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Simple Summary: Forecasting the short time evolution of the COVID-19 daily incidence is a key issue
in the epidemic decision making policy. We propose a machine learning method which forecasts the
future values of the daily incidence trend based on the evolution of other incidence trend curves that
were similar to the current one in the past. Using comparison performed by the European Covid-19
Forecast Hub with the current state of the art forecast methods, we verify that the proposed global
learning method, EpiLearn, compares favorably to methods forecasting from a single past curve.

Abstract: The COVID-19 pandemy has created a radically new situation where most countries
provide raw measurements of their daily incidence and disclose them in real time. This enables
new machine learning forecast strategies where the prediction might no longer be based just on
the past values of the current incidence curve, but could take advantage of observations in many
countries. We present such a simple global machine learning procedure using all past daily incidence
trend curves. Each of the 27,418 COVID-19 incidence trend curves in our database contains the
values of 56 consecutive days extracted from observed incidence curves across 61 word regions and
countries. Given a current incidence trend curve observed over the past four weeks, its forecast
in the next four weeks is computed by matching it with the first four weeks of all samples, and
ranking them by their similarity to the query curve. Then the 28 days forecast is obtained by a
statistical estimation combining the values of the 28 last observed days in those similar samples.
Using comparison performed by the European Covid-19 Forecast Hub with the current state of the art
forecast methods, we verify that the proposed global learning method, EpiLearn, compares favorably
to methods forecasting from a single past curve.

Keywords: Incidence curve ; trend curve ; pandemic ; COVID-19 ; renewal equation ; machine
learning ; forecasting
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1. Introduction

The COVID-19 epidemic has provided us with information on the evolution of the daily incidence
in many different countries and epidemic scenarios. Given the enormous global impact of COVID-19, a
large number of researchers have studied the problem of predicting the incidence curve. For example,
the European Covid-19 Forecast Hub [1] gathers a variety of prediction models based on many different
techniques that we will review in this paper.
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These methods observe the past of daily incidence in a given country and forecast its future
evolution in the weeks to come. The prediction is generally made for the next four weeks. Most of
these methods base their forecast on the observation of only the past values of the current incidence
curve, that is, the one that they want to extend towards the future. We introduce in the present paper a
prediction method that learns the future of a given incidence trend curve from the past evolution of
other many incidence trend curves. In a nutshell, the learning method uses all past incidence trend
curves that are similar on 28 consecutive days to the last 28 last days of the trend incidence curve
that is to be extended towards the future. To demonstrate the method, we use as learning database
a collection of 27,418 COVID-19 past incidence trend curves across 61 world regions and countries.
These trend curves are computed by the EpiInvert method [2] from the original raw incidence curves
communicated by the governments. A raw incidence curve is not the adequate input for forecasting
because of its high noise and weekly oscillation. The weekly seasonality depends on each country,
thus hindering comparison between raw incidence curves. Trend curves instead, being freed from
seasonality and noise, are much more suitable to forecasting. Nevertheless, as we will show later,
a daily forecast of the raw incidence can be deduced from its forecasted trend using the estimated
seasonality.

Let us denote by s = (s1, s2, ..., s28), the last 28 values of the current incidence trend that we want
to extrapolate, and by s f = (s f

1 , s f
2 , ..., s f

28) the forecast for the next 28 days proposed in this work.
Each of the 27,418 incidence trend curves in our database contains the values of 56 consecutive days
extracted from observed past incidence curves. We predict the evolution of the current incidence trend
curve from the median of the 28 last days of the 27,418 database curves, where the median is computed
on the 121 most similar curves. The similarity to the query of these candidate curves is measured on
its first 28 days, which are matched to the 28 last observed days of the query curve s that we want to
extrapolate. In summary, the 28 future samples s f of the current curve s are obtained as the median of
the corresponding days 29 to 56 of the most similar past curves1.

We also compute empirical confidence intervals for the incidence trend forecast by applying
the proposed method to the incidence curves of our database and obtaining a distribution of the
forecast error as a function of the number of days passed from the current day (the last day of the
used incidence curve). In Fig. 1 we illustrate the results of the proposed method for four countries,
using their incidence curves up to May 5, 2022. This figure displays in black the raw input incidence
curves, which show a strong weekly periodic bias. In the case of France for example, there is a strong
deficit on week-ends compensated by a peak on Mondays. For our prediction, we therefore use a
smooth incidence trend curve (in red), that is easier to extend and forecast than the original raw
incidence. The usual way to compute a incidence trend curve is to apply a 7 or 14 days sliding average
to the original raw incidence, which reduces the weekly effects [3]. In our method, we use the more
sophisticated EpiInvert method introduced in [2,4] and available as R package [5]. This method is
summarily described in section 3.2. Fig. 1 shows in blue the forecast curve, that can be compared
to the magenta ground truth that became later available. In light blue, the figure also displays the
predicted raw incidence curve where the weekly bias learned by EpiInvert in the immediate past is
also applied. In these relatively favorable examples, picked from large countries with large incidence
and at a time of regular daily measurements, the error between ground truth and prediction seems
acceptable. Nevertheless, the error on the fourth week can exceed 25%. This is not surprising, given
the high variability of the possible futures illustrated for the same countries and times in Fig. 2. In this
introduction we do not present the many alternative forecasting methods. Instead, we review them in
detail in the discussion section. In section 2.6, the methods that were publicly available through the
European Covid-19 Forecast Hub are quantitatively compared with our method through the unbiased
metrics of the hub. Our learning technique is widely different from previous methods introduced in

1 Alternatively, we also tested a weighted average of all curves instead of the median, but it has a slightly inferior performance.
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the literature. We involve no parametric model for the incidence curve. Our method produces a daily
forecast of the future, whereas most COVID-19 incidence analysis methods [3,6] aim to forecast the
7-day sliding average of the daily incidence.
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Figure 1. 28-day forecast of the daily incidence for four countries, using the data up to May 5, 2022.
In black the current original raw incidence curve which suffers from periodic weekly effects. In red
the current incidence trend computed by EpiInvert [2], in blue the forecast of the incidence trend
curve by EpiLearn, in magenta the ground truth given by the incidence trend curve obtained 50 days
later and in light blue the forecast of the raw incidence using equation (5). The cyan shaded area
represents a 95% empirical confidence interval of the incidence trend forecast. The discontinuity at
the past-future junction in Germany is due to a sharp drop of the incidence after the last observed
day. When recalculating the incidence trend curve, the values of the past days are also changed by
smoothing, thus creating the observed gap.

2. Results

2.1. Incidence trend curves database construction using EpiInvert

Our proposed method, EpiLearn, uses a world-wide database of raw incidence curves from 61
countries and regions up to May 5, 2022. For each country or region the last n days of the raw incidence
data sequence were iteratively removed (with n = 0, 1, 2, 3....). Then, the resulting curve is further
processed by applying the EpiInvert incidence decomposition algorithm [2] (see section 3.2) and we
keep the last 56 values of the estimated incidence trend curve. To add a curve of this type to the
database, two conditions were imposed: the first was that the minimum time interval of the resulting
sequence to apply EpiInvert was 150 days. The second condition was that the mean of the 56 values of
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the sequence must be larger than 1000. (Small averages can correspond to nonthreatening or neglected
stages of the epidemic, and the resulting incidence curves are often unreliable). Using this procedure
we built a database of 27,418 incidence trend curves.

2.2. Normalization of the database incidence curves

EpiInvert is magnitude-invariant, that is, multiplying the raw incidence values by a scalar factor
multiplies the estimated EpinInvert incidence trend values by the same scalar factor. Our forecast
method preserves this magnitude-invariance by normalizing the magnitude of the incidence trend
curves.

Let N be the number of incidence trend curves stored in the database (in our case N =27,418). For
k = 1, 2, .., N, let us denote by ik = (ik

1, ik
2, ..., ik

56) the last 56 days of the incidence trend curve computed
by EpiInvert and stored in the database. Each ik has been normalized by multiplying it by a scale factor
so that the average of the first 28 values be equal to 1:

∑28
m=1 ik

m
28

= 1. (1)

2.2.1. Computing the distance between curves

We denote by ŝ the present-day incidence trend curve for the country being predicted, that has
been normalized in the same way, so that

ŝ =
28

∑28
m=1 sm

s. (2)

We compare the normalized vectors ŝ and ik through the following magnitude-invariant distance
average,

d(ŝ, ik, µ) =
∑28

m=1 e−µ(28−m)|ŝm − ik
m|

28
, (3)

where the parameter µ ≥ 0 governs the exponentially weighted moving average. The larger the
value of µ, the lower this weight for the more remote days, as is classical in control theory [7] and in
epidemiological forecasting [8].

2.3. Forecasting using a median of the closest database curves

First, we select in the database the Nmedian, curves ikn
n=1,..,Nmedian

that are closest to the current
one, using the similarity criterium (3). Nmedian is a parameter of the method. The median forecast of
s f = (s f

1 , s f
2 , ..., s f

28) for the next 28 days is defined by

s f
m = median

{
s28

ikn
28

ikn
m+28

}
n=1,..,Nmedian

for m = 1, .., 28. (4)

As EpiInvert also computes multiplicative weekly seasonality correction factors, qt, we additionally
compute a forecast, s0, f , of the raw incidence curve, s0, by dividing the forecasted incidence trend
curve by the corresponding seasonality factors,

s0, f
m =

s f
m

q22+m%7
for m = 1, .., 28. (5)

By using q22+m%7 as future seasonality factors we are simply making a 7-periodic extrapolation of the
last seasonality factors estimated by EpiInvert.
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Figure 2. For France, the USA, Germany and the United Kingdom: in black, the normalized curve ŝ of
the last 28 values of the incidence trend curve up to May 5, 2022, in red the normalized forecasting
curve û obtained by EpiLearn. Are also displayed in a blue scale the five curves ik in the database with
the lowest distance d(ŝ, ik, µ) to the incidence trend curve ŝ. The lighter the blue, the larger the distance
to the input curve.

Figure 2 illustrates the proposed learning procedure. For four countries, it shows the current
incidence trend by EpinInvert, its 5 closest curves in the database for their first four weeks, and the
forecast, computed as the median of the 121 closest curves in their last four weeks. For France, the UK
and the USA, we can observe that among the most similar curves there are curves with a strong growth.
These curves correspond to the first wave of the omicron variant in Romania, Hungary and Italy that
occurred by the end of 2021. These examples show that very close curves in the past can evolve very
differently in the future. In particular, the methods studied in this paper, which forecast the evolution
of the incidence only using past incidence data, may be subject to large errors in forecasting.

2.4. Choice of the method parameters

We have to choose Nmedian and µ. Set, for each ik in the database,

ûk
m(Nmedian, µ) = median

{
ŝk

28

ikn
28

ikn
m+28

}
n=1,..,Nmedian

for m = 1, .., 28, (6)

where ikn are the Nmedian closest curves, in the database, to sk (removing from the choice a neighborhood
of k in the database). For each forecast day m = 1, .., 28, the relative forecast error is given by
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Figure 3. Shape of the functions e−0.0475x which determines the weight assigned to each day in the past
in the distance estimation (3) for the proposed forecast method.

em,k(Nmedian, µ) =
|ûk

m+28(Nmedian, µ)− ik
m+28|

ûk
m+28(Nmedian, µ)

. (7)

We define the method’s median forecast error by

ForecastError(Nmedian, µ) = median

{
1

14

14

∑
m=1

em,k(Nmedian, µ)

}
k=1,..,N

. (8)

By minimizing this median error, we obtained the optimal values Nmedian = 121 and µ = 0.0475. Fig. 3
shows the function f (x) = e−0.0475x which determines the weight assigned to each day in the past in
the distance estimation.

2.5. Empirical confidence intervals.

For each curve, ik, of the database, we denote by ûk the approximation of ik obtained by applying
the proposed forecasting method (using the optimal values of the parameters) to the curve sk given
by the incidence trend curve obtained 28 days before ik was computed. Moreover, to eliminate the
bias due to the fact that ik is also in the database, when comparing sk with the rest of vectors in in the
database we remove a 15-day neighborhood of ik in the database. For each forecast day m, we shall
study the distributions of relative errors, Em = {em,k}N

k=1 given by

em,k =
ik
m+28 − ûk

m+28

ûk
m+28

for m = 1, .., 28. (9)

Assuming that the distribution of the relative forecast error for the current incidence trend curve s
is similar to the one obtained for the database and determined by Em, we can empirically approximate
the percentiles of the forecast distribution, Fm, of the current curve, using the percentiles of Em. Indeed,
let us denote by Pp(X) the p-th percentile of a distribution X, then

Pp(Fm) ≈ s f
m + s f

mPp(Em) (10)

where s f
m is the forecast estimated by the proposed method. A 95% central confidence interval for

the incidence trend value is for example given by (P0.025(Fm), P0.0975(Fm)). In Fig. 4 we display the
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Figure 4. Illustration of some statistics of the Em = {em,k} distribution defined by (9) for the entire
database: the red curve indicates the mean of the distribution that is greatly affected by the skewness of
the distribution, which justifies using the median (the curve in green) instead of the mean. The median
is indeed very close to zero, which proves the consistency of the approximation adopted in equation
(10). From the outside to the inside, the shaded areas represent the estimated (1 − αk)× 100% central
prediction intervals (lαk , uαk ) for αk = 0.05, 0.1, 0.2, ..., 0.9.

confidence intervals of Em for the proposed forecast method. As expected, the size of the confidence
intervals increases with the forecast day m and is quite large after 28 days. Notice that the mean and
the median (P0.50(Em)) of Em are very different due to the asymmetry of the distribution Em. The mean
is closer to the upper end of the forecast interval than the median. The fact that the median of the error
is very close to zero confirms the consistency of the method.

2.6. Comparative results in the context of the European Covid-19 Forecast Hub

The question arises of how to compare all methods, in theory and in practice. For a practical
comparison, we take advantage of the fact that a wide variety of forecasts are submitted to the European
COVID-19 Forecast Hub [9] and to the COVID-19 Forecast Hub [10]. A study on the methodology to
evaluate and compare forecast has been proposed in [11], using the data of this Hub. We shall address
the theoretical comparison in section 3. As developed in [1], the European Covid-19 Forecast Hub
provides short-term forecasts of Covid-19 cases and deaths across Europe. It is supported by teams
working on pandemic modeling and sharing their forecast of the weekly accumulated incidence with
horizons of 1 to 4 weeks. Each week starts on Sunday and ends on Saturday. At the time of writing,
many countries do not provide data during the week-end, and some countries only provide a weekly
estimate. This fact has no influence for method preprocessing the data by a 7 day sliding average.
Nevertheless, since we use daily estimates, a single weekly estimate has a negative impact on the
quality of our forecast. To address this issue, when a country provides data on a day, but not on the
previous days, we distribute equally the last accumulated value over the previous uninformed days
before applying EpiInvert.

Since EpiLearn forecasts the daily incidence, the weekly forecast is obtained by summing the
forecasted raw daily incidence given by (5). The quantiles of the associated weekly distributions are
computed on the registered database of incidence curves by extending the procedure of section 2.5
which computes the confidence intervals of the forecasted incidence curve.

The European Hub encourages teams to provide, for each model, m, each horizon week, h =

1, 2, 3, 4, and each forecast target, n, the prediction of the weekly incidence, fm,h,n, and 23 quantiles
of the associated distribution. These quantiles correspond to the predictive median, M, and eleven
(1 − αk)× 100% central prediction intervals (lαk , uαk ), with αk = 0.02, 0.05, 0.1, 0.2, ..., 0.9, where lαk and
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uαk are (respectively) the αk/2 and (1 − αk/2) quantiles of F. The following weighted interval score,
WISm,h,n (see [12]), is proposed to evaluate the distribution accuracy:

WISm,h,n =
1
2 |oh,n − M|+ ∑11

k=1
αk
2 (uαk − lαk ) + (lαk − oh,n)+ + (oh,n − uαk )+

11.5
(11)

where oh,n is the observed outcome, (.)+ is defined as (x)+ = x if x > 0 and 0 otherwise. The lower
the value of WISm,h,n, the better the score associated to the forecast distribution determined by the
quantiles of F.

The prediction accuracy of a model is measured using two indicators: the first one is | fm,h,n − oh,n|,
that is, the absolute value of the difference between the observed value oh,n and the prediction fm,h,n.
The second indicator measures the quality of the confidence intervals and is given by WISm,h,n. To
compare the prediction accuracy of different models, we have to take into account that, in general,
each team provides a different number of forecast targets. We started for example submitting forecast
to the European Hub by August 2022, but other teams started submitting up to 2 years earlier.
Furthermore, not all teams provide a forecast for all horizons and for all countries. Thus, defining
a fair comparison of models requires some caution. To address this issue, the European Hub uses
the following procedure (we explain the procedure for the comparison of | fm,h,n − oh,n|, but the
comparison of WISm,h,n is equivalent). Consider two models m and m′, a week horizon h ∈ {1, 2, 3, 4}
and {( fm,h,n, fm′ ,h,n, oh,n)}

Nm,m′ ,h
k=1 where Nm,m′ ,h is the number of forecast targets that have been handled

by both models. The pairwise comparison of both models is then defined by the ratio

θm,m′ ,h =
∑

Nm,m′ ,h
k=1 | fm,h,n − oh,n|

∑
Nm,m′ ,h
k=1 | fm′ ,h,n − oh,n|

, (12)

which is smaller than 1 if m′ is more accurate than m, and larger than 1 otherwise. Subsequently,
we compute for each model m the geometric mean of the results achieved for all different pairwise
comparisons,

θm,h =

(
M′

∏
m′=1

θm,m′ ,h

) 1
M′

, (13)

where M′ is the number of models, m′, which have forecast targets in common with model m. It follows
that θm,h is a measure of the relative skill of model m with respect to the set of all other models in the
week horizon h. The relative performance of model m is computed with respect to θb,h, the score of the
baseline model, as

θ∗m,h =
θm,h

θb,h
, (14)

where the baseline model b is nothing but the constant prediction extending the last observed weekly
value [13].

The ratio θ∗m,h is called the relative MAE, rel_ae, of model m in the week horizon h. A score of
0 < rel_ae < 1 means that model m is better than the baseline; a score of rel_ae > 1 means that the
baseline is better. In the case of WISm,h,n, we use the same procedure (replacing | fm,h,n − oh,n| by
WISm,h,n) and call rel_wis the associated indicator. Every week, the Hub publishes the scores rel_ae
and rel_wis for all team models and for the ensemble model, which is a forecast estimate obtained by
aggregating the predictions of all teams. In each weekly evaluation report, the Hub publishes the
scores obtained using the information of the last 10 weeks and the scores obtained using all available
data.

Given that we have recently started to submit forecasts to the Hub, we used the 10 week forecast
scores. The box plots of Figure 5 give the distribution of rel_ae and rel_wis for the weeks from
2022-08-29 to 2022-10-31 which correspond to weeks during which our model has been included in
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the 10-week European Hub forecast evaluation reports. The eight forecasting methods that are being
compared are the only ones that provided reasonable forecasts over the whole time period considered.
In this sense, we removed the ILM-EKF model from the comparison because the scores published
by the Hub for this model were unreasonable (in some cases its score is greater than 10). In these
box plots comparing the models for these dates, the baseline equal to 1 is the constant prediction,
which is expected to be beaten by all more sophisticated methods. Yet, the two last displayed methods
actually give worse estimates. Among the four methods beating the baseline, EpiLearn (named
AMM-EpiInvertForecast in the Hub evaluation reports) ranks first for both quality indicators, rel_ae
and rel_wis. In the first week horizon, the Ensemble method is the second best, and in the second,
third and fourth week the MUNI-ARIMA method, which is very close to EpiLearn, ranks second and
the Ensemble method third. The result of this ensemble model is usually considered as the best option
as argued in [12]. A great advantage of using the scores published by the European Hub is that such
scores cannot be manipulated. They represent a fair quality comparison framework for the models
performance.
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Figure 5. Box plots of the European Hub rel_ae and rel_wis overall model scores with target horizons 1,
2, 3 and 4 weeks published by the European Hub using the weekly evaluation reports from 2022-08-29
to 2022-10-31. It is the period during which EpiLearn (named AMM-EpiInvertForecast in the Hub) was
included in the weekly evaluation reports.
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3. Discussion

In this section we review and discuss the properties and assumptions of the most relevant
forecasting methods, and link them when possible to methods and results published weekly in the
European Covid-19 Forecast Hub [9].

3.1. ARIMA

The ARMA (AutoRegressive Moving Average) and ARIMA (AutoRegressive Integrated Moving
Average) models are the backbone of many forecasting methods and are implemented through the
popular R package [14], with an automatic selection mode of the best parameters, usually by the
Akaike information criterion (AIC). The ARMA model with parameters (p, q) can be written

It − α1 It−1 − · · · − αp It−p = εt + θ1εt−1 + · · ·+ θqεt−q,

where parameters p and q are non-negative integers, p is the order (number of time lags) of the
autoregressive model and q is the order of the moving-average model. The ARMA models are often
written compactly using the lag operator LIt := It−1 as

(1 − α1L − α2L2 · · · − αpLp)It = (1 + θ1L + · · ·+ θqLq)εt.

The error terms εt are generally assumed to be independent, identically distributed variables sampled
from a normal distribution with zero mean. In the the European Hub Forecast initiative, the
epiforecasts-weeklygrowth team [15] uses a Bayesian AR model using weekly incidence data. Both
the incidence and the growth rate are assumed to be AR(1) processes with the growth rate being
differenced and scaled by a decay parameter”. The fact that they are differenced implies that they obey
an ARIMA model. Its results were illustrated in Figure 5.

The ARIMA model is a specific ARMA model with parameters (p, d, q):

(1 − α1L − α2L2 · · · − αpLp)(1 − L)d It = (1 + θ1L + · · ·+ θqLq)εt, (15)

where d is called degree of differencing, which is the number of times the data have had past values
subtracted. If d ≥ 1 this model removes trend and seasonal structures that negatively affect the
regression model. Taking d = 1 corresponds to a linear trend and d = 2 to a quadratic trend. A
thorough description of ARIMA is given in the online book [16].

ARIMA is arguably the most used forecasting model for COVID-19, and has been applied with a
country-specific optimization of parameters. For example the MUNI-ARIMA [17] team participating
to the European Hub Forecast initiative also uses an “ARIMA model with outlier detection fitted
to transformed weekly aggregated series”. This method is one of the best performing methods as
illustrated in Figure 5. Table 1 details the (p, d, q) parameters, the forecasting period and the model
selection method used in 14 articles proposing applications of this forecasting method.

3.1.1. Discussion

In most applications of the ARIMA model we see that p + d ranges from 2 to 5 while the values
q = 0, 1, 2 are dominant in the empirical models. The values 2 to 6 for p + d cannot be used with raw
incidence curves that show a 7 days periodicity. To address this, most models are being applied after a
pre-processing of the raw incidence curve, such as a 7-day mean and a subsequent subsampling of the
input series. The main feature of Table 1 is that d = 2 is the more frequent differentiating parameter,
meaning that the trend of the pandemic is assumed to be quadratic, and that stationary variations
from this quadratic trend are being estimated. This means that ARIMA (with d = 2) is effective only in
time intervals where the trend is not changing between concave and convex, and is actually having a
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Paper [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]
p 2 1 0-4 0-1 6 9 5-10 1 1 2 0-4 2-3 2 2,6
d 2 2 2 2 1 0 1-2 0 1 1 2 1-2 2 1
q 2 0 1-8 0-1 0 8 2-9 3-4 0 1 1-2 0-1 2 3,7

days 20 7 180 16 10 60 14 21 50 28 50 21 14 7
data D D D D MA D GF D D D D D D D

criterion MAPE ADF RMS MAPE AIC AIC MAE ADF BIC AIC MAE AIC BIC AIC

Table 1. Parameters of several representative ARIMA models that were used for Covid-19. The orders
p and q are in lines 2 and 4, the degree in line 3. The forecast interval length ranges from 2 to 180
days. The orders and degrees of ARIMA models were selected automatically, mostly by the Akaike
information criterion (AIC), often complemented by the Bayesian information criterion (BIC) and
average errors such as the root mean square error (RMSE), the mean absolute Error (MAE) or the mean
absolute percentage error (MAPE). The augmented Dickey-Fuller (ADF) unit-root test is also often
used to test the stationarity of the sequence after differencing. Given the small order of most processes,
the ARIMA parameters were estimated on a past time series of between 30 and 100 days. The data row
indicates if the input time series has been processed. In absence of any information in the paper we
assume that "D" (daily raw data) are being processed. Some methods indicate that they preprocess the
incidence curve with a moving average of 7 days and others with a Gaussian filter (GF).

constant second derivative, hence a parabolic shape. A quick examination of the examples given in
Figure 2 suggests that this assumption is only compatible with a short prediction.

3.2. Seasonal models

An extension of ARIMA, SARIMA (seasonal ARIMA) is a combination of two ARIMA models.
Let us rewrite the ARIMA equation (15) as

Pp(L)(1 − L)d It = Qq(L)εt,

where Pp and Qq are polynomials of degrees p and q respectively. Then a seasonal ARIMA model
writes

Pp(L)Ππ(Ls)(1 − L)d(1 − Ls)δ = Qq(L)Φϕ(Ls)εt,

where (p, d, q) are ARIMA degrees, (π, δ, ϕ) are the corresponding degrees for the seasonal part, and s
is the season length, typically 7, 30 or 365. This method was tested for forecasting the global COVID-19
incidence in [23], with p ranging from 6 to 9, d = 0, q ranging from 0 to 8, π = δ = 0, ϕ ranging from 1
to 2, s = 3, 7, 12. Surprisingly, the displayed experimental predictions show no seasonal oscillation.

This method can be put in a more general framework, as done in an exemplary treatise [16]
dedicated to forecasting. The chapter of this volume dedicated to the Holt-Winters method shows
recursive equations with a seasonal component which can be additive or multiplicative. This method
comprises a forecast equation and three smoothing equations — one for a level variable, a second
one for the trend and one for the seasonal component. It has been used and compared to ARIMA for
COVID-19 forecast in [32].

The EpiInvert method [2,4,5] handles the COVID-19 incidence curves in a similar setting by
decomposing them into three terms: a) a quasi-periodic multiplicative term with a weekly period, b) an
additive white noise term and d) a smooth incidence trend, which obeys closely the renewal equation.
The renewal equation can be viewed as an ARMA model dictated by the pandemy’s reproducing
kernel, also called time interval.

EpiInvert proceeds by a variational technique which estimates the weekly seasonal bias, the time
varying reproduction number Rt, and finally a smooth incidence trend curve constrained to satisfy
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closely the pandemy’s renewal equation. The method computes trend values of the incidence up to the
present days, which gives it a ≃ 3 days in advance over other methods based on a sliding average2.

3.3. Compartmental epidemiological models (SIR, SEIR, SIRD, SEIARD and SUIHTER)

Compartmental models are in silico simulation models that consider the population as a collection
of compartments, for example in the case of SEIARD : S susceptible, E exposed, I infected, A
asymptomatic, R recovered and D dead. In the simplest form, the SIR model, writes

dS
dt

= − βIS
N

,

dI
dt

=
βIS
N

− γI,

dR
dt

= γI,

(16)

where S is the stock of susceptible population, I is the stock of infected, R is the stock of removed
population (either by death or recovery), and N is the sum of these three. The ratio R0 = β

γ is the basic
reproduction number. Initially designed for epidemic modeling, the SIR model and its variants have
since been adapted to forecasting the future evolution of the pandemic from an estimated starting
point. The model’s parameters are estimated for the past incidence, and the model is then applied
forward to simulate the feature. This method has been developed for SIR [33,34], SEIR [35,36], SIRD
[37], SEIARD [38] and SUIHTER [39,40].

3.3.1. Discussion

In the SIR model (16) and its variants applied over a short period of time (a few weeks), many of
the modeled compartments are either constant over a short period of time, or can be inferred from the
incidence with a time delay. For example, since most forecasts predict at most a month of the epidemic,
the number S of susceptible people may be considered as nearly constant in the second equation of
(16), namely S = S0. Thus, the model boils down to the ODE

dI
dt

=
βIS0

N
− γI, (17)

and its basic reproduction number is R0 = β
γ . This observation holds true with more complex models

such as SEIR, SEIRD, SEIARD, SUIHTER: Indeed, the dependence of I from the other compartments
occurs through S. In short, when neglecting the variation of S on a learning and forecast period which
does not exceed several weeks, all models are equivalent to the linear "I-model" (17). This model
depends on a single parameter β. Indeed, the other parameter γ is linked to the duration of the
infectious period, which is constant for a given virus type. Thus, using a SIR model for a few weeks
forecasting implies that R is implicitly kept constant. Note that in all mentioned models, the evolution
of I is governed by the first two equations of the SIR model (16) only. Adding more compartments
makes the model more complete, but does not change the behavior of the incidence.

3.4. Regression models

In [41] the authors generate short-term forecasts in real-time using three phenomenological
models that have been previously used to derive short-term forecasts for a number of epidemics for
several infectious diseases [42]. The generalized logistic growth model (GLM) extends the simple

2 EpiInvert method can be run using the R package [5], or in real-time for any country in the world at https://ipolcore.ipol.
im/demo/clientApp/demo.html?id=77777000032
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logistic growth model to accommodate sub-exponential growth dynamics with a scaling of growth
parameter, p. The Richards model also includes a scaling parameter, a to allow for deviation from the
symmetric logistic curve. The authors also include a recently developed sub-epidemic wave model
that supports complex epidemic trajectories, including multiple peaks. In this approach, the observed
reported curve is assumed to be the aggregate of multiple trajectories. We describe briefly in the sequel
these regression models and mention other papers using them for COVID-19 forecasting.

The simple logistic growth model (SLM) is a common S-shaped curve sometimes called sigmoid
function with equation

N(t) =
K

1 + e−r(t−t0)
,

where t0 is the sigmoid’s midpoint, K is the curve’s maximum value, and r is the logistic growth rate
or steepness of the curve. This model describes the curve of cumulative cases. The corresponding
incidence curve is its derivative i(t) = N′(t) which satisfies

i(t) = N′(t) = rN
(

1 − N(t)
K

)
.

The generalized logistic growth model (GLM) is an extension of the simple logistic growth model
that includes an additional parameter, p, to allow for scaling of growth; p = 1 indicates early exponential
growth, p = 0 represents constant growth, and 0 < p < 1 accommodates early sub-exponential or
polynomial growth. The GLM is defined by the differential equation

i(t) = N
′
(t) = rN(t)p(1 − N(t)

K
)

where N(t) represents the cumulative number of cases at time t, r is the growth rate, p is the scaling of
growth parameter, and K is the carrying capacity or final epidemic size.

The Richards model
The Richards model [43] is a 2-parameter extension of the simple logistic growth model including

a scaling parameter and defined by

i(t) = N′(t) = rN(t)
(

1 − (
N(t)

K
)

a)
where N(t) represents the cumulative number of cases at time t, r is the growth rate, K is the final
epidemic size, and the exponent a measures the deviation from the symmetric s-shaped dynamics of
the simple logistic curve. This model is used in [44] as a parametric regression model for the modeling
of incidence indicators. The incidence distribution is modeled by an appropriate Poisson or Negative
Binomial. It is also used in [45] for estimating the regional propagation of COVID-19 in Italy and in
[46] for recurrent forecasting in Europe.

The Gompertz model is used for COVID-19 forecast in [47] and [48]. The Gompertz model models the
cumulative cases of Covid-19. It was originally proposed to explain human mortality curves has been
further employed in the description of growth processes. The Gompertz equation reads

N(t) = Ke− log
(

K
N0

)
e−at

,

where the parameter K is the final number of cases, N0 the initial number of cases, and parameter
a is the rate of decrease in the initially exponential growth. Since the Gompertz function shows the
cumulative cases its temporal derivative

i(t) = N′(t) = aKe− log
(

K
N0

)
e−at

log
(

K
N0

)
e−at
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gives an estimate of the incidence curve. The fitting of the Gompertz function to the data can be done
by the minimum least squares method. This amounts to make a forecast based of the growth parameter
a. For its forecast, the BIOCOMSC-Gompertz [47] team participating to the European Hub Forecast
initiative fits the Gompertz model to past data.

Composite models The composite logistic growth model (CLM) [41] can be written as

N(t) =
p

∑
i=1

Ki

1 + Aie−ri(t−τi)
,

where N(t) is the cumulative number of cases, the number of waves is p, and the four parameters
((Ki, Ai, ri, τi) for each wave are estimated by minimization of the objective function, which is the
sum of squares of residuals. The RobertWalraven-ESG [49] team participating to the European Hub
Forecast iniative uses a variant of CLM, making a “multiple skewed Gaussian distribution peaks fit to
raw data” where the skewed Gaussians have the form

i(t) = Ae
− (t−t0)

2

(c(1+d(t−t0)))
2 .

Its results were illustrated in Figure 5.

The sub-epidemic model
The most flexible extension of the previous models used for forecasting [41] is the sub-epidemic

wave model which supports complex epidemic trajectories by shaped by multiple underlying
sub-epidemics modeled by the GLM, where the growth rate r and scaling parameter p are the
same across sub-epidemics. An epidemic wave is composed of n overlapping sub-epidemics as
follows: N′

i (t) = rAi−1(t)Ni(t)
p
(

1 − Ni(t)
Ki

)
, where Ni(t) is the cumulative number of infections for

sub-epidemic i, and Ki is the size of the ith sub-epidemic (i = 1, . . . , n).

3.4.1. Discussion

All of the above simple regression non-composite models depend on one or two growth
parameters and can only be used for a short term forecast. The Gompertz model actually adds
one more degree of freedom. So it can learn more from the past, and therefore can be used for a larger
forecast period. The last two composite models use a global modeling of a long interval including
several waves but, since each term has exponential decay, forecasting will in practice be based on the
two parameters of the last term, which limits their ability to learn from the past incidence.

3.5. Short term prediction by the renewal equation, linear extrapolation

The approach proposed in [50] to forecasting future COVID-19 cases involves 1) modeling the
observed incidence cases using a Poisson distribution for the daily incidence number, and a gamma
distribution for the series interval; 2) estimating the effective reproduction number assuming its value
stays constant during a short time interval (by the EpiEstim method [3]); and 3) using the renewal
equation, drawing future incidence cases from their posterior distributions, assuming that the current
transmission rate will stay the same, or change by a certain degree.

A similar forecast method is involved in [51] which compares human and machine forecasts in
Germany and Poland. The authors use a Bayesian model from the EpiNow2 R package (version 1.3.3)
to predict reported cases. Epinow [6] estimates the effective reproduction number Rt. The future
infections are computed by the Fraser renewal equation as a weighted sum of past infection multiplied
by Rt. In the comparison, Rt is assumed to stay constant beyond the forecast date. The conclusion of
this paper is that an average of human experts’ forecasts performs better. Similarly, the USC-SIkJalpha
[8] and ILM-EKF [52] teams participating to the European Hub Forecast initiative use the renewal
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equation (the second mentioned groupe also involves a Kalman filter in its prediction). Its results were
illustrated in Figure 5.

We mentioned EpiInvert in section 3.2 as a similar method using the renewal equation as forcing
term to restore a coherent incidence curve after compensation of the weekly biases.

Last but not least, the SDSC_ISG-TrendModel [53] team, also participating to the European Hub
Forecast initiative, is a trend extrapolation which starts, like EpiInvert, by decomposing the incidence
curve into three components: the trend, a seasonal component and noise. Then the model predicts
daily cases using linear extrapolation on the linear or log scale of the underlying trend estimated by a
robust LOESS seasonal-trend decomposition model. Its results were illustrated in Figure 5, where only
the results for the first two weeks are available.

3.5.1. Discussion

Like for the logistic models, these extrapolation models have the merit of simplicity. Also, they
avoid estimating reproducing parameters by imposing those of the renewal equation. Yet, when used
to extrapolate, they maintain a constant growth parameter (the reproducing number Rt for its forecast.
Hence, they are not adapted to forecasting in intervals where a change of trend is likely to happen.

3.6. Aggregation of estimators

The idea of aggregation methods, sometimes also called ensemble methods, is to aggregate
estimates stemming from diversified statistical methods. In [54], an ensemble method of regression
learners was utilized to predict the incidence of COVID-19 in different regions. The idea of ensemble
learning is to build a prediction model by combining the strengths of a collection of simpler base
models called weak learners. At every step, the ensemble fits a new learner to the difference between
the observed response and the aggregated prediction of all learners grown previously. One of the most
commonly used loss functions is the least-squares (LS) error [55]. In this study, the model employed a
set of individual Least-squares boosting (LSBoost) learners trying to minimize the mean squared error
(MSE). The output of the model in step m, Fm(x), was calculated using

Fm(x) = Fm−1(x) + ρmh(x, am),

where x is the input variable and h(x; a) is the parameterized function of x, characterized by parameters
a. The values of ρ and a were obtained from

(ρm, am) = arg min
a,ρ ∑

i=1
N[ỹi − ρh(xi, a)]2,

where N is the number of training data and yi is the difference between the observed response and the
aggregated prediction up to the previous step.

The European Covid-19 forecast Hub and its ensemble method

The European Covid-19 Forecast Hub [9] also proposes “an ensemble, or model average, of
submitted forecasts to the European COVID-19 Forecast Hub”, described in [12]. In it, the teams
submit weekly forecasts for COVID-19 cases and deaths in up to 32 countries for the next week and the
three following weeks. The teams also submit standardized quantiles of their predictive distribution.
In the ensemble forecast, each predictive quantile is calculated as the equally-weighted median of all
individual models’ predictive quantiles. The performance of each model is evaluated with the relative
Weighted Interval Score (WIS), comparing a models’ forecast accuracy relative to all other models (see
section 2.6 for the formula of WIS).

In [12], the authors report that

the ensemble performed better on relative WIS than 84% of participating models’ forecasts
of incident cases (with a total N=862), and 92% of participating models’ forecasts of deaths
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(N=746). Across a one to four week time horizon, ensemble performance declined with
longer forecast periods when forecasting cases, but remained stable over four weeks for
incident death forecasts. In every forecast across 32 countries, the ensemble outperformed
most contributing models when forecasting either cases or deaths, frequently outperforming
all of its individual component models. Among several choices of ensemble methods we
found that the most influential and best choice was to use a median average of models
instead of using the mean, regardless of methods of weighting component forecast models.

In view of this, we shall pay a special attention to the comparison of the model proposed here with the
ensemble model.

3.7. Global learning

The idea of Global learning is to predict jointly an ensemble of time series with similar
characteristics. This method is described in [56] and summarized in the following terms.

The information of multiple time series can be shared in a single model via a large
dimensional manifold embedding. In addition to Europe death series, the regions with
the largest average daily deaths are added to reduce the variance of the model estimation
and share information (the regions more advanced in the pandemic can help forecast the
others). Each time series is time-delay embedded and stacked together before for fitting a
single linear autoregressive model. The dimension of the embedding is tuned by temporal
validation, the best dimension of the last 4 weeks.

The same method is used in [57], which proposes to estimate a time lag between two countries after
finding an optimal dynamic time warping between their incidence curves. This procedure allows an
elastic adjustment of the time axis to find similar but phase-shifted sequences. Then the incidence
curve of the leading country is used to extend toward future the incidence curve of the other.

3.7.1. Discussion

This group of methods can seen as a direct antecedent of the method proposed here. Indeed,
our method (implicitly) estimates time lags between past incidence curves of different countries and
the one that we want to extend before exploiting the "future" samples of these time shifted incidence
curves to predict the future of our target incidence.

4. Conclusion

Given the large number of factors that can influence a future evolution, forecasting the evolution
of the incidence curve is clearly difficult. We saw in section 3 that most standard approaches estimate
the parameters of an evolution model (ARIMA, SIR, a logistic curve). In this work, we proposed
EpiLearn, a method following a more empirical approach that estimates the forecast by a learning
procedure using many samples of past incidences evolution in many countries. Using EpiInvert, an
incidence decomposition method, we removed first the strong administrative weekly bias from the
original raw incidence to estimate a smooth incidence trend curve. Using a large database of incidence
trends, the forecast is computed as the median of the closest curves, in the past, to the current incidence
trend curve. We observed that the size of the estimated empiric confidence interval grows quickly
with the number of forecast days. For a 28 days forecast the size of the confidence interval becomes
very large, and this is confirmed weekly by our results in the European hub [9]. These results place
EpiInvert among the very best methods. We observed that the prediction of all methods may miss the
forecast target by a large margin in the three and four weeks horizon. Nevertheless, they seem to be
reliable and useful to predict the pandemic in a two week horizon.
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5. Material and Methods

EpiLearn, the forecasting model presented in this work, introduced in section 2, is implemented in
the publicly available EpiInvert CRAN R package [5]. In this package, EpiLearn is executed using the
EpiInvertForecast R function. In the vignette https://ctim.ulpgc.es/covid19/EpiInvertForecast.html a
description, with examples, of EpiInvertForecast usage is presented.

The incidence trend database has been built using the daily incidence data, up to May 5, 2022,
provided in https://covid.ourworldindata.org/data/owid-covid-data.csv for the following countries
and regions: Argentina, Austria, Bangladesh, Belgium, Brazil, Canada, Chile, Colombia, Cuba, Czech
Republic, Denmark, Germany, France, Greece, Hungary, India, Iraq, Iran, Ireland, Israel, Italy, Japan,
Jordan, Kazakhstan, Malaysia , Mexico, Nepal, Netherlands, Peru, Philippines, Poland, Romania,
Russia, Serbia, Slovakia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand, Tunisia,
Turkey, Ukraine, United Arab Emirates, United Kingdom, USA , Vietnam, Africa, South America,
North America, Asia, Europe, European Union, Oceania, and the world.

The comparative results with other methods, presented in section 2.6 have been obtained
by using the weekly evaluation reports published by the European Hub, [1] in the
repository https://github.com/covid19-forecast-hub-europe/covid19-forecast-hub-europe/tree/
main/evaluation/weekly-summary. The eight forecasting models that are being compared are the
only ones that provided reasonable forecasts over the whole time period considered. In this sense, we
excluded the ILM-EKF model from the comparison because the scores published by the Hub for this
method were unreasonable (in some cases its score is greater than 10).
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