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Abstract 16 

COVID-19 has disproportionately impacted individuals depending on where they live and work, 17 
and based on their race, ethnicity, and socioeconomic status. Studies have documented 18 
catastrophic disparities at critical points throughout the pandemic, but have not yet 19 
systematically tracked their severity through time. Using anonymized hospitalization data from 20 
March 11, 2020 to June 1, 2021, we estimate the time-varying burden of COVID-19 by age 21 
group and ZIP code in Austin, Texas. During this 15-month period, we estimate an overall 22 
16.9% (95% CrI: 16.1-17.8%) infection rate and 34.1% (95% CrI: 32.4-35.8%) case reporting 23 
rate. Individuals over 65 were less likely to be infected than younger age groups (8.0% [95% 24 
CrI: 7.5-8.6%] vs 18.1% [95% CrI: 17.2-19.2%]), but more likely to be hospitalized (1,381 per 25 
100,000 vs 319 per 100,000) and have their infections reported (51% [95% CrI: 48-55%] vs 33% 26 
[95% CrI: 31-35%]). Children under 18, who make up 20.3% of the local population, accounted 27 
for only 5.5% (95% CrI: 3.8-7.7%) of all infections between March 1 and May 1, 2020 compared 28 
with 20.4% (95% CrI: 17.3-23.9%) between December 1, 2020 and February 1, 2021. We 29 
compared ZIP codes ranking in the 75th percentile of vulnerability to those in the 25th 30 
percentile, and found that the more vulnerable communities had 2.5 (95% CrI: 2.0-3.0) times the 31 
infection rate and only 70% (95% CrI: 61%-82%) the reporting rate compared to the less 32 
vulnerable communities. Inequality persisted but declined significantly over the 15-month study 33 
period. For example, the ratio in infection rates between the more and less vulnerable 34 
communities declined from 12.3 (95% CrI: 8.8-17.1) to 4.0 (95% CrI: 3.0-5.3) to 2.7 (95% CrI: 35 
2.0-3.6), from April to August to December of 2020, respectively. Our results suggest that public 36 
health efforts to mitigate COVID-19 disparities were only partially effective and that the CDC’s 37 
social vulnerability index may serve as a reliable predictor of risk on a local scale when 38 
surveillance data are limited.  39 
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Introduction 40 

The WHO estimates that the COVID-19 pandemic caused nearly 15 million excess deaths 41 
worldwide between its emergence in 2019 and the end of 2021. The burden fell 42 
disproportionately on countries in South-East Asia, Europe, and the Americas, with 68% of the 43 
estimated excess deaths occurring in 10 countries containing 35% of the global population [1]. 44 
In the United States, pandemic burden was initially concentrated around New York City, but 45 
spread geographically after the White House issued the Opening Up America Again guidelines 46 
in spring of 2020 [2]. The pandemic disproportionately harmed essential workers and racial and 47 
ethnic minority groups [3–6] as well as US counties [7–10] and cities [11–13] with high social 48 
vulnerability indices [14].  49 
 50 
In response to these glaring disparities, scientists and public health leaders advocated for 51 
programs to support marginalized communities, including accessible testing facilities, 52 
community support programs to mitigate the socioeconomic, educational and healthcare harms 53 
resulting from lockdowns, proactive vaccination and antiviral campaigns, and effective public 54 
health communications [15–21]. Some but not all US vaccination campaigns successfully 55 
prioritized vulnerable geographic regions [22–29].  56 
 57 
To prevent, detect, and reduce disparities in infectious disease burden, we need to increase the 58 
geographic and temporal resolution of our surveillance efforts, while reducing biases. Published 59 
estimates of COVID-19 burden in underserved populations are often derived directly from 60 
reported case or death counts, without correcting for ascertainment biases or disentangling risks 61 
of infection from risks of severe outcomes [7–9,30–40]. When available, both serological [41,42] 62 
and hospitalization data [43] can be used to estimate reporting rates. Several studies have 63 
highlighted the disproportionate burden of COVID-19 infections within cities [44,45], but only at 64 
single time points during the pandemic .  65 
 66 
Here, we estimate the changing burden of COVID-19 at a local scale within a large US city 67 
throughout the first 15 months of the pandemic. Using ZIP-code and age-stratified 68 
hospitalization data, we track daily disparities in infection rates, hospitalization rates, and case 69 
reporting rates. As the SARS-CoV-2 virus continues to evolve along with our arsenal of medical 70 
and behavioral interventions, this method can help to ensure the reliability and equity of local 71 
risk assessments [46]. 72 

Methods 73 

We estimate the daily age-stratified numbers of infections for each of the 46 ZIP codes in 74 
Austin, Texas from hospital linelist data provided by the three major local healthcare systems to 75 
Austin Public Health [47]. As described below, we first estimate age-specific infection 76 
hospitalization rates (IHRs) from state-wide COVID-19 hospitalization data and SARS-CoV-2 77 
seroprevalence data and then use the IHR estimates to infer time series of infections by age 78 
group and ZIP code using a deconvolution method similar to ref. [44].  79 
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Estimating Texas statewide infection hospitalization rates (IHRs) 80 

We analyzed age-stratified statewide COVID-19 hospitalization data [48] and statewide SARS-81 
CoV-2 antibody seroprevalence data [49] to estimate the statewide infection hospitalization rate 82 
by age. Specifically, we estimate IHR for age group, , across the state of Texas ( ) as: 83 

 84 
 85 

where  contains all dates between  (July 29, 2020) and  (May 27, 2021),   86 
corresponds to all reported hospitalizations in age group  on day  to account for the delay87 

between infection and hospitalization [50,51], and  corresponds to the CDC’s estimated 88 
infections for Texas between the two dates [52] estimated as: 89 
 90 

 91 
 92 

where   93 
and corresponds to the variance of estimated infections at time  [52]. We aggregated hospital 94 
admission data, which are stratified into 0-17, 18-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 95 
and 80+ year age groups, to match the stratification of the seroprevalence data (0-17, 18-49, 96 
50-64, and 65+ years). For bins that do not align, we divided admissions evenly across years 97 
within a bin. 98 

ZIP- and age-specific infection hospitalization rates (IHRs) 99 

Infection hospitalization rates depend on the underlying demographic makeup of a population 100 
[53]. To estimate age- and ZIP-specific IHRs from the statewide averages estimated above, we 101 
assumed that risk differences between ZIP codes could be captured by the proportion of the 102 
population estimated to be at high risk for severe COVID-19. We used a published methodology 103 
to estimate the proportion of the population at high risk for severe COVID-19 outcomes using 104 
data available from CDC’s PLACES for each ZIP code and the state on average [5,54–56]. We 105 
converted the statewide age-specific IHRs to ZIP-specific ones as: 106 

 107 

 108 
 109 

where  is the infection hospitalization rate for age group, , and ZIP code ,  is the 110 
estimated age and ZIP code proportion of the population at high risk, and  and  111 
are the statewide estimated age-specific IHRs for those at high and low risk to severe COVID-112 
19 outcomes respectively. We assume a fixed hospitalization risk ratio between low and high 113 
risk individuals, , where  is the age-specific hospitalization risk ratio 114 
estimated in [57]. For example, high risk individuals in the 20-24 and 75+ age groups are 115 
estimated to have 6.5 and 2.2 times the hospitalization risk respectively compared with low risk 116 
individuals in the same age group (Table S1). We then estimate  and  as: 117 
 118 
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 119 
 120 

 121 
where  is the previously estimated statewide age-specific IHR, and  is the 122 
statewide age-specific estimate for the proportion of the population at high risk for severe 123 
COVID-19. We then estimate  across Travis County using age- and ZIP-specific estimates 124 
for the proportion of the population at high risk for COVID-19. Confidence intervals for  are 125 
derived by propagating the estimated uncertainty from the age-specific statewide IHRs. 126 

Age- and ZIP code- specific infection estimates 127 

The posterior distribution for infections ( ) in a specific age group ( ) and ZIP code ( ) was 128 
estimated as: 129 
 130 

 131 
 132 

where  indicates the total infection count,  is the reported hospital admissions, and  133 
is the age- and ZIP-specific IHR. Hospitalizations were assumed to be a binomial sample of the 134 

total infections governed by ,  is assumed to follow a beta distribution, and  follows a 135 

uniform discrete prior between the age- and ZIP-specific hospitalization count  and 136 

population :  137 
 138 

 139 
 140 

 141 
 142 

We estimate the parameters for the informative prior beta distribution,  and , using the 143 
ZIP and age-specific IHR estimates estimated from seroprevalence data in the previous section. 144 
Specifically we use the equation: 145 
 146 

 147 
 148 

and identify the value of  that minimizes the difference between  and the 2.5th 149 

percentile of the resulting beta distribution, . In essence, we estimate the shape 150 
parameters of a beta distribution that match the mean and lower bound estimate of the IHR. We 151 

used JAGS to sample 1,000 draws from  across four chains thinning every two 152 
samples and with a 200 sample burn-in period [58]. Throughout the paper we summarize the 153 
posterior distributions using their mean and 95% credible intervals. 154 
 155 
We created a distribution of the time-series of infections from the 1,000 samples of 156 

 through the hospital admission timing and the delay distribution between 157 
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infection and hospital admissions. Specifically, we fit a gamma distribution to the combined 158 
distribution derived from the time to symptom onset estimated in [50] and the time between 159 
symptom onset and hospital admission estimated in [51]. The combined distribution is estimated 160 

as . For each infection in , we draw a hospitalization timing 161 

from , the number of hospitalizations in an age- and ZIP code group on day  and assign 162 
an infection time from the estimated gamma distribution similar to the deconvolution method 163 
used in [44] without necessitating a smoothing function for the infection time-series. For age and 164 
ZIP code groups that had estimated infections but zero reported hospitalizations, we drew the 165 

infection timing from the full hospitalization time-series, , where  for 166 
day, , summed across all age groups and ZIP codes.  167 

Reporting rate estimates 168 

We assumed reported cases are distributed binomially as given by 169 
 170 

 171 
 172 
where  describes the specific subgroup of interest (age group, , and/or ZIP code, ) for a 173 

specified time period,  is the estimated infections, and  is the estimated reporting rate. 174 
Assuming a uniform beta prior distribution on the reporting rate, the posterior for  can be 175 
calculated as: 176 
 177 

 178 
 179 
We estimated overall and subgroup reporting rates for the full study period through June 1, 180 
2021 using cumulative age-specific case counts for Travis County [59] as well as ZIP code 181 
specific counts provided by Austin Public Health (APH) [60]. Separately, we estimated the age- 182 
and ZIP-specific reporting rates from a subset of testing data provided to us directly from Austin 183 
Public Health, which included 60% of reported cases in Travis County during the time period.  184 
Similar to the seroprevalence analysis, we lagged reported cases by 11 days to account for 185 
infection reporting delays [61,62].  186 

Infection estimate validation 187 

To estimate how well our infection time-series approximate true infection rates in Travis county, 188 
we compare them to seroprevalence data for Texas estimated by the CDC [52] Regions in 189 
Texas faced different infection rates, so we adjusted Texas statewide seroprevalence estimates 190 
to Travis County as: 191 
 192 
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Where  is the seroprevalence infection estimate for Texas at time  corrected for the 195 

delay in antibody positivity [52],  and  refer to the cumulative reported deaths 196 
in Travis County and Texas corrected by 20 days to account for the delay between infection 197 
onset and mortality [63].  198 

Social Vulnerability Index (SVI) as a predictor 199 

The CDC’s Social Vulnerability Index (SVI) is a single indicator based on 15 different American 200 
Community Survey (ACS) variables that estimate a community’s ability to withstand 201 
environmental, biological and other stressors [14]. SVI values are given at the level of census 202 
tract as percentile ranks (range 0.0-1.0) within each state based on the 2014-2018 5-year ACS. 203 
For example, an SVI of 0.6 indicates that a census tract is more vulnerable than 60% of other 204 
census tracts in the state. Following [64], we aggregated SVI to ZIP codes using weighted 205 
averages based on the percent of residential addresses in a ZIP code that fall in each census 206 
tract [65].  207 
 208 
We estimated the impact of SVI on infection and reporting rates using a mixed effect poisson 209 
regression model using the lme4 R package [66]. For estimating the impact of SVI on infection 210 
rates the model can be described as: 211 
 212 

 213 
 214 

Where  is the  infection estimate sample estimated for ZIP code, ,  is the ZIP codes’ 215 
SVI,  is the ZIP code level random effect,  is the fixed effect of SVI on infections, and  is 216 
an intercept term. We use the ZIP code population as an offset in the model to standardize 217 
infection rates. For estimating the impact of SVI on reporting rates the model can be described 218 
as: 219 
 220 

 221 
 222 

where  is the reported case count for ZIP code, ,  is the ZIP codes’s SVI,  is the ZIP 223 
code level random effect,  is the fixed effect of SVI on cases, and  is an intercept. We use 224 
the 1,000 ZIP code infection estimate samples as an offset in the model to standardize reporting 225 
rates. For the age and ZIP code-stratified analysis we also include an interaction term between 226 
age and SVI, so the equations become: 227 
 228 

 229 
 230 

 231 

where  is the  infection estimate sample in age group,  for ZIP code, ,  is the 232 

reported cases in age group,  for ZIP code, , and  is the SVI regression coefficient for age 233 
group, . For the infection and reporting rate models we use the age- and ZIP- population and 234 
infection estimates as an offset respectively. 235 
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 236 

The SVI regression coefficients,  and , can be interpreted as inequality metrics, quantifying 237 
the relative infection and reporting risks as a function of SVI. Because there are no ZIP codes 238 
with a value of 0 or 1 for SVI in our sample, we report the relative infection and reporting rates 239 
between ZIP codes in the 25th and 75th percentile in Travis County throughout the manuscript. 240 

Results 241 

We analyzed spatial COVID-19 burdens in Austin, Texas using hospital admission data from 242 
March 11, 2020 to June 1, 2021. This period preceded the emergence of the Delta variant and 243 
included a small wave in April 2020, followed by larger waves in the summer and winter (Figure 244 
1A). As of June 1, 2021, there were 83,722 reported cases, 6,474 hospitalized patients, and 245 
1,024 deaths of COVID-19 in Travis County, which has 1.3 million residents, covering 57% of 246 
the Austin metropolitan area population. We estimate that 16.9% (95% CrI: 16.1-17.8%) of the 247 
population were infected in this time period and 34.1% (95% CrI: 32.4-35.8%) of all infections 248 
were reported. These estimates are consistent with the CDC’s official seroprevalence estimates 249 
(Figure 1B).  250 

Statewide, we estimate that one in 435 (95% CI: 244-625) infections in individuals aged 0-17 251 
years and one in 4.9 (95% CI: 3.0-6.8) infections in individuals over age 65 led to hospitalization 252 
(Table 1). This is consistent with published estimates from China [67] and France [43] (Figure 253 
S2). In Travis County, children aged 0-17 experienced the lowest hospitalization rate, with 50.3 254 
hospital admissions per 100,000, and adults over age 65 experienced the highest 255 
hospitalization rate of 1,381 per 100,000 (Figure 2A). In contrast, reported cases were relatively 256 
similar across age groups, ranging from 3,793 per 100,000 in children to 7,159 per 100,000 in 257 
young adults (Figure 2B).  258 

Table 1: SARS-CoV-2 infection hospitalization rate (IHR) across Texas estimated from 259 
statewide seroprevalence and hospitalization data from July 29, 2020 through May 27, 260 
2021.  261 

Age 
group 

Number of 
COVID-19 
hospital 

admissions 
[48]  

Estimated infections based on 
seroprevalence data (95% CI) 

[49,52] 
Estimated IHR (95% CI) 

0-17 4,868 2,076,780 (1,183,462-2,970,098) 0.23% (0.16%-0.41%) 

18-49 67,708 3,784,332 (2,842,976-4,725,687) 1.79% (1.43%-2.38%) 

50-64 58,375 1,084,993 (708,561-1,461,425) 5.38% (3.99%-8.24%) 

65+ 100,671 495,141 (301,983-688,299) 20.33% (14.63%-33.34%) 

By June 1, 2021, we estimate that 19.3% (95% CrI: 18.1-20.6%) of 18-49 year olds were 262 
infected, while only 8.0% (95% CrI: 7.5-8.6%) of individuals over age 65 were infected (Figure 263 

g 

 

e 

s 

n 

ly 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2022. ; https://doi.org/10.1101/2022.11.04.22281855doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.04.22281855
http://creativecommons.org/licenses/by-nc/4.0/


2C). The estimated percent of cases reported increases with age, ranging from 23.4% (95% CrI: 264 
20.1-27.3%) in 0-17 year olds to 51.3% (95% CrI: 47.7-54.9%) in over 65 year olds (Figure 2D). 265 

 266 

 267 
Figure 1: COVID-19 hospital admissions and estimated cumulative infections for Travis 268 
County (Austin, TX) from March 1, 2020 to June 1, 2021. (A) Daily reported COVID-19 269 
hospital admissions per 1 million residents [68]. (B) Estimated cumulative infections with 95% 270 
credible intervals (black line and gray ribbon) compared to prior seroprevalence-based 271 
estimates (red points and error bars) [69]. 272 
 273 

All age groups experienced two large waves during the study period, though the summer 2020 274 
was relatively mild for children (Figure 2E).  Relative infection rates across age groups evened 275 
out over time (Figure 2F). For example, children, who account for 20.3% of the Travis county 276 
population, constituted 5.5% (95% CrI: 3.8-7.7%) of all infections between March 1, 2020 and 277 
May 1, 2020 and 20.4% (95% CrI: 17.3-23.9%) of all infections between December 1, 2020 and 278 
February 1, 2021. The proportion of infections occurring in 18-49 year olds, who make up 51.2%279 
of the population, dropped from 69.1% (95% CrI: 66.5-71.6%) during the spring 2020 period to 280 
51.3% (95% CrI: 48.4-54.0%) during the winter 2020-2021 wave (Figure 2F and S3). Reported 281 
case and hospitalization counts do not clearly exhibit this reversal in age-specific risks (Figure 282 
S4 and S5). 283 
 284 
 285 
 286 
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287 
Figure 2. Estimated age-stratified COVID-19 burden in Travis country through June 1, 288 
2021. (A) Reported COVID-19 hospital admissions by age group. (B) Reported COVID-19 289 
cases by age group. (C) Estimated percent infected by age group. (D) Estimated COVID-19 290 
case reporting rates by age group up to June 1, 2021. In (A)-(D), horizontal dashed lines 291 
indicate county-wide average rates. (E) Estimated daily infection rates (line) and 95% credible 292 
intervals (ribbons) by age group. (F) Distribution of infections across age groups for each period 293 
of the epidemic. The spring period refers to the two-month time period before the first major 294 
wave from March 1, 2020 to May 1, 2020, the summer period refers to the two-month period 295 
containing the first major wave from June 1, 2020 to August 1, 2020, and the winter period 296 
refers to the two-month period containing the second major wave from December 1, 2020 until 297 
February 1, 2021. Bars indicate the fraction of all infections during the time period in each Age 298 
group, with the error bars indicating the 95% credible intervals. The horizontal colored lines in 299 
panel F indicate the proportion of the Travis county population in the specified age group. 300 

 301 

Estimated COVID-19 burden varies significantly across ZIP codes within Travis County, with 302 
Interstate 35 roughly partitioning the county into high risk ZIP codes in the East and low risk ZIP 303 
codes in the West (Figure 3A and 3B). High COVID-19 risk visibly aligns with high social 304 
vulnerability, as measured by ZIP-code level SVI (Figure 3C). Our estimates for ZIP-code level 305 
infection hospitalization rates exhibit the opposite geographic trend (Figure 3D) from the 306 
absolute hospitalization rates (Figure S6). We estimate that downtown Austin (78701) had the 307 
highest infection rate and lowest reporting rate of any ZIP code, with an estimated 39.2% (95% 308 
CrI: 29.6-50.2%) of the ZIP code infected and only 18% (95% CrI: 14-23%) of infections 309 
reported (Figure 3E-3F). In contrast, a Southwest Austin ZIP code (78739) had the lowest 310 
estimated infection rate of 4.8% (95% CrI: 2.6-8.5%), and a West Austin ZIP code (78732) had 311 
the highest reporting rate of 69% (95% CrI: 39-97%). Similar geographic patterns exist for each 312 
of the four age groups (Figure S7-S8).  313 

 314 

 

d 

P 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2022. ; https://doi.org/10.1101/2022.11.04.22281855doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.04.22281855
http://creativecommons.org/licenses/by-nc/4.0/


315 
Figure 3. Reported and estimated COVID-19 burden by ZIP code for Travis County 316 
between March 1, 2020 and June 1, 2021. (A) Reported COVID-19 cases per 100,000. (B) 317 
Reported COVID-19 hospitalizations per 100,000. (C) Social Vulnerability Index [14] (D) 318 
Estimated infection hospitalization rate (IHR). (E) Estimated cumulative infections as of. (F) 319 
Estimated percent of COVID-19 infections that were reported. Thin black curves indicate 320 
Interstate 35 and highway US 183. 321 

The cumulative infection rates, case rates, and hospitalization rates are positively correlated 322 
with social vulnerability across Travis County’s 46 ZIP codes (Figure 4A, Figure S9). We 323 
compare the relative risks for individuals living in a ZIP code at Travis County’s 25th (SVI= 0.12) 324 
and 75th (SVI = 0.5) percentile by SVI, where higher SVI indicates higher social vulnerability. 325 
Controlling for random ZIP code-level effects, we estimate that ZIP codes in the 75th SVI 326 
percentile experienced 2.5 (95% CrI: 2.0-3.0) times the infection rate of those in the 25th 327 
percentile. Similar trends are observed for each age group, with all relationships estimated to be 328 
statistically significant (Figure S10, Table S2). COVID-19 burden is often estimated directly from 329 
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reported case or hospitalization data, without correcting for geographic biases in testing and 330 
underlying risk factors. For Travis county, we find that the subset of case data from APH 331 
provides a reasonable approximation but hospitalization data tends to inflate the estimated 332 
disparities (Table S2). We aggregate the estimated number of infections occurring in each ZIP 333 
code into four-week periods from March 1, 2020 to June 1, 2021, and measure the relationship 334 
between SVI and the relative infection risk during this period. Significant disparity (i.e., a relative 335 
risk greater than one) persisted throughout the period and was highest during the first three 336 
months of the pandemic (Figure 4B). In April 2020, individuals living in the 75th SVI percentile 337 
ZIP code had an expected 12.3 (95% CrI: 8.8-17.1) times greater infection risk than those living 338 
in the 25th percentile SVI ZIP code. This ratio declined to 4.0 (95% CrI: 3.0-5.3) in August 2020 339 
and to 2.7 (95% CrI: 2.0-3.6) in December 2020.  340 

COVID-19 case reporting rates are negatively correlated with social vulnerability. We estimate 341 
that infections occurring in the 75th SVI percentile ZIP code were only 70% (95% CrI: 61%-342 
82%) as likely to have been reported than those occurring in the 25th SVI percentile ZIP code. 343 
We further stratified by age group using a small sample of age-specific case data reported by 344 
the Austin Public Health community testing programs, which targeted vulnerable populations in 345 
East Austin (Figure S12) [70]. We found that the negative correlation between SVI and case 346 
reporting rates held for all age groups except those over 65 years, perhaps because of Austin’s 347 
efforts to improve testing access for high risk individuals (Figure S11, Table S2). Throughout the 348 
study period, the estimated ratio in reporting rates between the 75th and 25th SVI percentile ZIP 349 
codes fluctuated, often dropping to levels significantly less than one (Figure 4D).   350 

 351 

 352 

 353 

 354 

 355 

 356 
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357 
Figure 4. Infection and reporting rates correlate with social vulnerability in Travis County 358 
from March 1, 2020 to June 1, 2021.  (A) Across the 46 ZIP codes, SVI is a significant 359 
predictor of estimated cumulative infections (p<0.001). The blue line and ribbon indicate the 360 
mean and 95% prediction interval from the fitted Poisson mixed-effects model. (B) Using the 361 
fitted model, we compare the expected infection rates among more and less vulnerable ZIP 362 
codes (specifically, ZIP codes at the 75th and 25th percentiles in the SVI distribution, 363 
respectively). The points indicate the expected ratio between these two values calculated using 364 
the estimated SVI regression coefficient from the 4-week time period; error bars indicate 95% 365 
CI’s.  (C) Across the 46 ZIP codes, SVI is a significant predictor of estimated case reporting 366 
rates (p<0.001).  The blue line and ribbon indicate the mean and 95% prediction interval from 367 
the fitted Poisson mixed-effects model. (D) Four week estimate for the inequality relationship 368 
between SVI and infection reporting rates across the 46 ZIP codes. Points and error bars show 369 
the mean and 95% CI for the relative reporting rate of individuals living in ZIP codes in the 75th 370 
SVI percentile compared with those living in the 25th SVI percentile. The red, horizontal dashed 371 
lines in B and D indicate if there were equitable infection risks or reporting rates across the 75th 372 
and 25th SVI percentile ZIP codes in the four week period. We overlay hospital admission time-373 
series in B and D to showcase how inequality estimates compare with the progression of the 374 
local epidemic. For the final period (purple points and error bars), we removed the 10% of ZIP 375 
codes reporting zero infections to stabilize our regression estimates.  376 

Discussion 377 

In the US, the first wave of the COVID-19 pandemic disproportionately harmed essential 378 
workers [5,6], residents of long-term care facilities [71], racial and ethnic minority populations 379 
[72], and socially vulnerable neighborhoods within cities [31,44,73,74]. Public health agencies 380 
and government officials have tried to address these disparities through targeted testing, 381 
vaccination, distribution of personal protective equipment, information campaigns, and paid sick 382 
leave [15–19]. Using a new method for inferring infection risks and reporting rates from COVID-383 
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19 hospital admissions data, we demonstrate that disparities persist on a granular scale within a 384 
large US city throughout the first year of the pandemic. 385 
 Our estimates for the spatial burden of COVID-19 in Austin, Texas suggest that children 386 
were less likely to be infected than adults under age 65 during the first major wave of 387 
transmission in the summer of 2020 but not during the subsequent winter wave. This is 388 
consistent with prior estimates [53,75–77] and may be attributable to early school closures, strict 389 
compliance with social distancing measures [78], or the emergence of variants that more 390 
efficiently infect children [79,80]. We also find that individuals over age 65 generally had the 391 
lowest risks of infection, despite suffering the highest per capita hospitalization rate, which may 392 
stem from heightened precautionary behavior and other protective measures such as COVID-19 393 
screening in long-term care facilities [81]. Our age-stratified estimates of cumulative SARS-CoV-394 
2 incidence are generally consistent with those derived from seroprevalence data [49]. 395 
Reporting rates were lowest in children and highest in older adults (Figure 2), which may stem 396 
from the positive correlation between age and symptom severity [75].  397 
 Historically marginalized populations in the “Eastern Crescent” of Austin were 398 
disproportionately harmed throughout the first year of the pandemic [82,83], mirroring disparities 399 
reported for Santiago, Chile and New York City [44,45,73].  After controlling for the higher 400 
prevalence of underlying risk factors in more vulnerable communities, we find that the ZIP codes 401 
ranking in the 75th percentile of social vulnerability had a more than twofold higher infection rate 402 
and a roughly 70% the case reporting rate than those ranking in the 25th percentile. Our 403 
estimates for inequity in infection risk are significantly lower than those from raw hospitalization 404 
rates, which do not account for variation in the prevalence of comorbidities. The estimated ratio 405 
in infection risk between more and less vulnerable regions decreased significantly during the 406 
first four months of the pandemic, perhaps because of local efforts to increase access to SARS-407 
CoV-2 testing, isolation facilities, critical health information, and eventually vaccines [84]. The 408 
apparent decrease in disparity may also stem from higher infection rates in vulnerable 409 
populations leading to a more rapid buildup of immunity or relatively higher infection rates in 410 
less vulnerable areas during later time periods [85,86]. As of June of 2021, however, there 411 
remained a significant gap in COVID-19 risks and burden which informed targeted efforts by 412 
Austin Public Health to increase access to tests, vaccines, information and COVID-19 413 
healthcare.   414 
 We note several assumptions of analysis. First, the hospital admission data are limited 415 
by the accuracy of patient ZIP codes. Fewer than 1% of patients had unknown addresses.  416 
However, the missing data may correspond to vulnerable subgroups, such as people 417 
experiencing homelessness or undocumented residents, and thus obscure critical geographic or 418 
socioeconomic hotspots in our analysis. Second, we estimated each age- and ZIP-specific 419 
group independently rather than combining information across groups. This increases the 420 
uncertainty of our estimates but avoids the challenge of incorporating the changing contact and 421 
mobility patterns within the city throughout the pandemic [87–89]. Third, although we conducted 422 
analyses at a higher spatial resolution than most prior studies of COVID-19 burden, disparities 423 
in risk often occur at even more local scale [90]. Achieving COVID-19 health equity will require 424 
more granular surveillance and risk mitigation approaches. Finally, since we restricted our 425 
analysis to the first year of the pandemic, prior to the emergence of the Delta variant, we made 426 
the simplifying assumption that the infection hospitalization rates remained constant. Any 427 
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estimates beyond this period would have to account for changes in severity resulting from the 428 
build up of vaccine-acquired and infection-acquired immunity and the evolution of the virus.   429 
 We estimate that less than 20% of the Austin, Texas population was infected by SARS-430 
CoV-2 prior to June 1, 2021 and that vulnerable communities in East Austin bore the brunt of 431 
the first two large waves of transmission. Our study introduces a framework for tracking infection 432 
and reporting rates on a granular scale using hospitalization data and provides evidence that 433 
the CDC’s social vulnerability index (SVI) is a strong predictor of risk that can inform targeted 434 
interventions. 435 
 436 
 437 
 438 
 439 

Supplemental Information 440 

Table S1: Relative hospitalization rates for high risk individuals compared with low risk 441 
individuals from [57]. 442 

Age group Relative hospitalization risk for high 
risk individuals 

0-0.5y 6.03 

0.5-4y 6.03 

5-9y 6.03 

10-14y 6.48 

15-19y 6.48 

20-24y 6.48 

25-29y 6.48 

30-34y 5.5 

35-39y 5.5 

40-44y 4.625 

45-49y 4.625 

50-54y 3.78 

55-59y 3.78 

60-64y 3.24 

65-69y 3.24 

70-74y 2.32 

75y+ 2.19 
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443 

Figure S1: Daily COVID-19 burden estimates for Travis County, Texas from March 1, 2020 444 
until June 1, 2021. Daily new reported case (A) and mortality (B) counts as reported by the 445 
New York Times for Travis County, Texas [59].  446 

 447 
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448 
Figure S2: Comparison of age-dependent estimates for infection-hospitalization rates. 449 
Age-stratified estimates of the risk of severe COVID-19 (defined as risk for hospitalization) from 450 
China [67], France [43].  451 

 452 

 453 

 454 

 455 
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456 

Figure S3: Weekly estimated relative infection rates from March 1, 2020 until June 1, 2021 457 
across age groups. Points and error bars indicate the median and 95% confidence interval for 458 
the weekly infection rate with the size of the population. Values of 1 (horizontal dashed line) 459 
indicate that the fraction of the infections occurring that week equals the population fraction for 460 
the specific age group, while values below or above one indicate the age group faced 461 
disproportionately low or high infection risk respectively during that week. Only the 65+ age 462 
group consistently experienced disproportionately low infection rates compared with their 463 
population size over the whole pandemic. 464 

 465 

Figure S4: Reported 7-day average of case counts by age group from April 22, 2020 until 466 
May 28, 2021. Daily reported cases counts for each age group provided by Austin Public Health 467 
[60]. 468 

 469 
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 470 

Figure S5: Reported hospital admissions by age group from March 1, 2020 until June 1, 471 
2021. Age-specific admission data provided by Austin Public Health. 472 

473 

Figure S6: Estimated ZIP code and age-specific IHR for each ZIP code in Travis County. 474 
Infection hospitalization rates derived from Texas-specific estimates (Table 1) using population 475 
risk estimation methodology for each age group as detailed in [5,54,55]. 476 
 477 
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478 

Figure S7: Cumulative infection estimates for each ZIP code and age group in Travis 479 
County using hospitalization data up to June 1, 2021.  480 
 481 
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482 
Figure S8: Cumulative estimated reporting rate for each ZIP code and age group in Travis 483 
County using reported case data up to June 1, 2021. Testing data used for reporting rates 484 
are only a subset of all tests performed, as age and ZIP code stratified data were only available 485 
for Austin Public Health administered tests. 486 
 487 
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492 

Figure S9:  Reported case and hospitalization counts correlate with social vulnerability in 493 
Travis County from March 1, 2020 to June 1, 2021. (A) Across the 46 ZIP codes, SVI is a 494 
significant predictor of reported case counts (p<0.001). The blue line and ribbon indicate the 495 
mean and 95% prediction interval from the fitted Poisson mixed-effects model. (B) Across the 496 
46 ZIP codes, SVI is a significant predictor of reported hospitalization counts (p<0.001). The 497 
blue line and ribbon indicate the mean and 95% prediction interval from the fitted Poisson 498 
mixed-effects model.  499 
 500 
 501 
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503 

Figure S10: Estimated infection rates correlate with social vulnerability in Travis County 504 
from March 1, 2020 to June 1, 2021 across all age groups. Across the 46 ZIP codes, SVI is a505 
significant predictor of reported case counts for every age group (p<0.05, Table S2). Estimated 506 
age-specific SVI relationships from the poisson mixed effects regression model are shown in the507 
blue line (mean) and blue ribbon (95% confidence interval). 508 
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Table S2: Comparison of age-stratified risk ratio between more vulnerable (75th SVI 515 
percentile) and less vulnerable (25th SVI percentile) ZIP codes for Travis county, from 516 
March 1, 2020 to June 1, 2021. Estimates based on reported COVID-19 hospitalizations are 517 
consistently higher than those based on model-derived estimates of ZIP-code level infection 518 
rates and observed COVID-19 case rates. 519 

  
Source of estimate 

 Estimated COVID-
19 reporting rates 

Observed COVID-
19 case rates 

Estimated COVID-
19 infection rates 

Observed COVID-
19 hospitalizations 

0-17y 0.98 (0.90-1.036) 1.9 (1.6-2.2)* 2.0 (1.9-2.1)* 3.8 (2.6-5.5)* 

18-49y 0.88 (0.81-0.95)* 2.3 (1.9-2.7)* 2.5 (2.45-2.6)* 3.2 (1.9-5.2)* 

50-64y 1.02  (0.94-1.11) 3.1 (2.6-3.6)* 2.95 (2.9-3.0)* 3.7 (2.2-6.0)* 

65y+ 1.26 (1.17-1.37)* 2.8 (2.3-3.3)* 2.11 (2.0-2.2)* 2.5 (1.5-3.9)* 

* Statistically significant (p<0.05) 520 
 521 
 522 
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523 
Figure S11: Estimated reporting rates correlate with social vulnerability in Travis County 524 
from March 1, 2020 to June 1, 2021. Across the 46 ZIP codes, SVI is a significant predictor of 525 
infection reporting rates for the 18-49 and 65+ age groups, with negative relationships estimated526 
for all but the 65+ age group (Table S2). The blue line and ribbon indicate the mean and 95% 527 
prediction interval from the fitted Poisson mixed-effects model. 528 
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531 

Figure S12: Observed biases in the subset of reported case data stratified by age and ZIP 532 
code. (A) Fraction of all reported cases included in the subset of age- and ZIP-code stratified 533 
data collected through Austin Public Health’s community testing programs by ZIP code. Overall, 534 
the data set covers 60% of all reported cases, but the data set, which does not include all cases 535 
identified by private testing sites, has high levels of coverage in the vulnerable ZIP codes of 536 
East Austin. (B) Reported case coverage from the dataset correlates positively with SVI. Blue 537 
line indicates the mean of a fitted linear regression model. 538 
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