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Blood components are a perishable resource that
play a crucial role in clinical medicine. The blood
component inventory is managed by transfusion
services, who ultimately aim to balance supply
with demand so as to ensure availability whilst
minimising waste. Whilst the blood component
inventory problem has been the focus of theoretical
approaches for over 50 years, evidence for the
direct utilisation of existing models in the day-to-
day management of blood stocks in clinical settings
is limited. In this study we formulate a discrete
mathematical model that describes the main processes
in the management of a single population of red blood
cells in a clinical setting: ageing, supply and demand.
After time averaging the discrete model, a time-
delayed integro-partial differential equation model
is derived. Steady state analysis yields expressions
for: a range of clinically relevant quantities (i.e.
age distributions, total stock levels, wastage rates,
age of transfused units); key performance indicators;
and simple formulae that identify optimal restock
thresholds in terms of parameters that are readily
available in clinical settings. The approach is validated
by testing predictions using data from a Scottish
district general hospital. It is envisaged that the
proposed methodology can ultimately be used to aid
in situ ‘rule-of-thumb’ decision making in clinical
laboratory settings.
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1. Introduction
Blood transfusion is an essential part of healthcare worldwide. National transfusion services aim
to ensure that there is an adequate supply of red blood cells (RBCs) in individual clinical settings
whilst minimising wastage [1,2]. Packed RBCs represent the major component of transfused blood
products. They are routinely transfused for a range of medical treatments (e.g. trauma, surgery,
anaemia, cancer treatment) and have a shelf-life of 35 days.

The expression of three surface antigens (A, B and RhD) allows for the categorisation of
RBCs into eight major blood groups (see Table 1). For example, Group A+ RBCs express A and
RhD antigens that would trigger an immune response if transfused into a Group B+ patient. In
contrast, O− RBCs do not express any of the three surface antigens, and therefore do not usually
trigger an immune response when transfused into patients of the other major blood groups. As
such, O− RBCs play an essential role in emergency situations when there is insufficient time to
determine a patient’s blood group.

Group O+ O− A+ A− B+ B− AB+ AB−

Percentage of population 40.9 9.5 28.8 6.3 9.2 2 2.7 0.6

Table 1: A table illustrating proportions of bloods groups in the UK [3].

The supply of packed RBCs is typically regulated by an ‘order-up-to’ restocking strategy.
Total stock levels of each blood group are regularly restocked up to threshold levels that are
typically established using the experience of transfusion laboratory staff. Additionally, minimal
stock thresholds are used to trigger emergency restocks. Restock thresholds tend to be adjusted
over time in order to improve performance of the blood inventory.

Demand for RBCs has both predictable and stochastic components. Whilst demand owing to
some treatments, such as the support of bone marrow failure or chemotherapy, can be planned for
in advance, that owing to, for example, trauma or obstetric haemorrhage is inherently stochastic.
To minimise wastage, older units are typically preferentially used, usually via either oldest-unit-
first-out (OUFO) or first-in-first-out (FIFO) protocols [2]. Cross grouping of older units can be
used to avoid wastage.

At the level of individual clinical settings there have been numerous reports made on features
of blood inventories. Key performance indicators (KPI), such as waste as a percentage of issued
units (WAPI) [4], issuable stock index (ISI) [5] and the blood-group specific average age of
transfused units [6], are used to summarise inventory performance. Moreover, correlations are
observed between KPIs: increased restock thresholds are associated with transfusion of older
units [7] and higher levels of waste [5]; high levels of cross grouping can also be indicative of
issues with inventory performance; and ISI and WAPI are positively correlated [5]).

Significant advances have been made in the modelling and optimisation of the entire blood
supply chain (for review see [8]). For example, models of the full blood supply chain have
been developed that optimise total cost and age of transfused units [9] and investigate how
structural features of supply chains affect overall costs [10]. Numerous studies have also focused
on optimisation within individual clinical settings. Simulations of blood bank dynamics have
been used for scenario modelling, leading to policy recommendations (e.g. [11,12]) and demand
forecasting has been used to aid in the optimisation of ordering of new stock [13]. Moreover, the
effectiveness of different optimisation methods has been studied [14,15].

A theoretical framework that explicitly relates KPIs to fundamental processes and parameters
is thus far limited. In one study, formulae are proposed that relate clinically important quantities
(e.g. the minimum age of transfused units, total stock levels) to parameters (e.g. restock frequency)
[16]. The potential utility of such an approach in clinical settings is evident in a further study
in which the proposed formulae are used to aid the reduction of restock levels so as to reduce
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the age of transfused units in the inventory [7]. However, as the proposed formulae are derived
from heuristic arguments rather than first principles, the extent to which they are a complete
description of how fundamental processes (ageing, supply and demand) give rise to observables
(e.g. stock levels, waste, average age of transfused units) is unclear.

Despite the significant advances made by previous modelling approaches to the blood
inventory problem, evidence of application of theoretical models to the day-to-day management
of blood stocks in clinical settings is limited [1]. After interviewing seven transfusion laboratory
managers from high-performing transfusion centres in the UK, it was concluded that “in direct
opposition to what is claimed in the literature, none of the hospitals surveyed used complex
models or equations to readjust target stock levels on a frequent basis” [1].

In this study a simplified model of a blood inventory in a given clinical setting is considered.
The population dynamics of a single blood group are considered in a model that characterises
supply, demand and ageing. Following derivation of a continuum model, steady state analysis
is used to derive closed form expressions that relate key parameters to clinically relevant
measurements. The layout is as follows: in Section 2 a model is derived from first principles,
in Section 3 model behaviour is explored and a case study using data from a district hospital in
the UK; in Section 4 we conclude with a discussion.

2. Methods

(a) Model development

(i) A discrete model

Let t and a be independent variables representing time and age, respectively. Age is discretised
with step ∆a such that a= 0,∆a, ..., (NA − 1)∆a=A. Time is discretised with time ∆t such that
t= 0,∆t, ..., (Nt − 1)∆t= T . Let Qij represent the number of units of RBCs in the ith age interval
and jth time interval.

The ‘order-up-to’ protocol for stock replenishment is captured by a delayed source term with
time delay τ . Suppose that supply events occur at a set of time indices S = {s1, s2, ..., sNS

}. At a
given restock event indexed by time j, the inventory is restocked to r units by adding r −N(j−Jτ )

units, where

N(j−Jτ ) =

NA∑
i=1

Qi,(j−Jτ ),

and

Jτ =
τ

∆t
.

The age distribution of incoming units is determined by sampling from a prescribed discrete
probability density function fi, i= 1, .., NA.

The ‘oldest unit first out’ protocol of stock use is captured by preferentially removing oldest
units. Suppose that demand events occur at a set of time indices, D= {d1, d2, ..., dND

}. At the
kth demand event, Hk units are removed from the system with oldest units removed until the
demand is met.

A model is considered in which ageing, supply and demand are modelled at a set of discrete
times and ages. Each supplied unit is represented by an impulse source of random age. Hence

Qi+1,j+1 =Qi,j +

NS∑
k=1

δj,sk

r−N(j−Jτ )∑
l=1

δi,ξl −
ND∑
k=1

δj,dk
G(i, I∗j , Qi,j , Hk)Qi,j , 1< i≤NA, 1< j ≤Nt,

(2.1)
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where δ(.,.) represents a Kronecker delta function and ξ(.) is a randomly sampled age from a
prescribed age supply pdf, fi. The OUFO method of stock usage is captured via the function

G(i, I∗j , Qi,j , H) =


1 i > I∗j ,
H−

∑NA
I∗
j
+1

Qi,j

Qi,j
, i= I∗j ,

0, i < I∗j ,

(2.2)

where I∗j , the stock-dependent minimum age of a transfused unit, is computed to be

I∗j (H) =max
i′

s.t.

NA∑
i=i′

Qi,j ≥H. (2.3)

Initial data are given by

Qi,0 =Qi0, i= 1, .., NA, (2.4)

and on the boundary a= 0, where there is no flux from a younger age interval,

Qi,j+1 =

NS∑
k=1

δj,sk

r−N(j−Jτ )∑
l=1

δi,ξl −
ND∑
k=1

δj,dk
G(i, I∗j , Qi,j , Hk)Qi,j , i= 1. (2.5)

(ii) Continuum limit of a time averaged model

We now consider a time-averaged formulation of equations (2.1)-(2.5) that yields a limiting
continuum model. Consider a time-averaging window of magnitude Tav . Discretisation yields

Jav =
Tav
∆t

,

where it is assumed that Jav is a positive integer, and the time-averaged age distribution is given
by

qi,j =
1

Jav

j∑
j′=j−Jav+1

Qi,j′ .

Averaging over equation (2.1) yields

1

Jav

j∑
j′=j−Jav+1

Qi+1,j+1 =
1

Jav

j∑
j′=j−Jav+1

Qi,j′ +

NS∑
k=1

δj′,sk

r−N(j′−Jτ )∑
l=1

δi,ξl −
ND∑
k=1

δj′,dk
Qi,j′G(i, I∗j′ , Qi,j′ , Hk)

 .

(2.6)

Supply term

Suppose that the subset of stocking events that occur in the averaging time interval [j − Jav + 1, j]

is represented by the set of time indices

Sj = {σp, σp+1, ..., σp+m1j}= [j − Jav + 1, j] ∩ S,

with the number of supply events given by

m1j =
∣∣Sj

∣∣.
The supply term in equation (2.6) can be expanded as the sum of δ-distributed age distributions

1

Jav
(

r−N(σp−Jτ )︷ ︸︸ ︷
δi,ξ11 + δi,ξ12 + ....+

r−N(σp+1−Jτ )︷ ︸︸ ︷
δi,ξ21 + δi,ξ22 + ....+...+

r−N(σp+m1j
−Jτ )︷ ︸︸ ︷

δi, ξm1j1 + δi,ξm1j2
+ ....),
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where each of the ξ(.) represents a random sample from the prescribed age supply pdf, fi.
Gathering terms, the sum can be written as

1

Jav
(f̃0δi,0 + f̃1δi,1 + ...f̃NA

δi,NA
),

where f̃i is a random variable representing the total number of supplied units in the ith age
interval. Normalising such that

f̂i =
f̃i∑NA
i=1 f̃i

=
f̃i

(r −N(σp−Jτ )) + (r −N(σp+1−Jτ )) + ...+ (r −N(σp+m1j
−Jτ ))

, i= 1, .., NA,

the time-averaged supply term is given by

1

Jav

(
(r −N(σp−Jτ )) + (r −N(σp+1−Jτ )) + ...+ (r −Nσ(p+m1j

−Jτ ))
)
(f̂0δi,0 + f̂1δi,1 + ...f̂NA

δi,NA
).

Noting that the sum of Kronecker delta functions is an empirical representation of the age
distribution of supplied units, fi, the time-averaged supply term is approximated by

1

Jav

(
(r −N(σp−Jτ )) + (r −N(σp+1−Jτ )) + ...+ (r −N(σp+m1j

−Jτ ))
)
fi, i= 1, .., NA,

=
m1j

Jav
r − 1

Jav
(N(σp−Jτ ) +N(σp+1−Jτ ) + ...+N(σp+m1j

−Jτ ))fi, i= 1, .., NA. (2.7)

Defining the average total number of units over supply time points to be

n̄j−Jτ
=

1

m1j
(N(σp−Jτ ) +N(σp+1−Jτ ) + ...+N(σp+m1j

−Jτ )),

expression (2.7) can be approximated by the deterministic form

k1j

(
r − n̄(j−Jτ )

)
fi∆t, i= 1, .., NA,

where the time-dependent supply frequency is given by

k1j =
m1j

Tav
.

Finally, approximating n̄j by the average over Jav time points, i.e.

n̄(j−Jτ ) ≈ n(j−Jτ ) :=
1

Jav

j∑
j′=j−Jav+1

N(j′−Jτ ),

yields source term

k1j

(
r − n(j−Jτ )

)
fi∆t, i= 1, .., NA.

Demand term

Suppose that the subset of demand events that occur in the averaging time interval [j − Jav + 1, j]

is represented by the set of time indices

Dj = {δp, δp+1, ..., δp+m2j}= [j − Jav + 1, j] ∩D,

with the number of demand events in the time averaging interval given by

m2j =
∣∣Dj

∣∣.
To obtain a tractable limiting model, we approximate that the sum of the individual demand
functions can be approximated by

G(i, I∗δp , Qi,δp , Hδp)Qi,δp +G(i, I∗δp+1
, Qi,δp+1

, Hδp+1
)Qi,δp+1

...+G(i, I∗δp+m2j
, Qi,δp+m2j

, Hδp+m2j
)Qi,δp+m2j

=m2jG(i, i∗j , qi,j , ηj)qi,j ,
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where the time-averaged minimum age of a transfused unit is indexed by

i∗j =max
i′

s.t.

NA∑
i=i′

qi,j ≥ ηj ,

and the time-averaged number of units in demand is given by

ηj :=
1

m2j

m2j∑
j′=1

Hδj′
.

Here, as in the derivation of the supply term, averages computed over the demand instances
are approximated by averages computed over all days in the averaging interval. Defining the
time-dependent demand frequency

k2j =
m2j

Tav
,

the demand term in equation (2.6) is approximated by

k2jqi,jG(i, i∗j , qi,j , ηj)∆t. (2.8)

Hence we obtain the discrete time-averaged model

qi+1,j+1 = qi,j + k1j(r − n(j−Jτ ))fi∆t− k2jqi,jG(i, i∗j , qi,j , ηj)∆t. (2.9)

The continuum limit

The time-averaged number density is defined to be

q̂ij =
qij
∆a

,

and a continuous age supply pdf, f̂ := f̂(a), is defined by a point-wise relation to its discrete
counterpart:

f̂(i∆a) =
fi
∆a

.

It is assumed that q̂ is a continuous function of a and t. Upon change of variables in equation (2.9),
the limit ∆t,∆a→ 0 is considered. Upon Taylor expansion, equation (2.9) can be approximated
by the time delayed, integro partial differential equation

∂q̂

∂t
+

∂q̂

∂a
= k1(t)(r − n(t− τ))f̂(a)− k2(t)q̂g(a, a

∗(t)), (t, a)∈ (0, T ]× (0, A], (2.10)

where the total number of units in the inventory, n(t), is given by

n(t) =

∫A
0

q̂(a, t)da, (2.11)

g(a, a∗(t)) =

{
1 a≥ a∗(t),

0, a < a∗(t),

and

η(t) =

∫A
a∗(t)

q̂da. (2.12)

A boundary condition representing no flux at age a= 0 is

q̂(0, t)≡ 0,

and the initial conditions are

q̂(a, 0) = q0(a), a∈ (0, A]. (2.13)

Henceforth, for notational convenience, the hatted notation is omitted.
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Figure 1: The age (days) distribution, f , of supplied units at a Scottish District hospital (blue
bars). Red line denotes approximated uniform distribution (see equation (2.15)). Data provided
by Scottish National Blood Transfusion Service.

(iii) Steady state

The steady state of equation (2.10)-(2.13), q̄(a), satisfies

dq̄

da
= k̄1(r − n̄)f(a)− k̄2q̄g(a, ā

∗),

n̄=

∫A
0

q̄(a)da,

η̄=

∫A
ā∗

q̄(a)da,

q̄(0) = 0. (2.14)

Henceforth, for notational convenience, the barred notation is omitted.

(iv) A piecewise linear approximation

To obtain a tractable model, two simplifying assumptions are made regarding the reaction terms
in equations (2.14). It is firstly approximated that the age distribution of supplied units is uniform
on the interval [a0, a1] where a0 represents the minimum age of a supplied unit and a1 is
determined by moment matching (see Figure 1). It is further assumed that the expected minimal
age of a transfused unit, a∗, is greater than a1, such that supply and demand terms arise in non-
intersecting intervals of the age domain ([a0, a1] and [a∗, A], respectively). The validity of the
model relies on a0 <a1 <a∗ <A, a model assumption that is tested a posteriori.

Suppose new units are supplied to the system at a constant rate k1 in the age interval a∈
[a0, a1]. Hence

f1 =

{
1

a1−a0
, a0 ≤ a≤ a1,

0, otherwise,
(2.15)
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and equations (2.14) transform to

dq

da
= 0, 0<a< a0,

dq

da
=

k1
a1 − a0

(r − n), a0 ≤ a≤ a1,

dq

da
= 0, a1 <a< a∗,

dq

da
=−k2q, a∗ ≤ a≤A, (2.16)

where

n=

∫A
0

q(a)da, (2.17)

η=

∫A
a∗

q(a)da, (2.18)

q(0) = 0, (2.19)

and continuity of q is assumed at a= a0, a= a1 and a= a∗.
After integrating equations (2.16), application of the boundary and continuity conditions

yields a continuous steady state age distribution

q= 0, 0<a< a0,

q=
k1

a1 − a0
(r − n)(a− a0), a0 ≤ a≤ a1,

q= k1(r − n), a1 <a< a∗,

q= k1(r − n)e−k2(a−a∗), a∗ ≤ a≤A. (2.20)

(b) Deriving clinically relevant quantities

(i) Total stock

From equation (2.17), the total number of units in the inventory, n, is given by

n=

∫A
0

qda =

∫a1

0
qda+

∫a∗

a1

qda+ η. (2.21)

Upon substitution for q using equation (2.20), integration and rearrangement yields

n=
rk1γ(a

∗) + η

1 + k1γ(a∗)
, (2.22)

where

γ(a∗) := a∗ − a1 + a0
2

= a∗ − µ, (2.23)

with µ, the mean age of a supplied unit:

µ :=
1

2
(a0 + a1). (2.24)

(ii) The age of transfused units
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The minimal age of transfused units

Substituting for q using equation (2.20) in equation (2.18) yields, after integration and
rearrangement, a transcendental equation for the minimum age of issue of a transfused unit

a∗ =A+
1

k2
ln

1−
k2

(
1
k1

+ γ(a∗)
)

( rη − 1)

 . (2.25)

Note that the value of a∗ is an emergent feature of the model that implicitly depends on model
parameters, i.e.

a∗ = a∗(r, k1, k2, a0, a1, A, η).

An expression for the onset of nonlinearity between r and a∗

Partial differentiation of equation (2.25) with respect to r yields

∂a∗

∂r
=

1
k1

+ γ

η
(
r
η − 1

)(
r
η − k2

(
1
k1

+ γ
)) .

Assuming that r > η (trivially satisfied), a∗ is a strictly increasing function of r if

r

η
> k2

(
1

k1
+ γ

)
.

Upon substitution for r after rearrangement of equation (2.25), this inequality is trivially satisfied.
Hence for fixed values of parameters k1, k2, η, A and µ there is a one-to-one relationship between
a∗ and r. Upon rearrangement of equation (2.25)

r= η +
k2η

k1

1 + k1γ(a
∗)

1− e−k2(A−a∗)
. (2.26)

Approximating equation (2.26) in the limit of small a∗ (i.e. a∗ ≪A− 1/k2) yields

r= η + k2η

((
1

k1
− µ

)
+ a∗

)
. (2.27)

In the limit a∗ →A equation (2.26) can be approximated by

r= η + η

1
k1

+A− µ

A− a∗
. (2.28)

Equating equations (2.27) and (2.28) yields an expression for the intersection, amax, (see Figure 2
(d)) that satisfies the quadratic equation

amax
2 + amax

(
1

k1
− µ+

1

k2
−A

)
+

(
1

k1
− µ

)(
1

k2
−A

)
= 0,

and has root

amax =A− 1

k2
. (2.29)

Substitution in equation (2.27) yields

rmax = k2η

(
A+

1

k1
− µ

)
. (2.30)

Note that the other root

a′ = µ− 1

k1
and r′ = η

yields an inadmissible solution (a∗ <µ< a1) and is therefore omitted in the analysis below.
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An expression for the expected age of transfused units

The expected age of transfused units, a quantity that can be readily compared with available data,
is given by

aexp :=

∫A
a∗ q(a)ada∫A
a∗ q(a)da

. (2.31)

After substitution for q using equation (2.20) and integration,

aexp =
a∗ + 1

k2
− (A+ 1

k2
)e−k2(A−a∗)

1− e−k2(A−a∗)
. (2.32)

(iii) Waste

The wastage rate, w, represents the loss of units as a result of reaching the expiry age, A. Upon
substitution for a=A in the last equation in (2.20), it follows that

w(a∗) = k1(r − n)e−k2(A−a∗). (2.33)

Rearranging equations (2.22) yields

r − n=
r − η

1 + k1γ(a∗)
. (2.34)

Substitution for equation (2.26) in the right-hand side of equation (2.34) yields

k1(r − n) =
k2η

1− e−k2(A−a∗)
. (2.35)

Finally, upon substitution in equation (2.33), we obtain

w(a∗) =
k2η

ek2(A−a∗) − 1
. (2.36)

(iv) WAPI

The waste as a percentage of issued units (WAPI) is a KPI that is used to quantify the level of
waste in an inventory [5]. In the proposed model the net supply rate is∫A

0
k1(r − n)f(a)da= k1(r − n).

Hence the WAPI is represented by

wAPI := 100
w

k1(r − n)
. (2.37)

Upon substitution for w using equation (2.33) and cancellation

wAPI = 100e−k2(A−a∗). (2.38)

(v) ISI

The issueable stock index (ISI) is a KPI that quantifies the number of days of issueable stock in
an inventory. It is computed to be the ratio of the number of unreserved red cell units to the net
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supply rate [5]. In the model the ISI is therefore represented by

ISI :=
n

k1(r − n)
. (2.39)

Substituting for n, r − n and γ using equations (2.22), (2.34) and (2.23), respectively, yields

ISI =

1
k1

+ r
η (a

∗ − µ)
r
η − 1

. (2.40)

Notably, the steady state wastage rate, WAPI, ISI and expected age of transfused units can be
expressed as functions of model parameters (with implicit dependence via a∗ using equation
(2.25)).

(vi) The low wastage limit

Equation (2.36) implies that when k2(A− a∗)∼ 1, the wastage and transfusion rates are
approximately equal (i.e. approximately 50% of units are wasted). As WAPI scores in practice
are of the order a few percent [5], transfusion laboratories operate in the low wastage limit:

k2(A− a∗)≫ 1 =⇒ a∗ ≪A− 1/k2 ⇔ a∗ ≪ amax,

where amax defined by equation (2.29). In this limit, equation (2.32) can be approximated by

aexp = a∗ +
1

k2
. (2.41)

Moreover, inversion of the relationship between a∗ and r given by equation (2.27) yields

a∗ =
r − η

k2η
− 1

k1
+ µ. (2.42)

Thus an explicit expression for the minimum age of transfused units is identified in the low
wastage limit.

Upon substitution for a∗ using equation (2.42) in equations (2.38), (2.40) and (2.41), expressions
for the WAPI, ISI and expected age of transfused units, respectively, in the low wastage limit are
given by

wAPI = 100e
−k2(A+ 1

k1
−µ)

e
r
η−1, (2.43)

ISI =
r

k2η
− 1

k1
= aexp − µ, (2.44)

aexp =
r

k2η
− 1

k1
+ µ. (2.45)

Moreover, the condition for model validity a∗ >a1 can be expressed, upon substitution using
equation (2.27), as

r > rmin := η

(
k2

(
a1 − µ+

1

k1

)
+ 1

)
. (2.46)

(c) Optimisation

(i) Minimising waste and maximising stock

To identify optimal restock thresholds, an objective function, E, is defined that penalises wastage
and low stock. Consider

E :=w + βh(n), (2.47)

where w is waste as defined above and h(n) is a decreasing function of total stock levels, with β a
constant that describes relative importance of low stock. As β characterises the trade off between
waste and stock depletion in a given clinical setting, it is expected that it will vary depending on
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factors such as management policy, geographical location etc. Here we consider a linear penalty
for low stock levels is represented by

h(n) =−n.

Substitution for w and n in equation (2.47) yields, after some calculation,

E(r, a∗) =
k1

1 + k1γ(a∗)

(
r
(
1− βγ(a∗)

)
− η

(
1 +

β

k1

))
− ηk2, (2.48)

with a∗ define implicitly via equation (2.25). Ultimately, we wish to identify the value of the
restock threshold, r, that minimises E given the implicitly defined a∗ via equation (2.25).

Using equation (2.27) to substitute for r in equation (2.48) yields

E(a∗) =
k1

1 + k1γ(a∗)

((
η +

k2η

k1

1 + k1γ(a
∗)

1− e−k2(A−a∗)

)(
1− βγ(a∗)

)
− η

(
1 +

β

k1

))
− ηk2. (2.49)

Hence one can seek a value of a∗ that minimises equation (2.49) and obtain the corresponding r

using equation (2.26). The minimiser of equation (2.49) is denoted by rE .

(ii) Explicit formulae for target KPIs in the low wastage limit

Suppose that a transfusion laboratory wishes to obtain a target WAPI of TWAPI , a target ISI, TISI

or a target expected age, Tage. Substitution for the target values in equations (2.43), (2.44) and
(2.45), respectively, yields, upon rearrangment, corresponding restock thresholds rWAPI , rISI

and rage given by

rWAPI = rmax + η

(
1− ln

(
100

TWAPI

))
, (2.50)

rISI = k2η

(
TISI +

1

k1

)
, (2.51)

rage = rmax − k2η(A− Tage). (2.52)

(d) Numerical solutions

(i) Simulation

To simulate equation (2.1) we considered ∆t=∆a= 1. Stocking times were chosen at days S =

1, 3, 5, 8, 10, 12, ... to represent restocking on Mondays, Wednesdays and Fridays. The waiting
time between demand events was sampled from a geometric distribution with mean waiting
time 1/k2, i.e. the probability of a unit demand event happening on a given day is

p=
k2

1 + k2
.

Hence the set of days, D, on which demand events was identified. On each demand day, ηk units
were removed. An initial condition

Qi,1 = 1, i < 5,

was considered.
On restocking days the total number of units was computed in order to determine the number

of units that are needed. Two possibilities were considered for the age of supplied units: (i)
uniform sampling from the age interval [a0, a1]; or (ii) sampling from an empirical estimate of the
pdf obtained from Figure 1. On a demand day, the oldest units in the system are removed until
demand is satisfied. A burn-in time of 50 days was used to allow the system to reach dynamic
equilibrium before summary statistics are computed. The wastage rate was computed to be the
number of units on the boundary i=NA at the end of each time step.

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.11.04.22281960doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.04.22281960
http://creativecommons.org/licenses/by-nd/4.0/


13

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
s0000000

..........................................................

(ii) Steady state age distribution

To compute the steady state age distribution (equation (2.20)) a∗ is firstly computed by
numerically computing the root of the transcendental equation (2.25). This was achieved in
Matlab using the root-finding algorithm ‘fsolve’.

3. Results

(a) Model exploration
To explore the dynamics of blood stocks in clinical settings, a mathematical model (equations
(2.1)–(2.5)) was developed that describes the supply, demand and ageing of units of a single blood
group. The supply term is modelled using the ‘order-up-to’ principle by which the total stock
measured at some delay time t− τ determines the number of units supplied at time t, with the age
of each supplied unit sampled from the uniform distribution [a0, a1]. The demand term, which
captures an oldest unit first out (OUFO) protocol for stock management, is also non-local as oldest
units are removed until demand is satisfied. The model is stochastic as the age of supplied units
and time of demand events are random variables.

The discrete model (equations (2.1)–(2.5), see Section 2 (d)) was simulated for long times and
time-averaged, steady-state age distributions were computed (see Figure 2 (a)). Key clinically
measurable quantities (i.e. total stock, n, wastage rate, w, and the minimum age of transfused
units at different) were sampled at different values of restock threshold, r (see Figure 2 (b)-(d)).
The results indicate that, for the chosen parameters, total stock levels depend linearly on restock
threshold, r, whilst both the wastage rate, w, and the minimum age of transfused units, a∗, exhibit
biphasic dependence on r. The minimal age of a transfused unit, a∗, is an increasing function of
restock threshold r (see Figure 2 (d)): a consequence of stocking more units is that patients tend
to receive older units. When r is small (see Figure (2) (b) and (d)), the system behaves like a ‘just
in time’ supply chain: transfused units have only recently been supplied and waste is negligible.
In contrast, when r is large, a∗ is close to maximal age A; units are held in the inventory until just
prior to their expiry and the wastage rate is large. Notably, the time averaged solutions did not
vary significantly when an empirical estimate of the age supply pdf was used (i.e. with either of
the supply age distributions depicted in Figure 1; see the blue and yellow curves in Figure 2 (a)).

Whilst direct simulation approaches can provide summary information on how a model
behaves for a specific set of parameters (e.g. Figure 2), an inherent limitation is that they cannot
readily provide qualitative descriptions of how model behaviours depend on model parameters
(e.g. how does wastage rate depend on r given a different restocking frequency k1?). To address
this issue the discrete model (equations (2.1)–(2.5)) was time averaged (see Section 2 ii), yielding a
continuum limit that is a time-delayed, age-structured, integro partial differential equation model
(see Section 2 ii). The continuum model (equations (2.10)-(2.13)) has a relatively small number of
parameters, all of which can be readily determined in a given clinical setting. The parameter k1
represents the average frequency of supply events whilst the age distribution of supplied units is
captured by the parameters a0 and a1. The parameter k2 represents the frequency of demand
events (i.e. blood transfusions) and will vary in proportion with the prevalence of particular
blood groups in the population (see Table 2). The parameter r represents the ‘order-up-to’ restock
threshold of a particular blood group.

The steady-state age distribution (equation (2.20)) is linear in the supply age interval (i.e. a0 <
a< a1) and exponentially decaying in the demand age interval (see Figure 2 (a)). Using the steady
state age distribution, expressions can be derived for: the wastage rate (equation (2.33)), total
stock level (equation (2.22)), and the expected age of transfused units (equation (2.41)). Excellent
agreement was observed between steady states of continuum and corresponding discrete model
quantities (see Figure 2 and Appendix A). Steady state solutions of the model also readily yield
expressions for KPIs [5]: the waste as a percentage of issued units (WAPI), a KPI that computes
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(a) (b)

(c) (d)

Figure 2: Comparison of key mode outputs. (a) Number density, q, is plotted against age, a .
r= 18. (b) The wastage rate, w, is plotted against restock threshold, r. (c) Total stock, n, is plotted
against restock threshold, r. (d) Minimum age of transfused units, a∗, is plotted against restock
threshold, r. Blue lines - time average of discrete model with uniformly distributed age supply
pdf. Yellow lines - time average of discrete model with empirically estimated age supply pdf.
Red lines - continuum model. Continuum model solutions for q, w, n and a∗ given by equations
(2.20), (2.33), (2.22) and (2.25), respectively. Asymptotes in (d) given by equations (2.27) and (2.28).
Dotted vertical lines represent onset of waste (equation (2.30)). k2 = 1.57. τ = 0. Discrete model
given by equations (2.1)-(2.5). Other parameters as in Table 3.

the wastage rate as a percentage of the supply rate (see Section 2 iv), is given by

wAPI = 100e−k2(A−a∗);

and the ISI (see Section 2 (v)), a KPI that estimates the number of days of stock in an inventory, is
given by

ISI =

1
k1

+ r
η (a

∗ − µ)
r
η − 1

.

These expressions, in which a∗ depends implicitly on the model parameters via the
transcendental equation (2.25), indicate that WAPI and ISI are exponentially and linearly
increasing functions of the minimum age of transfused units, respectively. This result is consistent
with observed positive correlation between WAPI and ISI measured across multiple clinical
settings [5].
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Explicit expressions can be derived for KPIs in the low wastage limit. Notably, the response of
a∗ to r is approximately biphasic (see Figure 2 (d)); a value of r at which transition occurs (see
equation (2.30)) is estimated to be

rmax = k2η

(
A+

1

k1
− µ

)
,

with the corresponding value of a∗ given by

amax =A− 1

k2
.

Furthermore, rmax represents the stock threshold at which the wastage rate is approximately
equal to the transfusion rate (i.e. as many units are being wasted as are being used, see Section iii).
As WAPI scores are of the order a few percent in clinical settings [5], it is expected that transfusion
laboratories operate in the low wastage limit (i.e. r≪ rmax ⇔ a∗ ≪ amax). In the model this
implies that the minimum age of transfused units can be approximated by (see equation (2.27))

a∗ =
r − η

k2η
− 1

k1
+ µ.

Hence, explicit forms for the WAPI, ISI and expected age of transfused units are given by (see
Section 2 vi)

wAPI = 100e
−k2(A+ 1

k1
−µ)

e
r
η−1,

ISI =
r

k2η
− 1

k1
= aexp − µ,

aexp =
r

k2η
− 1

k1
+ µ, (3.1)

respectively. These derived forms provide insight into how key performance indicators relate to
model parameters. For example, the WAPI increases exponentially with restock thresholds whilst
the ISI increases linearly. Although care must taken when comparing observations taken from
different clinical centres, as multiple parameters are likely different, the derived formulae are
consistent with observed positive correlation between WAPI and ISI metrics [5].

Upon inversion of equations (3.1), the restock threshold that yields a target WAPI, TWAPI ,
target ISI, TISI or target mean age of transfused units, Tage, are given by

rWAPI = rmax + η

(
1− ln

(
100

TWAPI

))
,

rISI = k2η

(
TISI +

1

k1

)
,

rage = rmax − k2η(A− Tage), (3.2)

respectively.

(b) Application of the model in a clinical setting
To validate the proposed model, blood transfusion records from a Scottish district general hospital
(DGH) were obtained. Over the one year period for which data were provided by the Scottish
National Blood Transfusion Service (SNBTS), restocking occurred on Monday, Wednesday and
Friday. Hence the average restocking frequency, k1, was determined. Using the known age
distribution of supplied units (see Figure 1), the parameter a0 was identified as the minimum
age of a supplied unit and a1 was determined using equation (2.24) and matching with mean
of the empirical distribution. Using the total number of transfused units of each blood group,
the blood-group specific demand rates, k2, were identified (see Table 2). Notably, over the time
period during which the data were obtained, the restock thresholds, r, were modified (thresholds
for O− and A− were reduced), yielding a natural experiment in which the predicted effects of
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(a) (b)

Figure 3: Expected age of transfused units, aexp, is plotted for different blood groups. (equation
(2.41)). (a) Restock threshold for time period 1. (b) Restock thresholds for time period 2. Model
data (blue bars) generated using equation (2.41). See Tables 2 and Table 3 for parameter values.

perturbing thresholds can be validated (see Table 2). In each of the time periods, the mean age of
transfused units at the DGH was computed and compared with the model prediction in the low
wastage limit (see Figure 3 and equation (2.41)). The results suggest that the model can accurately
predict how the expected age of transfused units varies across different blood groups. Moreover,
the model also captures dependence of the expected age of transfused units on restock thresholds
(e.g. note decrease mean age of transfused unit as a result of decreasing O− restock thresholds).

The model was used to predict values of the key performance indicators: WAPI and ISI. The
predicted WAPI was less than 0.7% for each blood group (see Table 3). Notably, values of WAPI
of the order of 3% have been reported in the literature [5]. However, in the time period of study,
there was zero wastage reported at the DGH under study. The model was also used to compute
predicted ISIs (national averages are reported to be approximately 6 days [5]). It is notable that in
Time Period 1 two blood groups (O− and B−) had predicted ISIs that were markedly larger than
the others (see Table 2). Subsequently, the thresholds for these blood groups were reduced and the
predicted ISIs in Time Period 2 then aligned with those of the other blood groups. These results
suggest that, for the dataset under study, the predicted ISI could be used to aid rule-of-thumb
decision making.

To explore how model solutions depend on restock thresholds for the baseline parameter sets
at the DGH under study, the minimum age of transfused units, a∗, (see Figure 4 (a)) and waste
(see Figure 4 (b)) were computed over a range of values of restock threshold, r, for each blood
group. As expected, the restock threshold at which the wastage rate is approximately equal to
the transfusion rate (i.e. rmax) is significantly larger than the used restock thresholds (compare
values of rmax and rUsed in Table 2); the transfusion laboratory operates in the low wastage limit.

To explore whether the used thresholds are ‘optimal’, an objective function, E, was constructed
that accounts for the balance of two of the major constraints faced in clinical settings (to minimise
wastage whilst guarding against (critically) low levels of stock - see equation (2.47)). Values of
minimal transfusion age, a∗, were identified that minimise the objective function for each of the
blood groups over a range of values of the weighting parameter β (see Section 2 i and Figure 5
(a)-(c) for representative examples). It was found that the optimal value of restock threshold, rE ,
was reasonably stable over a range of values of β (Figure 5 (d)-(f)). Interestingly, it was found that
the restock thresholds that minimise the objective function are significantly larger than those used
for blood groups A+ and O+ (see Table 2). The results suggest that these blood groups could be
stocked at higher levels without incurring wastage.
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(a) (b)

Figure 4: Exploring the effect of varying the restock threshold, r. (a) The minimum age of
transfused units, a∗, is plotted against r (see equation (2.41)). (b) Wastage rate, w, is plotted against
restock threshold, r, (equation (2.33)). Parameter values (for Time period 1) as in Tables 2 and 3
unless otherwise stated. Note that B+, AB+ and AB− were not stocked.

O+ O− A+ A− B−

rUsed 18 12 14 6 2
k2 1.57 0.50 1.07 0.24 0.15

WAPI 0.00 0.79 0.00 8.18 2.25
ISI 10 22 10 23 11
rmin 10 4 7 2 2
rmax 50 16 34 8 5
rE 44 11 28 3 1

rWAPI 45 11 29 2 0
rage 20 6 14 3 2
rISI 19 6 13 3 2

rUsed 18 8 14 4 2
k2 1.62 0.51 1.18 0.38 0.26

WAPI 0.00 0.00 0.00 0.001 0.07
ISI 9 13 10 8 5
rmin 11 4 8 3 3
rmax 52 16 37 12 8
rE 45 11 31 7 4

rWAPI 46 11 32 7 3
rage 21 7 15 5 3
rISI 20 6 15 5 3

Table 2: A table summarising blood-group dependent parameters, predicted KPIs and estimated
restock thresholds. AB+, AB− and B+ were not stocked. Top: Time period 1. Bottom: Time
period 2. See Section 2 (b) for derived quantities.
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Parameter Definition Value Unit
T Simulation end time 2000 d
∆t Simulation time step 1 d
A RBC expiry age 35 d
k1 Supply frequency 0.43 d−1

µ Mean age of supplied units 5.65 d
a0 Min. age of supplied units 2.0 d
β Optimisation weight 0.001 d−1

TWAPI Target WAPI 0.2 nondim
TISI Target ISI 10 d
Tage Target expected transfusion age 16 d

Table 3: A table of model parameters.

(a) (b) (c)

(d) (e) (f)

Figure 5: Optimal restock thresholds for selected blood groups. (a-c) The value of the objective
function, E, (see equation (2.48)) is plotted against, a∗, and β. Colour represents E and the dashed
lines local minima. (d-f) Optimal solution, rE , is plotted against weighting parameter, β (rE is
computed by numerically finding a∗ that minimises E and then using equation (2.26)). Parameter
values as in Tables 2 and 3 unless otherwise stated.

Alternatively, upon using the target formulae presented in equation (3.2), it was found that:
setting TWAPI = 0.2 provides similar estimates of restock thresholds to those obtained using
numerical optimisation of equation (2.47) (see Figure 5); choosing Tage ∼ 16 provides a good
estimate for the threshold values used at the DGH over the time period of interest (see Figure
6); and setting TISI = 10 yields a reasonable estimate for used restock thresholds. These results
suggest that the proposed model could be used to aid rule-of-thumb decision making for the
dataset under study.
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Figure 6: A summary of different estimates for restock thresholds for the different blood groups.
(a) Time period 1. (b) Time period 2. Parameter values as in Tables 2 and 3. TWAPI = 0.2, Tage =
16.

4. Conclusion
As blood transfusions are required for many clinical treatments (e.g. surgery, childbirth,
chemotherapy), the availability of blood products plays a vital enabling role in modern clinical
medicine. Blood inventories are managed by transfusion laboratories who, ultimately, manage
two opposing constraints: minimise waste whilst simultaneously ensuring that adequate stock
is available to meet clinical demand. Whilst numerous theoretical approaches have been applied
to the blood inventory problem, their direct impact on day-to-day management of blood stocks
in transfusion laboratories is limited. There is therefore a need for complementary modelling
approaches that yield outputs that can aid day-to-day decision making in transfusion laboratories.

In this study a discrete stochastic model of individual blood groups was considered that
accounts for ageing, supply and demand of RBC units in an inventory. Upon time averaging and
taking a continuum limit, an age-structured, time-delayed, integro-partial differential equation
was obtained. An explicit form was found for the steady state solution which was then used
to derive expressions for a number of clinically relevant quantities. Analysis of the steady state
solutions indicates that both the wastage rate and the mean age of transfused units have a biphasic
dependence on the restock threshold, r, and an expression was derived for the restock threshold,
rmax, at which the wastage rate is approximately equal to the demand rate. It was assumed that
transfusion laboratories choose restock thresholds to be significantly less than this upper bound
(i.e. r≪ rmax) and hence that inventories operates in the limit of low wastage. The steady state
solution of the model allows for predictions of KPIs in terms of known model parameters. The
forms for predicted KPIs are consistent with observations of correlations between KPIs. Moreover
the derived forms for the KPIs can be inverted, yielding formulae for restock thresholds that will
yield target values of KPIs. Hence the model yields simple formulae that could aid rule-of-thumb
decision making in clinical laboratories.

A case study was considered in which the model was applied to data from a Scottish DGH.
Data were obtained from two distinct time periods within which different restock thresholds were
used. In each of the time periods the model captures variation in the mean age of transfused across
the different blood groups [6]. Moreover, the model captures the change in mean age of transfused
units upon reduction of two of the restock thresholds.

An optimisation problem was constructed in which an objective function that penalises both
waste and low stock levels was minimised. The identified ‘optimal solutions’ suggest that O+ and
A+ could be stocked at increased levels than was the case at the DGH under consideration. In the
model, the effect of the increased restock thresholds was to increase stock levels with a minimal
effect on wastage. It is noted that supply side constraints on stock availability are a potential
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reason for using lower restock thresholds (even if wastage may not be increased at higher stock
values).

Model-predicted ISIs were used to retrospectively diagnose and address an issue with the
inventory. When explicit formulae that yield target of values of ISIs were used, the model
retrospectively identified predicted ISIs for two blood groups that were significantly higher than
the other blood groups. The stock thresholds for the identified two blood groups were then
reduced by the transfusion laboratory and the predicted ISIs, computed using the modified
restock thresholds, were aligned with those of the other other blood groups.

The management of blood inventories will vary dependent on a host of site-specific factors
(e.g. geographical proximity to blood bank, demand rates, trauma unit). For example, in a DGH
located in close proximity to a central blood bank with frequent routine deliveries and few trauma
cases, it may be desirable to have lower restock thresholds than a DGH in a remote geographical
location. It is noted that whilst the derived formulae for KPIs provide a means of systematically
comparing the behaviour of multiple blood inventories, further study, that considers transfusion
records from multiple clinical settings, is required to determine the general applicability of the
proposed model in its current form.

Whilst the model provides insight into features of the blood inventory problem, a number of
modelling assumptions could be revisited in order to refine the model predictions. Firstly, when
taking the continuum limit it is assumed that supply and demand are distributed homogeneously
in time. In reality, demand frequency is structured in time (i.e. there are strong circadian and
weekly time scales). Moreover, one also expects day-to-day age structure in the supply of units
as, ultimately, units are provided by donors and this tends to happen on particular days of the
week (e.g. there will be relatively few donations on a Sunday).

It is noted that the continuum model exhibits a steeper gradient in the steady state age
distribution than the time-averaged discrete simulations (see Figure 2 (a)) and that the continuum
model underestimates both the mean age of transfused units and the wastage rate (see Figure
2 and Appendix A). The source of the deviation is an assumption made in the derivation of
the demand term in the continuum model in which the time average of Heaviside functions is
itself a Heaviside function (see equation (2.8)). These factors ought to be taken into account when
comparing derived formulae with clinical records.

In general, the demand for a given blood group is coupled to levels of other blood groups in
the system (i.e. cross grouping). Cross-grouping is particularly important in the context of the
management of O− stocks, as O− units are routinely transfused to patients of any blood group in
emergency situations. Moreover, cross-grouping can be used as a management strategy to avoid
wastage. Whilst the model in its current form does not directly describe cross-grouping, the effect
of cross grouping is manifest via the demand rates for each blood group (which are calculated by
averaging the overall demand (includes homologous and cross grouped transfused units)).

The modelling approach adopted in this study provides formulae that allow the value of
restock thresholds to be identified that yield target values of KPIs. A major advantage of our
approach is that the derived formulae can be readily computed given available knowledge of
statistics of the particular supply and demand rates in a given clinical setting. Whilst the derived
formulae are in a form that could be readily used to inform rule-of-thumb decisions made
by transfusion laboratory staff, further data are needed to establish the general validity across
different clinical settings.
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Appendix A.
To further investigate agreement between discrete and continuum models the wastage rate and
mean age of transfused units were computed over a range of values of restock threshold, r, and
demand frequency, k2 (see Figure 7). Note that the discrete and continuum models show excellent
quantitative agreement over a wide range of values of restock threshold and demand frequency.
However, the continuum model underestimates the wastage rate in the case where a∗ ∼ 30 and it
underestimates the minimum age of transfused units, a∗, as a∗ → a+1 .
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(a) (b) (c)

(d) (e) (f)

Figure 7: Comparison of discrete and continuum model outputs. Wastage rate, wD , in the discrete
model is plotted against restock threshold, r, and demand rate, k2. (b) The corresponding wastage
rate in the continuum model, wC . (c) The difference between wastage rates in the discrete and
continuum models (wD −WC ). (d) The minimum age of transfused units in the discrete model,
a∗D , is plotted against restock threshold, r, and demand rate, k2. The corresponding minimum
age of transfused units in the continuum model, a∗C . (f) The difference between minimum age
of transfused units in the discrete and continuum models (a∗D − a∗C ). Dashed lines represent
contours a∗ = a1 and a∗ = 30. White dots represent parameters used for different blood groups
at the Scottish DGH under study (see Table 2). Continuum model solutions for w and a∗ given
by equations (2.33) and (2.25), respectively. τ = 0. Discrete model given by equations (2.1)-(2.5).
Other parameters as in Table 3.
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