseline; a score of rel ae > 1
means that the baseline is better. In the case of WISm,h,n, we use the same procedure
(replacing |fm,h,n − oh,n| by WISm,h,n) and call rel wis the associated indicator. Every week,
the Hub publishes, in the file scores.csv of the evaluation repository, information about the
accuracy of the predictions. In particular, it publishes, for each team m, horizon h and forecast
target n, the values of |fm,h,n − oh,n|, WISm,h,n, and the 50% and 95% prediction intervals
coverage. We used this information to compare EpiLearn with the other methods. To do a fair
comparison, for all teams, we used as comparison population the horizons and targets used by
EpiLearn to provide forecast between August 6, 2022 and March 6, 2023. In this way we used
for all teams the same target population when computing the performance scores. Moreover, we
only considered models that provided forecasts for at least 50% of the target population. In
table 1 we present, for each model, the values of rel ae , rel wis, the 50% and 95% interval
coverage and the number of targets in common between EpiLearn and the model used to
compute the indicators. In Fig. 5 we show the actual observed weekly disease incidence by
country during the time span evaluated in the comparative results from the European
COVID-19 Forecast Hub, this period showed challenging behaviors in disease incidence trends.
The baseline value of rel ae and rel wis equal to 1 is the constant prediction, which is expected
to be beaten by all more sophisticated methods. The lower the values of these indicators, the
better the model performance. The result of the ensemble model is usually considered as the
best option as argued in [20]. In the Hub, the proposed EpiLearn technique corresponds to the
named AMM-EpiInvert team. In table 1 we observe that, except for the horizon of 4 weeks,
EpiLearn obtains the best results for rel ae and rel wis, specially for the horizons of 1 and 2
weeks. The value of the 50% confidence interval coverage obtained by EpiLearn is not so good,

April 25, 2023 11/21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2022.11.05.22281904doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.05.22281904
http://creativecommons.org/licenses/by-nc-nd/4.0/


but this indicator does not take into account how far the estimation stands from the confidence
interval. The low value of rel wis indicates that, globally, the estimation obtained by EpiLearn
are quite close to the confidence intervals. In Fig. 6 we plot the values of rel ae and rel wis
presented in table 1.

The EpiInvert method performs a decomposition of the past incidence curve into a trend
and a noise component, after correction of the weekly bias. In the above error estimations, we
only used the trend curves, because what is forecast also is a trend. We did not compute the
additional error between prediction and ground truth that is caused by the noise component.
Our above error prediction therefore only addresses the method’s bias, namely the observed
variability of the future trends following a given past trend interval. A further refinement of the
method should take into account the noise residual computed by EpiInvert for a given incidence
curve, estimate its model, and deduce a noise variance for the prediction. This noise variance
should be added to the method bias variance.

A great advantage of using the scores published by the European Hub is that such scores
cannot be manipulated. They represent a fair quality comparison framework for the models
performance.
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horizon model rel ae rel wis cov 50 cov 95 N. targets
1 week EuroCOVIDhub-baseline 1 1 0.604 1.000 728
1 week EuroCOVIDhub-ensemble 0.818 0.701 0.492 0.940 705
1 week AMM-EpiInvert (EpiLearn) 0.744 0.647 0.328 0.890 728
1 week ILM-EKF 7.354 7.618 0.387 0.846 688
1 week MUNI-ARIMA 1.005 0.947 0.484 0.952 649
1 week USC-SIkJalpha 1.856 2.002 0.162 0.478 696
1 week epiforecasts-weeklygrowth 4.839 4.342 0.747 0.964 501
1 week SDSC ISG-TrendModel 0.984 1.033 0.602 0.883 703

2 weeks EuroCOVIDhub-baseline 1 1 0.730 0.999 697
2 weeks EuroCOVIDhub-ensemble 0.831 0.768 0.490 0.921 668
2 weeks AMM-EpiInvert (EpiLearn) 0.795 0.717 0.370 0.899 697
2 weeks ILM-EKF 8.374 10.817 0.355 0.803 656
2 weeks MUNI-ARIMA 1.020 0.988 0.557 0.960 618
2 weeks USC-SIkJalpha 2.655 2.882 0.123 0.374 660
2 weeks epiforecasts-weeklygrowth 3.764 4.291 0.712 0.973 479

3 weeks EuroCOVIDhub-baseline 1 1 0.751 0.996 668
3 weeks EuroCOVIDhub-ensemble 0.988 0.950 0.478 0.911 640
3 weeks AMM-EpiInvert (EpiLearn) 0.937 0.889 0.385 0.896 668
3 weeks ILM-EKF 8.860 12.046 0.322 0.763 628
3 weeks MUNI-ARIMA 1.001 0.943 0.581 0.950 585
3 weeks USC-SIkJalpha 5.339 5.158 0.117 0.340 633
3 weeks epiforecasts-weeklygrowth 2.209 2.103 0.676 0.974 457

4 weeks EuroCOVIDhub-baseline 1 1 0.777 0.994 633
4 weeks EuroCOVIDhub-ensemble 1.105 1.106 0.482 0.911 604
4 weeks AMM-EpiInvert (EpiLearn) 1.111 1.081 0.387 0.903 633
4 weeks ILM-EKF 8.618 12.049 0.317 0.755 596
4 weeks MUNI-ARIMA 0.952 0.912 0.565 0.964 549
4 weeks USC-SIkJalpha 4.684 5.185 0.107 0.323 598
4 weeks epiforecasts-weeklygrowth 2.059 2.613 0.685 0.980 454

Table 1. Comparative results. In bold the best result of each column for each week for the
main quality measurements promoted by the European hub: rel ae and rel wis (for both
quality criteria, the lower the better).
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Fig 5. Figure showing the actual observed weekly disease incidence by country during the time
span evaluated in the comparative results from the European COVID-19 Forecast Hub. This
period showed challenging behaviors in disease incidence trends.
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Fig 6. Plot of the relative absolute error (rel ae) and the relative weighted interval score
(rel wis) presented in table 1 using the evaluation data provided by the COVID-19 European
Hub.
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Discussion

In this section we review and discuss the properties and assumptions of the most relevant
forecasting methods, and link them when possible to methods and results published weekly in
the European Covid-19 Forecast Hub [17].

ARIMA The ARMA (AutoRegressive Moving Average) and ARIMA (AutoRegressive
Integrated Moving Average) models are the backbone of many forecasting methods and are
implemented through the popular R package [22]. In the European Hub Forecast initiative, the
epiforecasts-weeklygrowth team [23] uses a Bayesian ARIMA model on weekly incidence data.
ARIMA is arguably the most popular forecasting model for COVID-19, and has been applied
with a country-specific optimization of parameters. For example the MUNI-ARIMA [24] team
participating to the European Hub Forecast initiative uses an “ARIMA model with outlier
detection fitted to transformed weekly aggregated series”. This method is one of the best
performing methods as illustrated in Figure 5.

An extension of ARIMA, SARIMA (seasonal ARIMA) is a combination of two ARIMA
models. This method was tested for forecasting the global COVID-19 incidence in [25,26]. It
has been used and compared to ARIMA for COVID-19 forecast in [27].

Compartmental epidemiological models (SIR, SEIR, SIRD, SEIARD and
SUIHTER) Compartmental models are in silico simulation models that consider the
population as a collection of compartments, for example in the case of SEIARD : S susceptible,
E exposed, I infected, A asymptomatic, R recovered and D dead. Initially designed for
epidemic modeling, the SIR model and its variants have since been adapted to forecasting the
future evolution of the pandemic from an estimated starting point. The model’s parameters are
estimated from the past incidence, and the model is then applied forward to simulate the future.
This method has been developed for SIR [28,29], SEIR [30,31], SIRD [32], SEIARD [33] and
SUIHTER [34,35].

Regression models The Richards model [36] is a 2-parameter simple logistic growth
model including a scaling parameter. This model is used in [37] as a parametric regression
model for the modeling of incidence indicators. The incidence distribution is modeled by an
appropriate Poisson or Negative Binomial. It is also used in [38] for estimating the regional
propagation of COVID-19 in Italy and in [39] for recurrent forecasting in Europe.The
Gompertz model was originally proposed to explain human mortality curves and has been
further employed in the description of growth processes. Modeling the cumulative cases of
Covid-19, it is used for COVID-19 forecast in [40] and [41]. This model was implemented in the
European Hub Forecast initiative through the BIOCOMSC-Gompertz method [40] . The
composite logistic growth model (CLM) [42] is another regression model, a variant of
which is used by the RobertWalraven-ESG [43] team participating to the European Hub
Forecast initiative. Its results are illustrated in Figure 5.The sub-epidemic model is the
most flexible extension of the previous models used for forecasting [42] This sub-epidemic wave
model supports complex epidemic trajectories shaped by multiple underlying sub-epidemics
modeled by the GLM.

Short term prediction by the renewal equation, linear extrapolation The approach
proposed in [44] to forecasting future COVID-19 cases involves 1) modeling the incidence using
a Poisson distribution for the daily incidence number, and a gamma distribution for the series
interval; 2) estimating the effective reproduction number assuming its value stays constant
during a short time interval (by the EpiEstim method [7]); and 3) using the renewal equation,
drawing future incidence cases from their posterior distributions, assuming that the current
transmission rate will stay the same, or change by a certain degree. A similar forecast method
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is involved in [45] which compares human and machine forecasts in Germany and Poland. The
authors use a Bayesian model from the EpiNow2 R package (version 1.3.3) to predict reported
cases. Epinow [10] estimates the effective reproduction number Rt. The future infections are
computed by the Fraser renewal equation as a weighted sum of past infection multiplied by Rt.
In the comparison, Rt is assumed to stay constant beyond the forecast date. The conclusion of
this paper is that an average of human experts’ forecasts performs better. Similarly, the
USC-SIkJalpha [16] and ILM-EKF [46] teams participating to the European Hub Forecast
initiative use the renewal equation (the second mentioned group also involves a Kalman filter in
its prediction). Its results are illustrated in Figure 6. Lastly, the SDSC ISG-TrendModel [47]
team, also participating to the European Hub Forecast initiative, is a trend extrapolation which
starts by decomposing the incidence curve into three components: the trend, a seasonal
component and noise. Then the model predicts daily cases using linear extrapolation on the
linear or log scale of the underlying trend estimated by a robust LOESS seasonal-trend
decomposition model. Its results are illustrated in Figure 6, where only the results for the first
two weeks are available.

Aggregation of estimators (ensemble methods) The idea of agregation methods,
sometimes also called ensemble methods is to build a prediction model by combining the
strengths of a collection of simpler base models called weak learners [48]. In [49] the use of
ensemble models was evaluated for influenza seasons and it was concluded that the ensemble
methods average performance is similar to the best of the component models, but offers more
consistent performance across seasons than the component models. The European Covid-19
Forecast Hub [17] also proposes “an ensemble, or model average, of submitted forecasts to the
European COVID-19 Forecast Hub”, described in [20]. In it, the teams submit weekly forecasts
for COVID-19 cases and deaths in up to 32 countries for the next week and the three following
weeks. The teams also submit standardized quantiles of their predictive distribution. In the
ensemble forecast, each predictive quantile is calculated as the equally-weighted median of all
individual models’ predictive quantiles. The performance of each model is evaluated with the
relative Weighted Interval Score (WIS), comparing a models’ forecast accuracy relative to all
other models (see section for the formula of WIS). In [20], the authors report that the
ensemble performed better on relative WIS than 84% of participating models’ forecasts of
incident cases (with a total N=862), and 92% of participating models’ forecasts of deaths
(N=746). In view of this, we shall pay a special attention to the comparison of the model
proposed here with the ensemble model, as illustrated on 6.

Global learning The idea of Global learning is to predict jointly an ensemble of time series
with similar characteristics [50]. Each time series is time-delay embedded and stacked together
before fitting a single linear autoregressive model. The dimension of the embedding is tuned by
temporal validation. The same method is used in [51], which proposes to estimate a time lag
between two countries after finding an optimal dynamic time warping between their incidence
curves. This procedure allows an elastic adjustment of the time axis to find similar but
phase-shifted sequences. Then the incidence curve of the leading country is used to extend
toward future the incidence curve of the other. This group of methods can be seen as a direct
antecedent of the method proposed here. Indeed, our method (implicitly) estimates time lags
between past incidence curves of different countries and the one that we want to extend before
exploiting the “future” samples of these time shifted incidence curves to predict the future of
our target incidence.

Conclusion

Given the large number of factors that can influence a future evolution, forecasting the
evolution of the incidence curve is clearly difficult. We saw in the discussion section that most
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standard approaches estimate the parameters of an evolution model (ARIMA, SIR, a logistic
curve). In this work, we proposed EpiLearn, a method following a more empirical approach that
estimates the forecast by a learning procedure using many samples of past incidences evolution
in many countries. Using EpiInvert, an incidence decomposition method, we removed first the
strong administrative weekly bias from the original raw incidence to estimate a smooth
incidence trend curve. Using a large database of incidence trends, the forecast is computed as
the median of the closest curves, in the past, to the current incidence trend curve. We observed
that the size of the estimated empiric confidence interval grows quickly with the number of
forecast days. For a 28 days forecast the size of the confidence interval becomes very large, and
this is confirmed weekly by our results in the European hub [17]. These results place EpiInvert
among the very best methods in the period and regions analyzed. We observed that the
prediction of all methods may miss the forecast target by a large margin in the three and four
weeks horizon. Nevertheless, they seem to be reliable and useful to predict the pandemic in a
two-week horizon.

The proposed method might be improved in several ways by taking into account additional
relevant factors before comparing time sequences. Indeed, our obtained confidence intervals
were based on a global distribution of relative errors. However, the size of relative errors might
vary depending on the trend and magnitude of the query curve. It might be interesting to
explore this by adding a distance of the average incidences as an additional term in the distance
between incidences given in equation (6). In addition, the forecasting could benefit from
additional knowledge about implementation or changes of the social distancing policy and
evolution of the virus’ contagiousness (as was observed with the emergence of Omicron).
Digging into these aspects requires a far ranging overhaul of our experimental protocol which
belongs to our future plans.
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