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• The rheumatology research community is increasingly adopting novel AI techniques
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A B S T R A C T
The major and upward trend in the number of published research related to rheumatic and
musculoskeletal diseases, in which artificial intelligence plays a key role, has exhibited the
interest of rheumatology researchers in using these techniques to answer their research questions.
In this review, we analyse the original research articles that combine both worlds in a five-year
period (2017-2021). In contrast to other published papers on the same topic, we first studied
the review and recommendation articles that were published during that period, including up
to October 2022, as well as the publication trends. Secondly, we review the published research
articles and classify them into one of the following categories: disease classification, disease
prediction, predictors identification, patient stratification and disease subtype identification,
disease progression and activity, and treatment response. Thirdly, we provide a table with
illustrative studies in which artificial intelligence techniques have played a central role in more
than twenty rheumatic and musculoskeletal diseases. Finally, the findings of the research articles,
in terms of disease and/or data science techniques employed, are highlighted in a discussion.
Therefore, the present review aims to characterise how researchers are applying data science
techniques in the rheumatology medical field. The most immediate conclusions that can be drawn
from this work are: multiple and novel data science techniques have been used in a wide range of
rheumatic and musculoskeletal diseases including rare diseases; the sample size and the data type
used are heterogeneous, and new technical approaches are expected to arrive in the short-middle
term.

1. Introduction
1.1. Clinical and technical background

Rheumatic and musculoskeletal diseases (RMDs), for a list of acronyms the reader is referred to Supplementary
Excel File Acronyms, are defined by the major scientific societies of rheumatology, European Alliance of Associations
for Rheumatology (EULAR) and American College of Rheumatology (ACR), as a heterogeneous group of more
than 200 diseases and syndromes present in all age segments and in both genders, affecting not only joints, bones,
cartilage, tendons, ligaments, nerves, blood vessels, and muscles, but also internal organs [1]. The aetiology and
pathophysiology of RMDs can be variable. From a genetic, environmental, postural hygiene, and physical injury
perspective, to immunological system disorders, such as inflammation derived from autoimmune responses, infections,
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or mechanical deterioration of tendons, muscles, and bones. This group of diseases is commonly characterised by
chronicity, pain, fatigue, disability, motion dysfunction, and larger female and elder affectation; having a negative
impact on life expectancy and quality of life (QoL) of patients. The economic burden associated with RMDs is not
negligible and has recently been under the spotlight, as these diseases are responsible for the loss of productivity
costs and the costs derived from sick leave and work disability [2]. Concisely, RMDs have a high overall prevalence,
a significant economic burden, a deleterious impact on patients’ QoL, and some particularities that hinder patients’
management, making them unique and complex.

From a data science perspective, RMDs also have their own particularities and challenges. To begin with,
RMDs data are usually longitudinal, because of the long patient follow-up, which can range from weeks to decades.
Therefore, new approaches that seek to take advantage of these data, such as group-based multi-trajectory modeling
(GBMT) analyses are emerging [3]. Moreover, RMDs data tend to be heterogeneous and multidimensional. Not
only clinical and demographic data but also image, genomic, and -to a lesser extent- sensor data have been used to
characterise the patient’s disease, the disease progression or the treatment response and its effect. For instance, the
disease progression can be studied with radiological progression measures obtained from medical images. Other data
sources and types, such as patient-reported outcomes measures (PROMs) (e.g., health-related quality of life (HRQoL))
are not uncommon in rheumatology [4]. In addition, data from different medical specialities, such as orthopedy,
ophthalmology, pneumology, immunology, pharmacy, cardiology, or radiology, often complement the original RMDs
data. In this scenario, the dimensionality of the data can increase significantly, especially with genomic data and
genome-wide association studies (GWAS). The outpatient setting of most rheumatic clinics also has an impact on
the way data are collected. These data often fall under the definition of real-world data (RWD). Although RWD is
a valuable source of information, some of its limitations cannot be neglected, such as its less structured nature or
the occurrence of biases (i.e., selection bias or informed consent bias), which may require additional processing [5].
In this regard, approaches based on natural language processing (NLP) and topic modelling have been proposed to
characterise the evolution of rare diseases in RMDs clinical narratives [6].

The complexity of these data has led to the search for tools capable of modelling and capturing complex statistical
interactions and patterns in the data. Researchers have found in artificial intelligence (AI) tools a suitable collection
of techniques to extract knowledge from data. These tools have been applied to basic, clinical, and translational
rheumatology research studies and to both autoimmune and non-autoimmune RMDs. Some of the supervised learning
algorithms employed in rheumatology research studies for regression, classification, and inference are linear, logistic,
Poisson regression; regularised linear models (i.e., least absolute shrinkage and selection operator (Lasso), Ridge
and elastic net); decision trees (DT); support vector machines (SVM); Bayesian models; naive bayes (NB); k-nearest
neighbors (KNN); random forest (RF); neural networks (NN) and boost-based algorithms such as gradient boosted
models (GBM) or AdaBoost. These algorithms have been used for a wide range of applications, among them, to predict
response to some biological treatments (e.g., anti-tumor necrosis factor (TNF)) [7], disease flare risk based on physical
activity [8], and suicide risk in patients with fibromyalgia [9]. On its behalf, unsupervised learning algorithms have
played a key role in dealing with high-dimensional data, such as gene expression data and biomarker identification. In
this regard, principal component analysis (PCA) has been found to be extremely useful for dimensionality reduction
when identifying biomarkers [10], avoiding overfitting and speeding up training time, and t-distributed stochastic
neighbour embedding for visualisation [11]. Clustering algorithms have followed multiple strategies: connectivity-
based clustering (e.g., hierarchical clustering), centroid-based clustering (e.g., k-means, fuzzy c-means), density-based
clustering (e.g., DBSCAN) and probabilistic models (e.g., Gaussian mixture models (GMM)). Moreover, the ability
of deep neural networks (DNN) to capture complex patterns have propitiated its use in computer vision and texture
analysis tasks such as region of interest identification and segmentation in radiology images. In this regard, DL has
been used to quantify the cartilage stage severity in osteoarthritis [12], radiological progression in rheumatoid arthritis
(RA) [13] or lumbar spinal stenosis grading [14]. Furthermore, DL has also been employed satisfactorily with structure
data from electronic health record (EHR) to forecast clinical outcomes using multiple network architectures, including
convolutional neural networks (CNN), recurrent neural networks and long short-term memory networks [15]. Free
text and unstructured data from clinical notes have been analysed following a NLP approach, taking advantage of
algorithms such as latent dirichlet allocation (LDA) for topic modelling, which has been shown to be useful for disease
classification into different meaningful subgroups [16]. Other NLP-based techniques such as Word2vec have been
employed for rheumatic diseases phenotyping [17]. More recently, novel approaches have reached the RMDs world,
such as few-shot learning (FSL) [18], or large language models such as ChatGPT [19].
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The present review aims to characterise how rheumatology researchers are employing data science techniques
and to study to what extent these techniques have been adopted by rheumatologists. Three main objectives can be
distinguished:

1. To study the publication trends in a five-year time window based on the results of a query containing AI and
RMDs terms.

2. To conduct a literature review of the original articles published during that five-year period.
3. To discuss the technical, ethical, and regulatory limitations of AI models with a particular focus on rheumatology.
In this review, we intentionally omitted the description and the implications of the different learning techniques

and the most widely used algorithms. Since these topics have been covered extensively in previous reviews and usually
account for a greater part of the manuscript, we decided to prioritise the description of the different studies. For a better
understanding of those techniques, the reader is referred to Supplementary Excel File Statistical Methods.
1.2. Publication trends

The promising early results of AI techniques have been a decisive step toward its adoption among the different
rheumatology research groups. This has been reflected in a growing number of publications, in recent years, in high-
impact rheumatology specialised journals. In fact, it has led to the necessity of EULAR to elaborate good-practice
recommendations when dealing with big data [20]. When running the Medline query presented in Section 2.1, including
the five-year period of the state-of-the-art review (that is, 2017 to 2021), the upward trend can be easily appreciated.
The number of published articles has grown by almost 300% from 2017 to 2021. See Figure 1.

Figure 1: Publication trends in Medline when running the query presented in Section 2.1

1.3. Past reviews
Over the last few years different review and recommendation articles, in which AI and RMDs fields interact, have

emerged.
In 2017, a review article addressed the ability of machine learning (ML) algorithms to discriminate between chronic

pain patients (e.g., chronic pelvic pain, fibromyalgia, low back pain) and healthy controls [21].
In 2019, a systematic literature review informing EULAR recommendations for the use of big data and artificial

intelligence in RMDs came to light [22], as well as a compilation of studies that covered the feasibility and clinical
utility of ML to stratify patients and predict treatment response [23]. A review covering the methods used in the analysis
of rheumatic and musculoskeletal clinical data was presented in [24]. Throughout the year, other review articles dealing
with specific diseases were published: prediction models for osteoarthritis (OA) [25], the role of ML and cardiovascular
risk assessment in RA patients [26], detecting early RA [27], the application of ML in axial spondyloarthritis (axSpA),
and prediction of osteoporosis [28].

A year later, in 2020, the EULAR points to consider for the use of big data and artificial intelligence in RMDs
were presented [20], along with two reviews of ML methods applied to rheumatic diseases [29, 30]. That same year,
an introduction to the ethical issues of big data [31], as well as a review of the use of AI in rheumatology imaging [32]
were available.
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In 2021, the review article titled ’An introduction to machine learning and analysis of its use in rheumatic diseases’
[33] provided a distinguished overview of the current situation of ML techniques applied to rheumatology, with a
description of the most commonly employed algorithms, as well as, examples of ML applications in rheumatology.
Another review, with a strong educational purpose, evaluated the relevance of data science to the field of rheumatology
[34]. In addition, a scoping literature review of ML approaches to improve disease management of patients with RA was
published at the end of the same year [35]. Particular interest was also given to the use of ML solutions for osteoporosis
in [36]. The applicability of AI in the management of RMDs, with data collected from wearable activity trackers, was
examined in [37].

In 2022, some authors provided an outline of ML applications in musculoskeletal histopathology [38], and reviewed
the ML methods applied to OA research [39], with a special emphasis on magnetic resonance imaging (MRI) [40].
Other authors addressed the use of three specific ML algorithms including logistic regression, in the diagnosis of
rheumatic illnesses [41]. Another review, published in the middle of the year, discussed recent technologies and
innovations that are expected to benefit clinical practice in the early 2030s, with regard to big data [42]. A narrative
review of ML in RMDs for clinicians and researchers was published by Nelson AE et al. [43]. Furthermore, another
narrative review [44] covered the applications of ML in systemic sclerosis (SS). A review of AI and deep learning (DL)
[45] attempted to highlight the relevance of these techniques in the near future of the field of rheumatology. Finally, a
review explored the opportunities and challenges of using RWD data focusing mainly on the electronic health record
(EHR) data to advance clinical research in rheumatology [5].

The increasingly frequent appearance of these kinds of articles (i.e., review and recommendation) gives an idea of
the general adoption of AI and ML in RMDs and in other medical specialities [46]. Unlike previous assessments, in
the present review, technical details assume a secondary role and the writing is instead oriented towards facilitating
a diverse range of original research examples that may be useful to the reader as a starting point for conducting its
research in the field of AI.

2. Materials and Methods
A literature search was conducted to identify publications related to RMDs in which data science techniques played

a relevant role. Firstly, results from Medline, Scopus and Web of Science were extracted. Lastly, specific searches were
performed in the main rheumatology journals using their integrated search engines. The boolean operators AND and
OR were used to streamline the procedure. The selected articles had to be indexed in PubMed (i.e., with a PubMed
Identifier (PMID)) at the time of the search (that is, the index dates were used instead of the publication dates).
2.1. Search in Medline

The search consisted of two stages. In the first stage, articles published from January, 1st 2017 to June, 17th 2020
were retrieved. In the second stage, articles published from that date to February, 22th 2021, were collected.

The Medline search strategy included a combination of keywords and Medical Subject Headings (MeSH) terms.
Due to the large number of keywords related to RMDs and AI and potential omissions, the search strategy did not
specify, for example, a concrete type of disease or a concrete AI technique or algorithm. The keywords and MeSH
terms from Table 1 were used to build the Medline query:

((Artificial Intelligence)[All Fields] OR (Artificial Intelligence[MeSH Terms]) OR (Big Data)[All Fields] OR (Big
Data[MeSH Terms]) OR (Data Mining)[All Fields] OR (Data Mining[MeSH Terms]) OR (Machine Learning)[All

Fields] OR (Supervised Learning)[All Fields] OR (Supervised Machine Learning[MeSH Terms]) OR (Unsupervised
Learning)[All Fields] OR (Unsupervised Machine Learning[MeSH Terms]) OR (Deep Learning)[All Fields] OR

(Deep Learning[MeSH Terms]))

AND
((Rheumatology) OR (Rheumatology[MeSH Terms]) OR (Rheumatic) OR (Musculoskeletal) OR (Musculoskeletal

diseases[MeSH Terms]))

2.2. Search in Scopus
The Scopus query was restricted to the article title, keywords, and abstract. Only results from January, 1st 2017 to

February, 22th 2021 indexed in Medline (i.e., with a PubMed identifier (PMID)) were included. The query performed
in Scopus was:
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Table 1
Keywords and MeSH terms used in the Medline search

Domain Keywords MeSH terms

Artificial
Intelligence

Artificial Intelligence Artificial Intelligence
Big Data Big Data

Data Mining Data Mining
Machine Learning

Supervised Learning Supervised Machine Learning
Unsupervised Learning Unsupervised Machine Learning

Deep Learning Deep Learning
Rheumatic

and
Musculoskeletal Diseases

Rheumatology Rheumatology
Rheumatic

Musculoskeletal Musculoskeletal Diseases

TITLE-ABS-KEY(((artificial AND intelligence) OR (big AND data) OR (data AND mining) OR (machine AND
learning) OR (supervised AND learning) OR (unsupervised AND learning) OR (deep AND learning))

AND
((rheumatology) OR (rheumatic) OR (musculoskeletal)))

2.3. Search in Web of Science
The Web of Science search was similar to the Scopus search. The query performed was as follows:

TS=((("Artificial Intelligence") OR ("Big Data") OR ("Data Mining") OR ("Machine Learning") OR ("Supervised
Learning") OR ("Unsupervised Learning") OR ("Deep Learning"))

AND
((Rheumatology) OR (Rheumatic) OR (Musculoskeletal)))

2.4. Search in rheumatology journals
Articles published in Q1 and Q2 rheumatology journals (according to 2019 Journal Citation Reports) were

retrieved, excluding those classified as ’Congress’, ’Abstract’ or ’Miscellaneous’. The decision to limit this search
to Q1 and Q2 journals was made to ensure that the articles retrieved had a high impact. This restriction only applies
to this search. The journals included in this search were: Nature Reviews Rheumatology, Annals of the Rheumatic
Diseases, Arthritis & Rheumatology, Rheumatology, Therapeutic Advances in Musculoskeletal Disease, Osteoarthritis
and Cartilage, Seminars in Arthritis and Rheumatism, Arthritis Research & Therapy, Arthritis Care & Research,
Current Opinion in Rheumatology, Current Rheumatology Reports, Joint Bone Spine, Rheumatology and Therapy,
Journal of Rheumatology, and Clinical and Experimental Rheumatology.

The query used in the search engine of the different journals was:
"Machine Learning"

3. Literature review
The number of records identified through the database search steps described in the previous sections was 4,325.

In Table 2 the initial number of articles retrieved from the different sources is shown. From this point on, different
exclusion criteria were applied. Figure 2, shows the exclusion and inclusion criteria.

To sum up, we included unique articles, with a PMID, written in English, without animal involvement. On the
other hand, we excluded articles identified as analysis, annotation, biography, case report, cohort profile, comment,
correspondence, correspondence response, editorial, editorial comment, epilogue, erratum, guideline, letter, meta-
analysis, methodology, news, news & analysis, opinion, overview, perspective, protocol, research highlight, research
report, response, video article.
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Table 2
Number of articles retrieved and with PMID in the different search engines

Source Number of records identified PMID
MedLine 2,071 2,071
Scopus 1,282 492

Web of Science 731 433
Rheumatology journals 241 241

Figure 2: State of the art inclusion and exclusion criteria

We also removed articles not related to RMDs; articles covering the following topics: medical surgical procedures
such as arthroplasty or arthroscopy, biomechanics, cancer (excluding lymphoma), muscle and bone malignancies,
education, force simulation, gait, image generation, reconstruction, joint replacement, orthopaedics, radiology,
rehabilitation and other non-pharmacological interventions, robotics, simulation and surgery; articles out of scope,
not applying AI techniques or similar to previously identified ones.

The articles remaining after the elimination of duplicates (i.e., exclusion criteria 2) are shown in Supplementary
Excel File Unique Articles. Finally, the article title, the identifiers (i.e., DOI and PMID), the journal, the publication
year, the disease, the algorithms/techniques, the programming language, the number of patients, the validation type,
the objective, and the authorship information are available in the Supplementary Excel File Included Articles.
3.1. Classification of topics and predictors

Hereafter, a review of the rheumatology research articles in which data science techniques were used, over a
five-year period, 2017-2021, is conducted. Different categories have been proposed to classify research articles. For
instance, the scoping review presented in [35] suggested three main categories and eight subcategories to describe
RA studies in which ML was applied. On the other hand, authors in [33] suggested a different categorisation when
describing ML techniques applied to RMDs, Table 3.
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Table 3
Categorisations proposals made in other reviews

Kedra et al. [35] Kingsmore et al. [33]

Diagnosis

EHR
Patient classification

EHR and clinical data
Biological samples Imaging and biometric data
Imaging and image

recognition
Urinalysis, flowcytometry,

and genomics

Sensors
Risk classification and
outcome prediction

Monitoring Disease Predicting treatment response
or candidates for treatmentComorbidities

Prediction Response to treatment Patient clustering to determine
disease subtypesOutcomes

Table 4
Proposed classification of topics with six main categories and three subcategories, depending on the predictor type

Categories Subcategories
Disease identification and

prediction Clinical, demographic and biomarker data
accessible within routine clinical practice

Complex molecular biomarkers

Image

Disease classification
Patient stratification and

disease subtype identification
Disease progression and

activity
Treatment response

Predictors identification

As shown, there is no standardised way to classify medical research articles in which data science approaches
are used. The proposal followed in this review tries to strike a balance between resolution and significance. Hence,
the articles are categorised into six main topics, based on the intended use of the techniques employed, and three
subcategories, based on the types of the variables; Table 4. When a study could be classified into more than one
category, it was assigned to the most complex category (i.e., the design of the study is becoming increasingly
sophisticated) according to the order shown in Figure 3. This figure shows a scheme of the different categories proposed
and how they relate to each other. If a study combines predictors that fall into more than one of the subcategories, the
article is classified according to the most complex variable (i.e., the difficulty associated with acquiring or processing
the data). Figure 4 shows an outline of the different subcategories. A full description of the categories and subcategories
proposed can be found in the Supplementary File Categories.
3.2. Disease identification and prediction

This section describes studies that attempt to classify patients with concrete RMDs versus controls (i.e., healthy
patients or patients without the disease of interest), or that attempt to identify patients with a particular condition using
EHR data, generally with the aid of NLP.
3.2.1. Clinical and demographic

The consequences of delayed diagnosis and treatment extend beyond patient well-being (e.g., increased flares and
organ dysfunction) and can cause significant economic burdens at different levels. This can be exacerbated by the
lack of diagnostic criteria or outdated disease definitions. Under this assumption, early diagnosis predictive models
have been developed for ankylosing spondylitis (AS), after applying mutual information for feature selection [47].
In this study, the authors trained different algorithms such as SVM, RF or GBM, and compared their performance
against more traditional methods like linear regression and clinically-based models. The purpose of this study was
the early identification of AS patients based on medical and pharmacy claims history. Of 228,471 patients, without
a history of AS, the ML model predicted that 1,923 patients would develop AS. However, only 120 of the predicted
patients developed AS. A total of 1,242 out of 228,471 finally developed the disease. While the linear regression model
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Figure 3: Proposed classification into six main categories

Figure 4: Data sources considered in each subcategory. For more details the reader is referred to Supplementary File
Categories

accounted for a higher Area Under the Curve (AUC), 0.71, compared to the ML model, 0.63, the false positive rate and
positive predictive value (PPV) values were 4.67% and 2.55%, for the linear regression and 0.79% and 6.24% for the ML
model. As predictors, three groups of categories were used: diagnosis (e.g., unspecified inflammatory spondylopathy,
sacroiliitis), procedure (e.g., HLA typing single antigen, radiological examination sacroiliac joints) and prescription
(e.g., propoxyphene, sulfasalazine).
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In recent years, different research groups have been working to identify axSpA patients in large datasets with both
structured and unstructured data. As some authors stated, identifying axSpA patients for observational studies is a
challenge, partly due to the lack of codification for the different disease phenotypes. Historically, axSpA International
Statistical Classification of Diseases and Related Health Problems (ICD) codes and manual chart review have been used
for identification. Recently, three models to identify patients with axSpA have been proposed by a US research group
[48]. These models considered a different number of unique predictors from 16 to 49, including concepts extracted
with the help of NLP techniques (e.g., sacroiliitis, HLA-B27), demographics (e.g., race, ethnicity), laboratory (e.g.,
CCP), healthcare utilisation (e.g., number of rheumatology visits), ICD codes and comorbidity index variables (i.e.,
Charlson Comorbidity Index). The authors used the RF algorithm to quantify an axSpA risk score and concluded that
the most complete algorithm, which included 49 variables, had the highest overall performance, obtaining a 0.65 F1
score.

Previously, a research group from the UK [49] had applied unsupervised and supervised algorithms, also using
concepts extracted after applying NLP, to accurately identify axSpA patients in an EHR from an enriched axSpA
cohort. In this regard, the authors generated a list of candidate axSpA concepts with the surrogate assisted feature
extraction method and selected the six most informative concepts with Lasso (e.g., number of ’AS’, sacroiliitis,
spondylitis concepts), after processing the clinical reports with NLP. Furthermore, they tested an unsupervised
implementation, multimodal automated phenotyping, which combined information from three key domains (i.e., ICD
codes, NLP concepts and healthcare utilisation). This last approach had the highest sensitivity and PPV, 0.78 and
0.80, respectively, with an AUC value of 0.92. Lastly, the authors concluded that axSpA patients could be accurately
identified in EHR by incorporating narrative data.

Observational studies on rare diseases are often limited by sample size. Therefore, automatic methods to accurately
identify patients suffering from these diseases in the EHR are key to maximising the number of cases and achieving
enough statistical power to draw valid conclusions. With this in mind, authors in [50] aimed to implement different
approaches to broadly capture SS patients from an EHR, using meaningful variables such as ICD codes (e.g., 710.1,
M34*), laboratory data (e.g., positive anti-nuclear antibody (ANA)) and keywords (e.g., Raynaud’s phenomenon).
Accordingly, the performance of rule-based, classification and regression trees, and RF algorithms was compared.
Although the authors showed that ML-based algorithms were not the highest performing ones, in terms of PPV and F-
score, 0.84 and 0.88 respectively, compared to rule-based algorithms, 0.90 and 0.91, they were not as time-consuming to
develop and validate as the last ones. In addition, the authors highlighted some potential advantages of ML algorithms:
they do not require specific domain knowledge and can be automatically tuned to easily identify the optimal model
parameters.

Given the sheer volume of text notes in the EHRs of some centres, identifying patients who meet certain criteria
can be a daunting task. In lupus research, studies to identify patients in EHR and to predict risk probabilities have been
carried out. For instance, authors from [17] presented a study in which they used different text classifiers techniques
for identifying systemic lupus erythematosus (SLE) patients while reviewing common and more advanced NLP
approaches (e.g., bag-of-words (BOWs), Concept Unique Identifiers (CUIs), Word2vec). On this basis, the authors
showed a pipeline with three clearly separated pathways and two main split nodes, based on how the textual data were
transformed and processed into features. If the final word representation was based on word/CUIs frequency in each
clinical note (i.e., data resulting from applying BOWs and CUIs), a RF classifier was trained for extracting the variable
importance and for feature selection; followed by NN, RF, NB and SVM classifiers. On the other hand, if the word
representation was based on vectors for each word presented in a document (e.g., Word2vec), bayesian inversion was
conducted. When benchmarking the results from the test set, the AUC scores ranged from 0.80 to 0.99. Although the
novelty method proposed (i.e., Word2vec bayesian inversion) was not the best-performing one, authors concluded that it
is promising for identifying patients, since it has fewer dependencies, lower testing, and is more scalable than previous
approaches. Among the stemmed terms identified through the variable importance method, "C3", "sle", "graviti", "sole"
and "phurin" were the most relevant ones.

Changes in clinical practice, disease management, or the emergence of new therapeutic drugs and procedures can
constitute a source of heterogeneity, making it difficult for algorithms to generalise. Studies that assess the temporal
validity of predictive models, developed years ago, over time have been carried out [51]. With a seven-year difference,
the authors compared the performance of a RA logistic regression algorithm, trained in 2010, against a new logistic
regression model that included new ICD-10 codes (e.g., M05.x) and RA treatments (e.g., adalimumab, golimumab).
ICD codes, prescription, laboratory results (e.g., rheumatoid factor, anti-cyclic citrullinated peptides (CCP)), and NLP
concepts extracted from narrative data and stored in a new electronic medical record were used. The authors evaluated
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the performance of the ancient algorithm in the updated data, as well as the performance of the updated algorithm
using the same model coefficients as the first one while incorporating new variables. The researchers finally concluded
that the performance of the old algorithm was similar to the new one when validating with updated data.

To reduce the time-consuming manual chart review, and to minimise the inclusion of false positives when using
standardised billing codes, Leiden and Erlangen researchers developed a workflow for building a ML algorithm
capable of accurately identifying patients with RA from clinical narratives using NLP [52]. A pipeline of five steps
containing word segmentation and trigram aggregation, lowercase conversion, stopwords removal, word normalisation
with lemmatisation and vectorisation with term frequency-inverse document frequency was applied for processing the
free text notes. Then, NB, NN, RF, SVM, DT, GBM classification models were trained for obtaining a probability
score of rheumatoid arthritis. The final aim of this research was to implement a broadly applicable workflow to equip
centres with their own high-performing algorithm. Therefore, this research study placed a greater emphasis on the
technical aspects. The most relevant terms, identified by the best-performing classifier, SVM, include "ra", "mtx", and
"erosive".

Medical imaging techniques can be one of the most reliable methods to diagnose certain pathologies. However,
image acquisition equipment is not always present in medical facilities, or its availability is limited or not guaranteed. A
study for the early OA detection, using exclusively clinical (e.g., hypertension, diabetes mellitus, dyslipidemia, stroke),
demographic (e.g., gender, age, region, marital status, education) and lifestyle data (e.g., body mass index (BMI),
obesity, alcohol intake, self-reported status of health) has been conducted in [53]. In this study, the authors highlighted
the relevance of building an OA classification model when imaging data are missing. The 24 initially proposed features,
from 5,749 subjects, underwent through PCA, and a DNN was trained with the resultant components. The authors
achieved an AUC value of 0.77.

The importance of topic modelling and NLP for feature extraction and text structuring in RMDs was shown in the
context of pseudogout disease [54]. As the authors reported, identifying pseudogout in large datasets can be challenging
due to several factors: its incidence is not well-characterized and there exists a lack of specific billing codes. Almost
ten million narrative notes from more than 50,000 patients were processed, and 73 Unified Medical Language System
codes were applied to count mentions of those concepts. Then, two filters based on billing codes and NLP concepts,
followed by a random selection of patients (n = 900) were applied. Subsequently, with the aid of a novelty topic
modelling algorithm, sureLDA, followed by penalised regression, a pseudogout propensity score was estimated and
regression models were computed to predict the probability of pseudogout. Sixty-two input features including ICD
codes, laboratory codes, and NLP counts were used as the input of the sureLDA algorithm. The regression models
included the sureLDA score, the counts of the NLP concept "pseudogout" and the presence of synovial fluid crystal
analysis. Finally, five different algorithms, including and excluding the topic modelling score were compared. The
PPV, and the AUC values ranged from 0.79 to 0.81 and from 0.70 to 0.86 when using the topic modelling approaches.
3.2.2. Molecular biomarkers

The diagnosis of certain diseases, such as JIA, depends primarily on clinical presentations, which can be highly
variable between patients. On the other hand, deep immunophenotyping techniques (e.g., flow cytometry) provide
a comprehensive characterisation of the immune cells of patients with an autoimmune disease. In this context, RF,
SVM and artificial neural network (ANN) algorithms have been trained to discriminate patients with JIA from healthy
controls using deep immunophenotyping characteristics [55]. Up to 42 immunological parameters (e.g., iNKT cells,
𝛾𝛿 T cells, CD4+ T cells) that could act as a disease signature were collected from 128 patients. After training the
models, the authors found that the discrimination ability of RF was superior to the rest of the models, achieving a 0.89
AUC value, being the number of iNKT cells the key contributing feature to discriminate JIA patients from healthy
controls. With this study, researchers showed that ML can take advantage of immunophenotyping to identify immune
signatures that correlate with JIA disease.

The existing diagnostic techniques may not be sufficiently sensitive to detect the subtle changes that occur during
the early stages of OA, when it is still an asymptomatic condition. In [56], authors used data from the Osteoarthritis
Initiative (OAI) to identify serum antibodies that could predict radiographic knee OA in asymptomatic individuals,
measured with the KL scale, that will develop the disease during a follow-up period of 96 months. Clinical variables
(e.g., age, sex, BMI, WOMAC) including and excluding a molecular biomarker (i.e., MAT2𝛽-AAb) were used to build
stepwise multivariable logistic regression models. An AUC value of 0.76 was achieved in the replication-independent
cohort.
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3.2.3. Image
Certain anatomical structures can act as a disease’s sign or symptom and, therefore, be used for diagnosing

pathologies. For instance, halo sign detection in giant cell arteritis (GCA), is an example of such structures. In a
recently published study [57], authors used 1,311 colour doppler US images from 137 patients to train a U-Net, a CNN
for semantic segmentation, able to detect halo sign based on a pixel score metric, achieving a 0.83 AUC in the test set.
For enriching the training set, data augmentation was performed.

On the other hand, sacroiliac joint erosion is an early symptom of AS. A study compared the performance of ML and
DL classifiers in detecting erosion in a set of 681 sacroiliac joint computed tomography (CT) images from 53 patients.
For the former, ML, the authors extracted texture features and built a set of predictors with grey-level co-occurrence
matrices (e.g., energy, contrast, correlation, homogeneity, and dissimilarity) and local binary patterns (LBP) (e.g.,
count of LBP with a concrete pattern). Then, different classifiers (e.g., KNN, RF) were trained and compared. For the
latter, DL, they used and modified a pre-trained model, InceptionV3, via transfer learning. The authors concluded that
DL outperformed, 0.97 AUC, the ML algorithms and a radiologist with 9 years of experience in terms of sensitivity
and specificity [58].

Due to its superior textural contrast resolution, MRI is widely acknowledged as the most sensitive technique for
the early detection of inflammatory sacroiliitis. On this basis, authors in [59], calculated features from the histogram
of MRI images (e.g., kurtosis, skewness, maximum pixel value) and trained three ML methods, including SVM, KNN
and multilayer perceptron (MLP), for computer-aided classification of active inflammatory sacroiliitis to assist in the
spondyloarthritis classification. Some of the patients developed axSpA and some others OA, fibromyalgia, gout, or
psychiatric disorders. The best classifier, KNN, achieved an accuracy value of 0.80.

Combining variables from different domains to improve the performance of DL methods was a concern of some
researchers that tried to predict early hip osteoporosis to avoid fractures. Following an ensemble method, investigators
from Japan [60] achieved a 0.93 AUC in the diagnosis of osteoporosis of the proximal femoral, after training five
well-known pre-trained networks (i.e., ResNet18, ResNet34, GoogleNet, EfficientNet b3, EfficientNet b4) with a set
of 1,131 hip dual-energy X-ray absorptiometry images plus four clinical covariates: age, sex, BMI, and history of hip
fracture. The addition of clinical variables improved the AUC and the accuracy by 2.58% and 4.78% on average.

Identifying patients who are at risk of bone fractures remains a significant challenge in the field of osteoporosis. The
researchers in [61] fitted 15 classifiers (i.e., linear models, KNN, SVM, tree-based models and ensemble models) to a
cohort of 92 osteoporosis patients to predict fragility fractures from MRI data. The authors extracted different features
from the images: mechanical (e.g., elastic and shear modulus), physical (e.g., mean bone volume), topological, and
statistical. Other features, such as BMI or age, were also considered and PCA was used for reducing the original 55
features into different datasets comprising 5, 30 and 55 variables. Finally, up to 6 different datasets were built. The
average F1 score obtained was 0.63 for the all-features dataset.

Other studies with a strong computer vision involvement have been proposed. For example, central sarcopenia
detection was the main goal in [62]. In this study, CT scans of 102 patients were segmented and analysed using
a pre-trained CNN, U-Net. Five muscles (e.g., psoas, quadratus), and five lumbar spine levels (i.e., L1-L5), were
included and the performance of the system was evaluated using Dice similarity coefficients. Dice values between
0.80 and 0.93 and between 0.82 and 0.93 were obtained in the test set for the muscles and the spine levels, respectively.
Although the authors of the study highlighted the potential use of this system in the detection of central sarcopenia, no
predictive models were developed from the results shown here. Hence, this article could be categorised into another
topic depending on the intended use of the segmentation system.

In certain pathological conditions, radiological interpretation by an operator can be subjective and potentially
influenced by biases. Under this premise, novelty detection models to screen for myopathies and find rare presentations
of myopathic disease (i.e., myositis), have been presented in [63]. In this study, the authors used 3,586 US images from
35 controls and 54 patients with myositis, annotated the dataset (i.e., Myositis3K dataset) and tried different novelty
detection algorithms based on discriminative DL networks and generative methods. Regarding the discriminative
method, authors proposed the following pipeline: the use of deep embeddings to obtain a new representation of
the US images, the use of PCA and t-SNE for dimensionality reduction, and the computation of a novelty score.
Regarding the generative methods, they used generative adversarial networks (GANs). The best-performing approach,
the discriminative method, resulted in a 0.72 AUC value. This approach used SVM to calculate the novelty score.

Eventually, new imaging techniques have been proposed that utilize the microvascular changes at the finger nailfold,
which can aid in the diagnosis of SS. The authors in [64] used optoacoustic imaging techniques (i.e., raster-scanning
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optoacoustic mesoscopy) to obtain images from 23 SS patients and 19 healthy controls. Then, researchers used a pre-
trained CNN to classify the images, obtaining an AUC value of 0.90 and demonstrating the capabilities of optoacoustic
imaging for SS diagnosis.
3.3. Disease classification

This section describes studies that attempt to classify patients with different rheumatology conditions, regardless
of trying to also compare patients with healthy controls at the same time (e.g., pSS/SLE, pSS/controls, SLE/controls).
3.3.1. Clinical and demographic

Establishing the correct diagnosis at an early disease stage can condition the patient’s future health outcomes.
In some cases, the initial course of a disease may not be clear, as symptoms can be shared among competitive
diseases, which clinical management is totally different. In this regard, Yu SC et al. [65] built different classification
models (i.e., SVM with different kernels, RF) to distinguish lupus lymphadenitis (n = 19) from Kikuchi disease (n
= 81) using 32 clinicopathological characteristics: 6 clinical features (e.g., age, sex, biopsy site/method, the extent of
lymphadenopathy), 10 histological features (e.g., area involved, necrosis), and 16 C4d immunohistochemistry staining
results (e.g., endothelial staining in necrotic area, staining at adipocytes) in a case series of one hundred patients.
Models were externally validated, achieving high sensitivity, 1, and specificity, 0.96. However, the validation cohort
was small and extremely unbalanced, with only two cases of lupus lymphadenitis. This study highlighted the relevance
of AI techniques in the study of rare diseases and their manifestations.

A model to produce SLE risk probabilities (i.e., unlikely, possible, likely, and definite) was presented in [66]. In this
study, authors combined clinical and serological features from three SLE classification criteria (i.e., ACR 1997, SLICC
2012 and EULAR/ACR 2019) with non-criteria features (e.g., fatigue, lymphadenopathy, sicca) to calculate SLE risk
probabilities. 401 SLE patients and 401 disease controls, including RA, undifferentiated connective tissue disease,
pSS, scleroderma and vasculitis patients, among others, were included in the discovery cohort. After performing a
correlation analysis, researchers created 20 panels of features, and each panel was used to train two algorithms, Lasso-
logistic regression (LR) and RF. The best-performing model, Lasso-LR, achieved a 0.98 AUC in the validation cohort
and included 14 features. Eventually, to facilitate the adoption of such a model into clinical practice, the authors used
k-means clustering to detect unbiased risk probabilities partitions and to build a simple scoring system.
3.3.2. Molecular biomarkers

Based on the findings of a previous study in which the authors found several plasma microRNAs (miRNAs)
altered among patients with RA, researchers in [67] developed a model capable to classify RA patients from controls,
AUC 0.71, SLE patients from controls, AUC 0.80, and RA from SLE patients, AUC 0.63, using panels of miRNAs
biomarkers. For this purpose, RF and Lasso were employed. Whereas the former was used to capture a list of candidate
miRNAs, the latter was used to select a final miRNAs panel that maximised discrimination between diseases. Although
the panel differentiated RA and SLE patients from controls, it was unable to differentiate properly between patients
with RA and SLE.

The T-cell receptor diversity and the potential use of this information to classify diseases was the initial hypothesis
of a Chinese group of researchers, Liu et al. [68], that conducted an investigation for classifying RA (n = 206), SLE
(n = 877) and healthy controls (n = 439). RF models to discriminate RA patients from controls, SLE patients from
controls and RA from SLE patients were built, obtaining in all cases AUC values above 0.99.

The clinical courses of certain pathologies, such as RA, may exhibit unusual manifestation patterns and laboratory
values (e.g., seronegative RA), therefore their diagnosis can be confused with other pathologies such as psoriatic
arthritis (PsA). The authors of [69], used RF, NB, multivariate logistic regression and hierarchical clustering to identify
patients suffering from seronegative RA (n = 49) and PsA (n = 73). They achieved an AUC value of 0.71 in the
validation cohort, using demographic characteristics and serological concentrations of amino acids as predictors (i.e.,
age, gender, lipid ratios L6/L1, L5/L1, L2/L1, alanine, succinate and creatine phosphate), calculated with the aid of H
nuclear magnetic resonance-based metabolomic and lipidomic analysis of serum.

Other clinically and immunologically related diseases are SLE and primary Sjögren’s Syndrome (pSS). As these
diseases have common and specific manifestations, some researchers have investigated DNA methylation changes to
detect disease-specific alterations. For instance, in [70], DNA methylation data were used to classify patients with
SLE (n = 347), pSS (n = 100) and controls (n = 400), employing RF. Four different models of disease status were
developed: SLE/control, pSS/control, pSS/SLE and positive Ro/SSA and La/SSB pSS patients and controls. In these
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models, methylation 𝛽-values were used to predict disease status. For that purpose, a feature selection of CpG sites
based on linear regression was done beforehand. The authors achieved an AUC value between 0.83 (pSS/SLE) and
0.96 (pSS/control). This is, disease classification (i.e., pSS/SLE) was harder for the model than disease prediction (i.e.,
pSS and healthy controls).

Finally, the authors in [71] theorised that bacterial nucleic acids that may exist in synovial tissue and fluid could
be involved in arthritis development, therefore, they studied bacterial nucleic acids in synovial fluids, with 16s rRNA
gene amplicon sequencing, from 58 OA and 125 RA patients. The authors built SVM and RF classification models
to discriminate between OA and RA patients, using operational taxonomic unit markers. They obtained a mean AUC
value of 0.79.
3.3.3. Image

In early disease stages, some inflammatory markers commonly used to distinguish one disease from another are
not altered. Hence, its reliability may be reduced. Being aware of the early diagnosis difficulty in hand arthritis,
researchers in [72] used DNN and transfer learning, InceptionV3, for classifying photographs of hands into OA, RA,
and PsA. Firstly, they developed a DL model to estimate the probability that an image had one of those conditions.
Then, they combined this information with validated questionnaires and a single examination technique to determine
the most likely diagnosis in a patient presenting with hand arthritis. The number of participants was 280, and the
algorithms employed were SVM, RF and LR. The accuracy oscillated between 0.78 and 0.97 when classifying OA and
inflammatory arthritis, and between 0.90 and 0.95 when classifying RA and PsA.

The applicability of knee thermograms as a screening tool in the subclinical stages of RA diagnosis, and as a
way to distinguish types of arthritis has been postulated by a group of Indian researchers [73]. Firstly, they employed
different algorithms for inflamed region segmentation (e.g., k-means, Otsu). Then, they computed seven features from
the region of interest (e.g., area, Euler number, perimeter), and trained four different linear SVM classification models,
depending on the segmentation algorithms initially employed, to distinguish knee arthritis conditions from normal
knees or pathological knees with unknown reason. The authors obtained an accuracy of 0.91 on this task. Secondly,
they developed additional SVM models to classify RA knees from other types of arthritis. Three categories of features
were extracted for that aim, texture features (n = 55), frequency level features (n = 2), and shape features (n = 7).
Finally, a feature selection analysis was performed considering different approaches (i.e., recursive feature elimination
and RELIEF). AUC values ranging from 0.67 to 0.72 were obtained.
3.4. Patient stratification and disease subtype identification

This section describes studies that attempt to stratify patients into meaningful subgroups that share similar
characteristics (e.g., histological and/or molecular features, diseases), and that are different from other subsets of
patients. Studies that attempt to classify patients into different activity groups are also included in this category.
Although the main objective of these studies is the identification of subgroups of patients, usually employing clustering
techniques, studies that also incorporate prediction models for classifying the patients into the subsets previously
identified are also considered in this category.
3.4.1. Clinical and demographic

Some researchers have tried to refine the spectrum of specific autoantibodies that can appear in multiple diseases
with distinct phenotypes such as anti-Ku antibodies. With that aim, Spielmann et al. [74] tried to identify subgroups of
anti-Ku-positive patients using hierarchical clustering methods. Three clusters of connective tissue disease patients
(n = 42) with anti-Ku antibodies and with similar clinical and biological features and prognosis on a set of 28
clinico-biological features were found, 3 demographic features (i.e., sex, age, geographical origin), 17 features related
to organ involvement (e.g., arthralgia, lupus rash), and 8 autoantibodies (e.g., rheumatoid factor, ACPA). Multiple
correspondence analysis was used for dimensionality reduction. From a data science perspective, the relevance of
this study lies in the discussion generated by the scientific community, on the suitability of the techniques employed,
through letters to the publisher [75, 76, 77, 78].

Survival analyses can be conducted for different subgroups of patients after being identified by clustering
algorithms, for diseases with increased mortality risk due to life-threatening complications. A hierarchical clustering
approach was also conducted by Ogata et al. [79] to identify and clarify the characteristics of the subgroup of
antiphospholipid syndrome (APS) patients with the poorest prognosis (n = 168) at the time of diagnosis. Up to
14 serological and clinical variables, including age at APS onset, SLE, hypertension, history of arterial thrombosis
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and IgG/IgM aCL were used as input to the algorithm. Three different clusters were identified after analysing the
dendrogram visually. Although the clustering groups identified in this study were different compared to previously
published results, which only considered serological data, the authors highlighted the existence of a cluster that
accumulates cardiovascular risk events and arterial thrombosis events, with significantly higher mortality compared to
the other clusters.

This unsupervised algorithm, hierarchical clustering, has also been applied to a dataset of 70 adult-onset Still’s
disease (AOSD) inpatients [80]. Three distinct fever patterns were characterised after computing the ideal number of
clusters, k, with the Krzanowski and Lai index. In view of the results obtained, after applying logistic regression to
compare the prognosis of AOSD between the three groups, the authors concluded that a higher temperature at the time
of diagnosis was associated with a higher risk of AOSD-related mortality. As input features, the authors considered
both clinical and demographic features (e.g., sex, age, diabetes mellitus, clinical course, fever).

Another research group employed unsupervised ANN algorithms and graph-based approaches (i.e., semantic
connectivity maps) to explore hidden trends and non-linear associations among clinical (e.g., disease duration,
lymphadenopathy) and serological pSS features (e.g., rheumatoid factor, C4 level), and to predict lymphoma [81].
Finally, three subsets of patients with different characteristics (i.e., predominant glandular manifestations, anti-Ro/SSA
positive patients and patients with vasculitis manifestations) were identified. This research group was also responsible
for studying the increased prevalence of cardiovascular events in pSS patients using, again, unsupervised ANN
algorithms (i.e., Auto-CM) and agglomerative hierarchical clustering [82]. With the first approach, authors found two
different patterns of distributions in cardiovascular events risk factors.

Attempts have been made to identify patients predisposed to the development of lymphomas associated with
pSS [83]. The dataset studied consisted of 449 pSS patients (76 of them with lymphoma) and 90 features including
demographic (e.g., year at diagnosis, gender), and laboratory measures (e.g., C3, C4, haemoglobin). Two algorithms
were trained, RF and extreme gradient boosting (XGBoost); and the prediction performance was assessed by cross-
validation. While RF showed an AUC value of 0.83, XGBoost achieved a score of 0.88. C4 levels, the rheumatoid
factor, and the focus score at first biopsy were the predictors with the highest relative importance.

Non-negative matrix factorisation (NMF), an unsupervised pattern recognition algorithm, was used to identify
joint involvement patterns, understood as frequently co-involved joints, capable of predicting clinical phenotypes and
disease trajectories in 640 JIA patients [84]. In this study, the authors raised the idea that using these joint patterns
could be helpful to better classify JIA patients. Seven distinct joint patterns (i.e., pelvic girdle, fingers, wrists, toes,
ankles, knees, indistinct), reproducible through external data set validation, with 119 patients, were identified.
3.4.2. Molecular biomarkers

Researchers sought to identify subgroups of paediatric SLE patients to tailor the treatment plan based on the
underlying pathogenesis of the disease [85]. They found two differentiated groups of paediatric SLE patients (n =
31), depending on the predominant component of the disease: autoimmune or autoinflammatory. K-means clustering
was used for this purpose considering type I interferon (IFN) score, SLEDAI-2K and mean complement levels (i.e.,
C3 and C4 normalised values) variables. Finally, PCA was used to visualise the clustering results.

Some studies have compared the performance of classical serological biomarkers with gene signatures. In this
regard, clusters enriched in active SLE, quantified using SLEDAI, were identified using hierarchical clustering in 140
SLE patients [86]. In this study, blood, serum, and clinical data were obtained together with three gene signatures,
type I IFN, polymorphonuclear neutrophil and plasmablast. A bootstrap forest model was used to predict SLE activity
(i.e., clinical SLEDAI ≥2) and to identify potential predictors related to the disease activity. The results were validated
by performing multivariable logistic analyses. Among the variables with a higher predictive contribution, a composite
score created by adding IFN-I genes to polymorphonuclear neutrophil genes showed the highest predictive power.
Other classical serological variables considered were C4, C3 or glucocorticoids (GCs) dose.

On their behalf, the authors of [87] investigated how they could obtain meaningful clusters applying NMF in a
cohort of 173 patients with SS, using skin gene expression profiles. Cophenetic coefficients and silhouette score metrics
were used to determine the number of clusters, k. The authors achieved satisfactorily a four-cluster separation based
on different activation levels of SS-relevant signalling pathways (e.g., Notch, TGF𝛽). t-SNE was used to visualise the
different groups.

Clinical variables and laboratory biomarkers from a cohort of 150 children with JIA were used to identify clusters
with the help of GMM [88]. Visits at baseline and six months later were considered. With a feature selection process
based on a variable contribution threshold, 191 features were embedded into three principal components which

Alfredo Madrid García et al.: Preprint submitted to Elsevier Page 14 of 39

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
display the preprint in perpetuity. 

 is the author/funder, who has granted medRxiv a license to(which was not certified by peer review)for this preprint 
The copyright holderthis version posted March 24, 2023. ; https://doi.org/10.1101/2022.11.04.22281930doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.04.22281930
http://creativecommons.org/licenses/by-nc-nd/4.0/


Role and adoption of artificial intelligence in rheumatology

represented 35% (baseline visit) and 40% of variance (six months after the first visit) and retained 37 and 38 variables,
respectively. Using the Bayesian information criterion, the authors found three and five clusters. Later, the researchers
tried to compare the results of the clusters with currently defined JIA categories using circular plots. In light of
the results, the authors concluded that the clusters did not match JIA categories, suggesting that the pathobiological
processes are shared between JIA categories and fluctuate during the course of the disease.

Under the hypothesis that genetic and polygenic risk scores can accurately predict cases from controls with high
specificity, and considering the recent advances in array technologies and their affordability, another case-control JIA
classification research article was published [89]. This time, the authors pursued to build genomic risk scores (GRS)
for diagnosis using single-nucleotide polymorphism (SNP)s and PCA. Lasso and elastic net were used as penalised
regression models with the first 10 genetic principal components and sex as input features. The training cohort consisted
of 2,324 cases and 5,181 controls. The external validation was performed with two cohorts with a total of 921 cases
and 3,532 controls. After performing the analysis between cases, without discriminating JIA subtypes, and controls;
subanalyses to consider each JIA subtype, according to ILAR, and all controls were also performed. A key idea of this
study was the design of JIA subtype-specific GRS for the seven mutually exclusive categories of JIA.

Poppenberg et al. [90] considered different supervised ML algorithms (i.e., KNN, RF and SVM) to assess the
association between JIA disease activity and transcriptomes from peripheral blood mononuclear cells. In this research,
the authors defined active disease according to the presence of physical signs of synovitis in at least one joint. The
identification of predictors (i.e., transcripts with the greatest predictive power) was performed with Lasso. Finally, the
35 genes identified (e.g., ACAP3, ARL2BP) were used as the input of four predictive models (i.e., KNN, RF, SVM).
RF outperformed the rest of the models in the testing cohort, achieving a 0.94 AUC value.

Consensus clustering and k-means were the approaches chosen by the researchers to reveal three RA synovial gene
expression subtypes using the top 500 most variable genes expressed in 45 RNA-seq samples (i.e., 39 RA and 6 OA
synovium) [91]. The ideal number of clusters, k = 3, was visually confirmed according to likelihood scores and PCA
was used to validate the clustering. After that, the authors used histology scores as modelling features in a standard
SVM to predict the three RNA-seq subtypes. The AUC value of such models ranged from 0.59 to 0.88.

Extra-articular manifestations presented in some rheumatic diseases can contribute significantly to morbidity and
mortality. With that in mind, PCA and Lasso techniques were used for patient stratification based on the combination of
distinct serum protein biomarkers in RA-interstitial lung disease (ILD) and RA-no ILD patients, idiopathic pulmonary
fibrosis patients and healthy controls [92]. The serum levels of 45 proteins consisting of cytokines, chemokines, growth
factors, and remodelling proteins were measured using multiplex ELISA-based assessment, and the authors identified
seven biomarker signatures (e.g., MMP-1, MMP-2, MMP-7, MMP-9, interleukin (IL)-1, receptor antagonist) that
effectively differentiated both diseases, RA-ILD / RA-no ILD, achieving an AUC value of 0.93.
3.4.3. Image

Clustering methods have been employed to determine to what extent disease subgroups, which have been speculated
to be part of the same pathological condition, such as some forms of large vessel vasculitis, are anatomically distinct
disease entities. For instance, Gribbons et al. [93], included 1,068 patients in a study to identify groups of patients
with similar patterns of Takayasu’s arteritis (TAK) and GCA large vessel vasculitis. By defining 11 arterial territories
(e.g., carotid, subclavian, axillary, renal, mesenteric, and aorta) and combining catheter-based, magnetic resonance,
computed tomographic angiography, ultrasonography, and fluorodeoxyglucose positron emission tomography images;
patients were clustered based on disease within those arterial territories. Silhouette score and gap-statistic methods
were used for determining the optimal number of clusters, k, and k-means was chosen as the clustering algorithm. Six
unique clusters of patients with distinct patterns of arterial involvement were found. The key aspect of this study was
the sample size for such rare diseases, which facilitated the use of clustering techniques. The results of this research
were proposed by the authors to be considered in future classification criteria for large vessel vasculitis.

This same research group, [94], in a previous study, also included a DT model to predict k-means cluster assignment
based on 13 arterial territories in these two diseases, TAK and GCA, achieving a 0.87 accuracy in the replication cohort.
Three clusters were identified with significant differences in the prevalence of arterial involvement. In both studies,
independent cohorts were used for validation.

Doppler ultrasound images have proven to be helpful when training CNN architectures. Scientists have recently
demonstrated its viability to automate the classification of disease activity into four degrees, using the EULAR-
OMERACT Synovitis Scoring (EOSS), performing similarly to a human expert [95, 96]. In [95], authors proposed
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two pre-trained CNN, InceptionV3 and VGG-16, for automatically scoring the disease activity of RA patients, using
images from the wrist and the hand of 40 patients with early or longstanding disease, achieving an accuracy of 0.75.

A year later, the same group of researchers [96] used a dataset of 1,678 ultrasound (US) images, and trained six
CNN for binary classification, in a cascaded architecture; three CNN trained from the scratch and three trained on
features extracted from InceptionV3, achieving a four-class accuracy of 0.84, and beating their previous results. In this
cascaded architecture, the output of each CNN was a class prediction of the EOSS system. The same analysis was
repeated using data augmentation for enriching the training set.

Moreover, smartphone pictures have been proposed to train SVM models capable of classifying hand arthritis
photographs, based on the deformation of hand fingers, into three stages (i.e., early, moderate, late); and between
healthy and unhealthy [97]. The accuracy obtained ranged between 0.77 for three-stage classification, and 0.97 for
binary classification.

US images have also been used to discriminate between low and high-grade synovitis in inflammatory arthritis
patients. In [98], the authors explored the ability of CNN and transfer learning using a pre-trained CNN, ResNet34, for
discriminating between both synovitis grades, in 150 photomicrographs of 12 patients, achieving perfect accuracy.
3.5. Disease progression and disease activity

This section describes studies that aim to characterise the natural history of a disease or that aim to forecast disease
prognosis, such as flares, or mortality. Patients included in these studies must be diagnosed in advance.
3.5.1. Clinical and demographic

New approaches for characterising the natural history of diseases without the need for manual review are required,
especially in diseases where symptoms are usually not collected in detail or in a structured way. Topic modelling
has been applied to characterise the temporal evolution of ANCA-associated vasculitis (AAV) patients in [6]. With
a follow-up of seven years, over 113,000 clinical notes from 660 patients were processed. Temporal trends, before
and after the treatment initiation date for a diagnosis of AAV, were modelled with LDA, finding 90 different
topics that included diagnosis (e.g., granulomatosis with polyangiitis), treatments (e.g., AAV specific-treatment), and
comorbidities and complications of AAV (e.g., glomerulonephritis, infections). The authors showed the suitability of
this unsupervised method to provide unique information on the clinical course of a disease that is not totally captured in
the structured medical record data. As the researchers highlighted, identifying the topics in a clinical note is of special
relevance in multiorgan diseases, where structured data fields are unlikely to reflect the full extent of signs, symptoms,
comorbidities, and complications.

Calculating disease activity indices is not a usual practice in real-life settings due to its time-consuming nature. In
[99], investigators developed a predictive model for SLE disease activity based on routinely available demographic,
clinical, and laboratory data. With this model, they tried to overcome the current limitations of using a complex
composite index such as SLEDAI-2K to measure disease activity. The authors used 16 clinical laboratory results
(e.g., creatinine, C-reactive protein (CRP), C3, C4) along with sex, age and ethnicity demographic variables, and a
multinomial logistic regression approach that was compared to the performance of a NB model. To select the best-
performing model from the space search (i.e., 2n, where 𝑛 = 16), an 0.82 AUC threshold was fixed. Models with up to
8 variables that did not include anti-dsDNA assay results were selected. Finally, researchers found that the multinomial
approach overcomes the performance of NB, with 0.83 and 0.66 AUC values respectively. In light of the results, the
researchers concluded that building a model to accurately calculate disease activity and that relies on routinely clinical
parameters is feasible.

Predictive models to forecast disease activity have been proposed as a way to tailor current therapeutic approaches
to prevent disease progression. One remarkable study on the application of DL techniques to RA patients was carried
out by Norgeot et al. [15]. In their research, the authors aimed to forecast RA disease activity, measured with Clinical
Disease Activity Index (CDAI), in future clinic visits using 45 structured variables from the EHR, including disease-
modifying antirheumatic drugs (DMARDs), corticosteroids, CDAI score, erythrocyte sedimentation rate (ESR), CRP,
anti-CCP, rheumatoid factor and demographic variables. In doing this, the authors imitated time series forecasting
studies, creating sliding time windows of a fixed interval to model the longitudinal nature of the study. Permutation
importance scores, to measure the contribution of each independent variable, were calculated. Convolutional and
recurrent neural networks and dense and time-distributed layers were tested. The best model achieved a 0.91 AUC
value in the test set.
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Mortality prediction models can be useful for the management of autoimmune diseases. For instance, a RA study
conducted by Spanish researchers, focused on developing a RA mortality predictive model, trained (n = 1,461)
and validated (n = 280) using random survival forests, a supervised predictive algorithm [13]. In this study, nine
demographic and clinical-related variables, such as age at RA diagnosis, gender or presence of rheumatoid factor; and
collected two years after diagnosis, were included in the final model after a variable importance analysis according to
their predictive ability. The authors identified three different mortality risk groups (i.e., low, intermediate, and high)
using the predicted ensemble mortality. The prediction error in the validation cohort was 0.233.

Under the hypothesis that RA and axSpA flares are associated with physical activity, a French research group took
advantage of wearable activity trackers and NB algorithm to study potential associations between flares and steps [8].
With 155 patients, 82 RA and 73 axSpA, and 1,339 weeks evaluated, the authors concluded that patient-reported flares
were strongly linked to physical activity. To reach this result, different wearable data time levels of aggregation were
considered, the binary variable flare/no flare was used as the dependent variable, and the performance of the models
was evaluated using patient-reported flares as the gold standard, assessed every week.

Flares are not uncommon for people with chronic conditions. These events, characterised by a worsening of the
disease, may require treatment changes, a longer hospitalisation stay, and increased healthcare costs. Inpatient gout
flares predictors have been recently assessed in [100]. The aim of this study was to develop a prediction model for
inpatient gout flare. Up to 52 potential variables from five different domains were evaluated, including demographics
(e.g., age, sex, ethnicity), comorbidities (e.g., acute renal failure, arthritis, osteoporosis), admission (e.g., primary
admission diagnosis), gout history (e.g., tophus) and laboratory data (e.g., pre-admission urate >0.36 mmol/L). The
researchers followed three different approaches: a clinical knowledge-driven model (LR), a statistics-driven model
(Lasso) and a DT model. Model validation was performed with bootstrapping. Based on the C-statistic value, C =
0.82, the first model was selected as the best-performing with only nine predictors. Almost half, 4 out of 9, of the
selected variables were chosen by the three different models such as pre-admission urate>0.36 mmol/L or urate-
lowering therapy adjustment. This study revealed the importance of building an intuitive model for clinicians, and
feasible to implement in a routine hospital setting.
3.5.2. Molecular biomarkers

The Osteoarthritis Initiative (OAI) database served as an independent cohort, n = 204, to validate SVM models
trained to predict radiographic progression using peripheral blood leukocyte inflammatory gene expression (e.g., IL-
1𝛽, TNF𝛼, and cyclooxygenase-2), clinical and demographic (e.g., age, sex, BMI), and imaging-related variables (e.g.,
osteophyte scoring) [101]. The models were trained with different combinations of variables, with the best model
obtaining a 0.68 AUC value. A highlight of this study was the inclusion of biomarkers from different domains (i.e.,
clinical, image, gene) to maximise the performance of the models.
3.5.3. Image

Relevant quantitative measures of joint degeneration and disease progression may require a thorough segmentation
preprocessing step. Therefore, some researchers have focused on this first step as the main goal of their studies. In the
case of knee OA, different authors have applied multiple DL topologies such as CNN [102, 103], conditional GANs
[104] and holistically nested networks [105] for the segmentation of knee joint tissues, including, among others, femoral
cartilage, tibial cartilage, patella, patellar cartilage, meniscus, quadriceps and patellar tendon, or infrapatellar fat pad.
Although some of these articles did not implement a predictive model and just presented a segmentation system, we
wanted to point out the relevance of such pre-processing step for conducting further research.
3.6. Treatment response

This section describes studies that attempt to study the response to a drug, regardless of how this response is
measured (e.g., disease activity/progression, patient’s concern and perception, safety, efficacy, and appearance of
adverse events). The central idea is that the patient has had to be exposed to a drug and a response to this exposure
must have been registered.
3.6.1. Clinical and demographic

In [106], the authors fed an ANN, among other ML algorithms like XGBoost, or RF, with clinical (i.e., age, sex,
height, weight) and laboratory data (e.g., HLA-B27, white blood cell count, haemoglobin) from almost 600 AS patients
to predict early-TNF responders, obtaining a 0.783 AUC value with the ANN model. In addition, a feature importance
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analysis based on gradient descent was helpful to determine that CRP and ESR were the most significant baseline
characteristics for predicting early-TNF responders.

NLP techniques were used to identify arthralgia in clinical notes from inflammatory bowel disease patients, as a
preliminary step to compare two different treatments (i.e., vedolizumab and TNFi), one of them apparently related to an
increased risk of arthralgia due to adverse events [107]. More precisely, the positive mention of 37 unique concepts was
recorded. Afterwards, an inverse probability of treatment weighting approach was followed, including eight variables
such as age, sex, medication or follow-up time; and Cox proportional hazard regression models were computed. The
study’s authors observed no notable rise in the likelihood of arthralgia linked to the use of vedolizumab when compared
to TNFi. Thanks to narrative notes and NLP, authors were able to characterise the role of a drug (i.e., vedolizumab) in
the appearance of a potential adverse effect (i.e., arthralgia), in a scenario in which coding was suboptimal.

Web scraping techniques have been used to extract data from social media networks in a variety of contexts. Treato,
a deprecated data analytics service, was used in some of them. This service incorporated NLP processing pipelines
including medical ontology mapping, classifiers, and sentiment analysis among others. For example, in an attempt to
evaluate the suitability of social media as a data source for drug safety, some authors studied patient-reported herpes
zoster events associated with arthritis medication (i.e., tofacitinib vs. other therapies) [108]. For this purpose, the
authors used Treato to analyse and classify more than 785,000 posts mentioning inflammatory arthritis with a PPV of
0.91.

Another social media data web scrapping research that used Treato and LDA for topic modelling, has been carried
out by Dzubur et al. [109], to examine AS patients’ knowledge, attitudes, and beliefs regarding biologic therapies.
27,000 posts from more than 600 social media sites were studied. The investigators found 112 topics, 67 of them
focused on discussions related to AS biological therapy, such as the side effects, the biological attributes (e.g., dose
and frequency) or the patients’ concerns (e.g., cancer risk, reproductive concerns).

The perceptions of RA patients to 13 DMARDs were assessed in [110] using Treato. This time, the NLP task aimed
to identify medical concepts and extract patients’ self-reported descriptions of their experiences with various health
conditions and medications, to eventually conduct sentiment analyses. The authors found that the ratio of patients with
positive sentiment to biological and targeted synthetic DMARDs was higher than the ratio of patients with positive
sentiment to conventional synthetic DMARDs. In addition, they showed that efficacy and side effects were the most
frequently discussed topics.

Researchers have studied the response to methotrexate monotherapy [111] and to TNFi (i.e., etanercept) [112] in
JIA patients using Disease Activity Score (DAS)44/ESR-3 indices. Regarding the former, [111], treatment response
models before and after administration within three months were built in a cohort of 362 patients, using clinical (e.g.,
JIA subtype), demographic (e.g., gender, weight) and laboratory variables (e.g., ESR, IgG). The algorithms proven were
XGBoost, SVM, LR and RF. A median importance ranking with ensemble methods was also computed. A set of ten
predictors before (e.g., CRP, fibrinogen, active partial thrombin time) and six predictors after treatment administration
(e.g., CD3+CD4+, CD3+CD8+) were chosen by the XGBoost algorithm. The performance of the models in both
scenarios, before administration and before and after administration, was 0.97 and 0.99 AUC respectively.

Regarding the latter, [112], treatment response models before administration were built in a cohort of 87 patients.
The algorithms proven were XGBoost, gradient-boosting decision trees, extremely randomized trees, LR and RF.
From 47 pre-administration clinical and laboratory variables, four features that maximised the predictive performance
were identified by XGBoost: tender joint count (TJC), time interval, lymphocyte percentage and weight. This model
achieved a 0.79 AUC value.

The cardiovascular side effects of analgesics in 4,350 patients, retrieved from the OAI dataset, were modelled
by an XGBoost prediction model along with a risk feature identification [113]. Of 300 demographics (e.g., age),
anthropometry (e.g., BMI, mental summary scale), comorbidity (e.g., asthma), blood measures (e.g., diastolic), and
physical activity (e.g., walk pace, heavy housework) features, the authors found and described the 20 most informative
ones (e.g., age, radial pulse, asthma, weight). The model achieved a 0.92 AUC value.

The response to treatment has also been evaluated in PsA patients (n = 2,148), from four phase 3 trials (i.e.,
FUTURE 2 to 5), in [114]. In this original article, the efficacy of the starting dose of secukinumab, an IL-17A inhibitor,
was evaluated thanks to the Bayesian elastic net ML algorithm. More specifically, the study sought to investigate
whether there were specific baseline clinical characteristics that could predict which patients could gain additional
benefit from the secukinumab 300 mg dose. With a cohort of 2,148 patients and 275 predictors, different efficacy
endpoints (e.g., ACR20/50, PASI 75/90, PASDAD, HAQ-DI) were analysed at week 16. Forty clinical variables
were used as covariates such as smoking status, presence of enthesitis, presence of dactylitis, or methotrexate use.
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Although there was no single predictor with enough discriminatory power, the authors found that there were common
covariates for different endpoints, such as the presence of enthesitis at baseline. Furthermore, the authors also identified
subpopulation groups that could benefit from the 300 mg dose over the 150 mg dose, such as patients treated without
concomitant methotrexate or patients with psoriasis. The AUC scores ranged from 0.75 to 0.81 for the different
endpoints.

Serious infections in RA patients under IL-6 inhibitor treatment have been studied in [115]. Researchers from
Japan extracted data from a post-marketing adverse events-reporting database using text mining approaches to identify
signs and symptoms before the development of serious infection (i.e., defined by the authors as those infections in
which the patient attended the hospital). Once the signs and symptoms were extracted from clinical narratives 28 days
before serious infection, a codification with MedDRA Preferred Terms, and a review to determine if they were already
generally known as signs or symptoms of infection was done. As a result, the authors showed that more than 60%
of patients with a confirmed date of serious infection diagnosis had signs or symptoms within 28 days before that
diagnosis. The most common symptoms were pyrexia, pain, cough, and swelling.

Response to intravenous immunoglobulin therapy in patients with Kawasaki disease has been studied in [116].
Researchers applied seven ML algorithms, including regularised linear regression, tree-based and boosting algorithms;
and obtained a 0.74 AUC with GBM. For that purpose, they combined 82 clinical and demographic (e.g., sex, age,
weight), laboratory (e.g., blood urea nitrogen, white blood cell count) and sonography image measurements (e.g., left
main coronary artery diameter). The importance of the features was evaluated with SHapley Additive exPlanations
(SHAP).

Eventually, reinforcement learning and sequential decision-making algorithms have been implemented to promote
physical activity in patients with chronic back pain (CBP) [117] in a smartphone application. In a rigorous manner,
this research article does not study the response to a drug or procedure. However, we consider it particularly relevant
due to the approach employed (i.e., reinforcement learning) and the non-autoimmune nature of the disease (i.e., back
pain).
3.6.2. Molecular biomarkers

A non-negligible number of treatment response studies have been conducted to assess the efficacy of new
therapeutic lines in the RA population. The response to tumor necrosis factor inhibitor (TNFi) has been investigated in
multiple studies. For example, in [118], penalised regression models were used to estimate changes in ESR and in the
swollen joint count, two DAS28 composites, between 3 and 6 months after treatment initiation. Clinical and genotypic
scores covariates (i.e., first 10 genetic principal components) were used to build the predictive models. Nonetheless,
the authors were unable to find strong predictors of TNFi response among alleles linked to the development of RA.

In another study [119], authors predicted changes in disease activity scores 24 months after baseline assessment
(i.e.,ΔDAS28), and identified non-responders to anti-TNF treatments using different ML techniques (e.g., SVM, Ridge,
RF, LR, and Gaussian process regression). Demographic (e.g., age, sex), clinical (e.g., baseline DAS, methotrexate
dose), and genetic features (e.g., SNP) were included as predictors, although the last ones did not improve the prediction
accuracy. The AUC value of the best model in the independent cohort was 0.62.

On its behalf, the authors of [120] based their research on determining how the transcriptomic and epigenetic
profiles of immune cell types and whole peripheral blood mononuclear cells could help to predict the response to two
different TNFi (i.e., etanercept and adalimumab), prior to treatment initiation, using RF models. For that purpose,
authors built two predictive models, one for each treatment and considered 461 differentially expressed genes. After
6 months, the response to treatment was evaluated for a total of 80 patients. The authors discovered divergent gene
signatures between different TNFi, suggesting a potentially different mechanism of action between them.

Furthermore, studies to assess the patient’s response to classical drugs, such as methotrexate, have been conducted.
For instance, researchers obtained a 0.78 AUC value when training an L2-regularized logistic regression (i.e., Ridge)
model, without clinical covariates, to predict responder patients according to EULAR criteria [121]. This score was
achieved using gene transcripts expression ratio between 4 weeks and pre-treatment. RF and network-based models
were also tested.

Another study tried to compare the performance of ML algorithms (i.e., Lasso, RF, XGBoost) with multivariable
LR in the prediction of insufficient response to methotrexate in 355 RA patients, measured using DAS28-ESR > 3.2
[122]. Sixteen clinical, laboratory and genetic variables were initially considered. After feature selection with Lasso,
six predictors (i.e., TJC, Health Assessment Questionnaire (HAQ), BMI, smoking, ESR) remained. Based on the AUC
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results, authors concluded that there was no benefit in using ML algorithms (i.e., AUC Lasso 0.76, AUC RF 0.71, AUC
XGBoost 0.70), over logistic regression, AUC 0.77.

Treatment response to conventional synthetic DMARDs and radiographic progression were evaluated in 144
early RA patients with the aid of logistic and Lasso regression models [123]. The LR model was used to identify
a minimal set of clinical predictors, while the Lasso model was used to identify genes that could improve the clinical
model. From 16 baseline clinical covariates, 8 (e.g., rheumatoid factor titer, disease duration, DAS28) were selected
following a stepwise variable selection. These eight clinical variables were combined with 46 gene variables. The best
result, AUC = 0.93, was achieved after penalising the 54 variables with Lasso. Eight final variables remained (e.g.,
rheumatoid factor, SDC1, MMP10). Hierarchical clustering was also used for the identification of pathotype-specific
gene expression markers.

Liu et al. [7] developed a TNF blocker treatment response (i.e., etanercept) predictive model after evaluating
quantitative changes in IgG galactosylation, alone and in combination with AS associated SNPs. 92 patients were
considered for that purpose. Up to eight ML models were developed with SVM, 0.87 AUC, and flexible discriminant
analysis, 0.82 AUC, as the best-performing ones. As input features, several indexes such as BASDAI, BASFI, ESR
were considered.

Treatment response to GCs, commonly used as the first-line therapy in patients with AOSD, has been studied
by a research group from China [124]. The motivation of the investigators was to balance the side effects and the
effectiveness of the treatment, considering clinical and laboratory features (i.e., four neutrophil extracellular traps
proteins). With this in mind, the authors developed two SVM models. The first tried to assess whether the proteins
could serve as biomarkers and the second to predict if the levels of these circulating proteins could predict treatment
response in terms of resistance to low-dose GCs. To evaluate the second outcome, the authors categorised the treatment
response into a binary variable with low and high GCs levels as the dependent variable. The AUC values for the first
and the second outcomes were 0.88 and 0.91, respectively.
3.6.3. Image

DL and ML algorithms to assess treatment response have also been developed in the context of radiological images.
For instance, Chandrika et al. [125] presented an architecture to assess bisphosphonate response in 28 patients

with chronic non-bacterial osteitis. The number of included patients was 28 and the number of pairs of images 55.
The proposed architecture consists of two components followed by an ensemble method, which classifies scans as
"improved", "worse", or "stable". The first, used a pre-trained CNN, InceptionV3, to extract features, embeddings, and
representations that were used in a linear logistic model to produce a probability score. The second component used
unsupervised clustering techniques to label the images and SVM to produce a probability score. Although the results
were not remarkable (i.e., low specificity and accuracy), presumably due to class imbalance and the low number of
training examples, this study showed that rare RMDs research could also benefit from data science techniques.
3.7. Predictors identification

This section describes studies in which their main stated objective is the identification and discovery of predictors
associated with a particular outcome (e.g., disease diagnosis, disease worsening). Studies that have as their main
objective the creation of a predictive model and conduct predictors identification as a preliminary step are described
elsewhere.
3.7.1. Clinical and demographic

The study of pain in RMDs is closely related to the concept of healthy ageing and the QoL of individuals.
Understanding pain, its mechanisms, and how it emerges is essential for the development of cost-effective care
programmes. Pain-associated arthritis predictors have been studied in [126]. Using the J48 DT algorithm, researchers
predicted pain from 5,721 arthritis patients, regardless of the arthritic condition, with a 0.86 accuracy. From an initial
set of over 200 predictors, including demographic (e.g., income, race, employment, education), PROMs (e.g., Short
Form 12 (SF-12)), laboratory (e.g., times tested for HbA1c) and socio-behavioural characteristics, researchers built
the final predictive model with just 12 variables (e.g., diabetes, general health, education, moderate activities). Of
them, the physical component summary score from the SF-12 was the most meaningful one. Due to the cross-sectional
nature of the study, the authors could not determine whether the predictors identified were the cause or the effect of
pain conditions, this is, causality.
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Identifying disease-worsening predictors could be helpful in defining inclusion and exclusion criteria for clinical
trials. The identification of SS disease worsening and mortality predictors was the aim of Becker et al. [127]. The
SS disease worsening definition was agreed upon by an expert group that considered different clinical events, such
as renal crisis, decreased forced vital capacity or death. A total of 42 variables were studied, including demographic
variables (e.g., age, disease duration), laboratory parameters (e.g., ANA, anti-neutrophil cytoplasmic antibody), other
medical speciality domain variables (e.g., digital ulcer, synovitis, dyspnoea), and the European Scleroderma Study
Group activity index variables. 228 out of 706 patients met the criteria for disease worsening. Lasso towards with
multiple missing data imputation techniques were applied to find the eight most relevant predictors. Of them, five were
strongly associated with disease progression (i.e., age, active digital ulcers, CRP, lung fibrosis, and muscle weakness).
The validation was evaluated with bootstrap, achieving a C-index of 0.705.

Despite the prevalence of chronic neck pain, the study of its risk factors is limited. Blood serum samples, from 128
matched patients (i.e., 54 cases and 54 controls), were analysed by researchers to identify the correlation between 12
variables (e.g., age, BMI, zinc, albumin) with chronic neck pain using an ANN [128]. Following a feature selection
using univariate analysis, vitamin D and ferritin were used as input for the ANN model. The model achieved 0.85
accuracy, 0.86 sensitivity and 0.83 specificity.
3.7.2. Molecular biomarkers

The pathogenesis mechanisms of many autoimmune diseases remain unknown. To shed some light on the
development of a disease, some authors date back to the earliest stages of cell development for which aberrant
methylation occurs. For instance, in [129], the authors explored epigenetic defects in B cell development patterns
of SLE patients, and took advantage of statistical learning methods to identify the most informative genes involved in
transitional B cells. Hence, RF, Lasso, and Ridge regression were used for classifying healthy from SLE patients (n
= 80) in an epigenetic context, in which DNA methylation signatures and their relevance to patients’ ethnicity were
considered. To this end, the algorithms were tested across ethnicity groups in an independent validation cohort. Flow
cytometry and methylation arrays were used for the measurement of DNA methylation levels. Finally, the authors found
60 CpGs that reached genome-wide significance for methylation differences in SLE patients compared to controls.

Non-invasiveness and discriminatory power are among the most desirable characteristics of a biomarker. For
example, investigators from [130] used a novel protein microarray to screen and quantify 1,000 urinary protein
biomarkers of lupus nephritis. Of these, 17 were selected for ELISA validation in an independent cohort. Lasso and RF
were used for variable selection, Bayesian networks were used to uncover interdependencies between clinical indices
and the biomarkers; and PCA, t-SNE and graph-based clustering, for dimensionality reduction and representation.
Eventually, eight of the identified biomarkers (e.g., urine Angptl4, L-selectin, TPP1) successfully distinguished active
lupus nephritis patients from active non-renal lupus patients, obtaining an AUC that ranged from 0.65 to 0.96.

The study of differences in terms of biomarker composition between children and adults is a topic that could
elucidate the pathophysiological mechanisms of diseases such as pSS. For instance, authors in [131] hypothesised that
the saliva of pSS children would have chemokines, cytokines, and biomarkers similar to those of pSS adults. Under
this hypothesis, the predictive power of chemokines, cytokines, and biomarkers in saliva from pSS patients (n = 11)
and healthy controls (n = 16) was evaluated using eight different classifiers (i.e., SVM, RF, NB, Gaussian process,
AdaBoost, LR). From an initial set of 105 biomarkers associated with lymphocyte and mononuclear cell functions, 43
predictors remained after applying five feature selection methods (e.g., correlation, information gain ratio). Of them,
35 had previously been reported to be present in adult pSS patients. The predictors were grouped into sets of features.
In a further step, hierarchical clustering and PCA validation were performed. Once trained, the best-performing model
was KNN with a 0.93 AUC value. This AUC was achieved with only two predictors: IL-27 and chemokine (C-C motif)
ligands 4.

Early diagnosis of certain diseases, such as uveitis, becomes even more important when delayed diagnosis can lead
to blindness. Riahi et al. [132] investigated the interactions of ERAP1 polymorphisms in developing Beçhet’s disease
using a non-parametric data mining technique, able to detect gene-gene or SNP-SNP interactions, called model-based
multifactor dimensionality reduction (MB-MDR). The authors included 1,524 matched patients, 748 cases and 776
controls, collected a peripheral blood sample, and evaluated eleven SNPs. After applying MB-MDR, authors found
a SNP, TT genotype of rs1065407, that had a significant synergistic effect on the disease (i.e., the allele increase the
disease risk); and two SNPs, TT genotype of rs30187 and AA genotype of rs469876, that had significant antagonistic
effects on Beçhet’s disease.
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Moreover, researchers in [133], also used serum samples to search for potential miRNAs biomarkers in patients
with Behçet’s disease (n = 10), sarcoidosis (n = 17) and Vogt–Koyanagi–Harada disease (n = 13). After using PCA
to discriminate the different biological samples, the authors used RF to generate a variable importance measure. As
a result, the researchers were able to identify three miRNAs (i.e., miR-4708-3p, miR-4323, and let-7g-3p) as the best
predictors for each of the diseases studied, with AUC values of 0.96, 0.85 and 0.82 respectively.

One of the main objectives of the authors in [134], was to evaluate the predictive ability of inflammatory biomarkers
along with other predictors (e.g., the severity of depression and anxiety) in patients with fibromyalgia. To this end,
three different MLP models were trained to predict the Widespread Pain Index, the Symptom Severity Scale and the
fibromyalgia diagnosis with 11 predictors (e.g., four immune biomarkers such as IL-6, IL-10; components of anxiety
and depression scales, comorbidities, aerobic activity). With an AUC value of 0.91, the quality of sleep, the perceived
stress scale, and the hospital anxiety were among the most predictive variables for a diagnosis of fibromyalgia.

Circulating protein biomarkers, capable of distinguishing between active vasculitis and remission in GCA (n=60),
TAK (n=29), polyarteritis nodosa (n=26) and eosinophilic granulomatosis with polyangiitis patients (n=37), have
been identified in a study conducted by the Vasculitis Clinical Research Consortium [135]. In this study, 22 serum
proteins (e.g., IL-6, IL-8, IL-15, IFN-𝛾), potentially linked to vasculitis, were measured from samples collected during
active and remission periods. A decision tree algorithm, J48, was used to identify biomarkers capable of distinguishing
between active and inactive GCA, obtaining an accuracy of 0.31 and 0.87 respectively.
3.8. Illustrative studies

Table 5 shows a subcollection of the revised research articles that exemplifies the wide variety of RMDs studies in
which AI has been an essential tool. This table structure is inspired by [33]. With the articles presented in this table,
more than 20 different diseases are covered, exhibiting the following:

• AI techniques can be used for multiple purposes: as the tools necessary to perform the primary statistical
analysis or as complementary tools that help researchers achieve their main objectives. Supervised learning
(classification, regression), unsupervised learning (clustering, topic modelling, dimension reduction, novelty
detection, visualisation), reinforcement learning (recommendation systems), deep learning (computer vision)
and other procedures and techniques, such as feature selection or transfer learning, are being used in RMDs
research. For instance, Lasso, and tree-based algorithms (e.g., RF, DT, XGBoost) are commonly used supervised
techniques, while PCA and clustering algorithms (e.g., k-means, GMM) unsupervised.

• The sample size of the input data can range from a few patients to thousands. Large cohorts of patients are not
indispensable to take advantage of AI techniques in RMDs research studies. In addition, the input data can come
from multiple sources: clinical and demographic data, gene data, image data, and wearable activity tracker and
sensor data.

• The topics addressed with these techniques are varied, the algorithms used numerous, and the potential results
promising. As an example, in rare diseases, AI techniques can also be useful and have a real impact, as they can
be used to obtain new insights and findings from clinical notes.

• The 57% of the articles presented in Table 5 are published in rheumatology-specialised journals.
Some of the findings listed above have also been discussed in other reviews, such as [29].

4. Discussion and conclusion
In this review, we have explored the clinical and technical background of RMDs that motivate the employment of AI

techniques for research. Different contributing factors, such as the longitudinal, multidimensional and heterogeneous
nature of data seem to facilitate the adoption of such techniques. We have also introduced the review articles published
since 2017. These articles have addressed multiple topics, all of them with a strong rheumatology component: wearable
activity trackers, bioethical perspectives, RWD, DL and so on. Then, we performed a literature review considering four
different sources. The articles retrieved in this review were classified into six thematic categories. For each category,
we made a distinction depending on the main predictor type of the study. Furthermore, we provided a table with more
than twenty illustrative studies that exemplify the wide variety of RMDs in which AI techniques have penetrated. We
also mentioned the limitations of ML algorithms with a particular focus on rheumatology.
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From the 91 articles finally included, we could appreciate some interesting findings. For example, it seems that the
RMDs that account for the majority of the research studies in which data science techniques are used more assiduously
are: OA, osteoporosis, RA and SLE. It is hypothesised that the following factors may contribute to that fact:

• RA is the most prevalent systemic autoimmune disease among rheumatic inflammatory musculoskeletal diseases
[136], while the prevalence of OA is remarkable, being one of the leading causes of disability [137].

• As medical images can be used to diagnose and quantify the status and progression of a disease, especially in OA,
computer vision and DL algorithms may have attracted researchers, with a special interest in those techniques.

In addition, PCA, dimensionality reduction, and Lasso, variable selection, techniques appear to be highly popular.
On the other hand, data mining techniques have made it possible to study and characterise rare diseases in a different

way, obtaining valuable information and uncovering new patterns that probably would not have been discovered
otherwise. For instance, unsupervised learning techniques, and more concretely clustering, have been decisive in
characterising disease subgroups. Moreover, some research groups have recognised the potential of these techniques
and have adopted them as relevant tools for knowledge extraction when studying the pathology of specific diseases.
The Big Data Sjögren Project Consortium is an example of this [138].

AI adoption is growing yearly in rheumatology research, as shown by the trend in the number of publications
retrieved in Medline in a five-year period. Not only common algorithms but also the latest advances are being employed.
After the study inclusion period of this review, new approaches have blossomed and have been applied to RMDs
research, highlighting the interest that AI raises in researchers. From FSL approaches for early RA prediction to the
employment of SHAP and GBMT to stratify patients with RA according to the trend of disease activity [3]. Regarding
the data science languages employed, R and Python are the most widespread, but others such as Matlab, Weka, SPSS,
Stata or JMP have also been used. However, further efforts must be made to validate the models in independent cohorts.
The EULAR points to consider highlighted in 2019 the importance of this issue [20]: conclusions drawn from big data
need independent validation (in other datasets) to overcome current limitations and to assure scientific soundness. As
shown in Supplementary Excel File Included Articles, this point to consider is not fully addressed, although it seems
to be gaining relevance.
4.1. Limitations of machine learning algorithms

Many technical and ethical limitations of ML algorithms are not exclusive to clinical research but are also shared
with other research fields. Focusing on the technical limitations, authors in [139] highlighted six main points that may
affect the performance of a model, making a distinction between bad algorithms and bad data. Particularising the six
points to the medical field:

1. Insufficient training data: autoimmune rheumatic diseases (e.g., mixed connective tissue disease, polymyositis,
SS, vasculitis) with low prevalence may be particularly affected by this problem. The reduced number of cases
can hinder researchers from drawing valid conclusions. Therefore, multi-centre studies and database sharing
may be proposed as efficient approaches that may mitigate this problem. Technical efforts have also been made
with different methods such as FSL. For instance, this type of ML approach has recently been applied to MRI
images from RA patients [18].

2. Non-representative training data: algorithms not trained with representative data are likely to fail with unseen
population instances. This translates into the need to consider patients with different demographic and clinical
characteristics (e.g., ethnicity, educational level, and so on). Otherwise, the model will not be robust enough to
ensure generalisation to new cases. In the clinical field, subtle differences, such as different patient management
procedures and drugs employed between centres, may hinder the algorithm generalisation capability. A broader
discussion is held in [140].

3. Poor-quality data: in contrast to the data generated in a clinical trial context where patients are thoroughly
selected, and the recorded variables are perfectly defined; RWD is more complex, heterogeneous, noisy, less
structured, and prone to missing data; with an increased risk of obtaining inaccurate results and erroneous
conclusions [141].

4. Irrelevant features: feature engineering and feature extraction processes should ensure that the selected features
are relevant to build statistical models. Sometimes, extracting clinical features is not straightforward, easily
accessible (e.g., data protection regulation), or cost-efficient (e.g., genomic analysis). For example, in GWAS
analysis there may be hundreds of thousands of gene variants, and only a few of them are useful to predict
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the patient’s disease state. Moreover, the addition of unnecessary features may degrade the performance of the
model, adding noise to the data.

5. Overfitting: the lack of generalisation capability to new cases can lead to useless models. Gathering more
training data to minimise this problem is not always easy in clinical practice (especially for rare diseases), and
reducing noise and outliers can be time-consuming, when possible. The high dimensionality problem, which
characterises genetic studies, can be especially exacerbated by overfitting. Furthermore, in low-dimensional
data, overfitting can have a non-negligible impact if the relationship between the outcome and the set of predictor
variables is not strong [142]. Regularisation techniques (e.g., feature selection, less flexible models, constraints)
constitute the most immediate solution to fight overfitting.

6. Underfitting: when a model is unable to capture the underlying data structure, the quality of the results is
diminished. This occurs when a wrong assumption about the dataset is done, and a relatively simple algorithm
is used for capturing complex data patterns. A better feature engineering and a statistical model with more
parameters can be used as a solution to this problem. Hence, linear models, widely used in the medical research
field, should be complemented by other non-linear models when the data behaviour is unclear.

Focusing on ethical limitations, authors in [143] provided an in-depth review to describe ongoing efforts and
challenges showing a pipeline of ethical ML in health. These ethical limitations have a direct impact on the already
discussed technical limitations. Some of the points addressed in that review are:

1. Problem selection: if the proposed research questions focus on the health needs of advantaged groups, disparities
and injustices may occur. Therefore, racial, gender and global health injustices should be considered as factors
that may influence the selection of a research problem. These disparities have been identified in different RMDs,
such as RA [144], OA [145], gout [146] and specifically in SLE, which disproportionately affects women and
minorities [147, 148]. AI models that also include disadvantaged groups should be promoted, for better model
generalisation and for social inclusion.

2. Data collection: data on group membership (i.e., race and ethnicity) are not always collected. This may hamper
model bias evaluation on different ethnic groups. Moreover, models trained on imbalanced data may perform
worse on specific population groups and, therefore, those would benefit to a lesser extent from the advances of AI
in healthcare. Noise and data loss may occur at different levels. For instance, in RCT, the study cohorts might not
be representative of general patient populations. On its behalf, in EHR, stigmatising language collected in free
text notes can have an impact on language models [149], leading to biased results [150]. Finally, population-
specific data losses (e.g., undocumented patients with limited access to public healthcare services) should be
taken into account when evaluating the generalisability of a model, and when studying the mechanisms of
missing data (e.g., missing data not at random).

Other specific limitations related to regulatory, replicability and reproducibility that gain special relevance in the
medical research field, have been identified by some authors [35, 151]:

1. Strict and complex regulatory requirements, especially in the model implementation and adoption phases.
2. Lack of standardisation: data acquisition (e.g., manually, or digitally), and different medical procedures or

treatment guidelines may complicate and slow the use of multiple databases to train algorithms; introducing
heterogeneity and obstructing preprocessing steps. Multicentre studies should consider the different variables,
QoL questionnaires (e.g., SF-12, EuroQol5D), and the variable measurement employed (e.g., mmol/L, mg/dl)
in each participant centre to have comparable data.

3. External validation: the performance of the models should be evaluated on different validation cohorts to extract
reliable conclusions. Otherwise, the generalisation ability of the model will probably remain unclear or perform
poorly; however, this is not always possible. Cross-validation, bootstrapping, or unsupervised techniques may
be useful when the external validation is not guaranteed.

4. Explainability: most flexible statistical learning algorithms, such as NN are frequently considered "black-box"
models. This raises ethical issues, such as how findings that may have an impact on a patient’s health status
can be applied without a clear perspective of why and how the model works the way it does. In general, when
building prediction models, the researcher’s objective is to obtain the smallest set of characteristics capable
of predicting an outcome with the highest predictive performance [152]. Easy, understandable, economical,
and accessible predictors are usually preferred, since well-performing models are expected to be deployed
on a large scale, regardless of the means or resources of the different centres or countries. When choosing
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and deploying the different algorithms, the researcher must consider a trade-off between interpretability and
flexibility. Interpretable algorithms are preferred when the main goal is to find associations between a set of
predictors and a dependent variable, as well as in inference studies. When the aim of the researcher is to build the
best predictive or classification model, the chosen algorithm might be non-linear and/or complex, and therefore,
end with an unexplainable model but with good performance. This limitation has recently been discussed in
[153, 154], but the debate remains open, as the authors pointed out: Black-box medical practice hinders clinicians
from assessing the quality of model inputs and parameters. If clinicians cannot understand the decision-making,
they might violate patients’ rights to informed consent and autonomy. Finally, some technical efforts have been
made to improve the explainability, such as SHAP.

Biases may appear at different stages of a research involving AI techniques if the limitations presented above are
not adequately addressed. In [155], a thorough study of those biases at three levels (i.e., data-driven, algorithmic, and
human bias) is presented.

The European Commission (EC) has been working on some of the issues listed above for years [156], and it is
about to publish the first-ever legal framework on AI [157]. Expanding on this topic, the first Ethics Guidelines for
Trustworthy Artificial Intelligence [158] created by the EC have highlighted seven key requirements for AI systems to
be deemed trustworthy (i.e., human agency and oversight; technical robustness and safety; privacy and data governance;
transparency; diversity non-discrimination and fairness; societal and environmental wellbeing; and accountability).
How to apply them in the healthcare domain has been explained in [159]. The UK government has recently published
the first National AI Strategy Action Plan [160]. Besides, reporting guidelines on the use of AI in healthcare to ensure
fair and transparent research have been recently defined, such as TRIPOD-AI and PROBAST-AI [161], SPIRIT-AI
and CONSORT-AI [162, 163] or STARD-AI [164]. A recently published review article has tackled the adherence in
diagnostic and prognostic applications of ML in SLE patients using TRIPOD and PROBAST [165]. A more detailed
description of these reporting guidelines is addressed in [166]. Finally, other recently published articles have provided
a detailed outline of more specific limitations and points to consider that apply to RMDs [22, 20, 33].
4.2. Limitations of the review

This review article has some limitations:
• The keywords used during the search in the different sources may omit some potential articles. For instance,

common acronyms AI or ML were not used and the keywords employed were not exactly the same in the different
sources. As this was a general overview of the state-of-the-art, disease-specific searches were not conducted (e.g.,
replacing the terms rheumatology, rheumatic and musculoskeletal in the different queries with terms associated
with a specific disease: RA, rheumatoid arthritis and so on). This may limit the number of articles retrieved. In
addition, the rheumatology journals search may introduce some bias since this search was limited to Q1 and Q2
journals of a specific year. Furthermore, articles without a PMID were excluded. However, by combining four
different data sources, we tried to reduce this shortcoming.
Eventually, due to the usage of broad keywords that encompassed a wide range of categories, a considerable
number of articles had to be excluded because they were not closely related to RMDs. This demonstrates
the weakness of the terms used to find specific articles, and the use of more specific keywords would be
recommended to reduce the number of false positives.

• Some readers may miss an introduction to the different learning methods, so the potentially interested audience in
this review may be shortened. As explained in the Introduction section, this was made to maximise the discussion
of the articles. However, we provided enough references for researchers interested in deepening the technical
background, and we also provided a short description of the methods in the Supplementary Excel File Statistical
Methods. Eventually, we used the data science and AI terms indistinctly. This is not entirely correct, as subtle
differences exist.

• Numerous studies on data mining techniques in RMDs research have been published from the state-of-the-art
cutoff date (i.e., February, 22th 2021) to the date of this manuscript submission. From studies that pursue to
distinguish PsA, seronegative, and seropositive RA patients based on hand MRI using an ANN [167], to studies
that examine the validity of ML models in predicting GCA flares after GCs tapering [168]. However, the review
presented here addresses the main topics in a detailed way, providing a detailed overview for researchers who
want to apply AI in RMDs, regardless of this two-year gap.

Alfredo Madrid García et al.: Preprint submitted to Elsevier Page 25 of 39

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
display the preprint in perpetuity. 

 is the author/funder, who has granted medRxiv a license to(which was not certified by peer review)for this preprint 
The copyright holderthis version posted March 24, 2023. ; https://doi.org/10.1101/2022.11.04.22281930doi: medRxiv preprint 

https://www.gov.uk/government/publications/national-ai-strategy-ai-action-plan
https://doi.org/10.1101/2022.11.04.22281930
http://creativecommons.org/licenses/by-nc-nd/4.0/


Role and adoption of artificial intelligence in rheumatology

• The classification proposed into six main topics, may not be suitable for capturing subtle differences between
articles. In fact, establishing the topic of an article following this classification is sometimes arduous, as the
frontier of the different topics is fuzzy. For instance, the disease classification and the disease prediction
categories differ only in the presence of healthy and sick patients, rather than groups of patients with different
pathologies. However, since the number of approaches in which disease classification is lower and less studied,
we tried to give enough relevance to this particular case. We have also faced this issue when trying to assign
articles to the predictors identification and disease progression and activity topics.

4.3. Conclusion
Recent regulation efforts; reporting guidelines for fair, trustworthy, and transparent research; ethical consider-
ations and technical efforts may have played a crucial role in the growing adoption of AI by the rheumatology
research community. The use of these techniques has not been restricted to specific RMDs but has been used in
both autoimmune and non-autoimmune diseases. Besides, these techniques have not been limited to a specific
data type or source, but have been applied to both structured and unstructured data, as well as to data coming
from different sources. The growing interest in such techniques suggests that new advances and groundbreaking
approaches are expected to be adopted in the following years by new and experimented research groups.

A. Appendix
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