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ABSTRACT

Background: Prior infection with SARS-CoV-2 can provide protection against
infection and severe COVID-19. In settings with high pre-existing immunity,
vaccine effectiveness (VE) should decrease with higher levels of immunity
among unvaccinated individuals. Here, we conducted a systematic review and
meta-analysis to understand the influence of prior infection on VE.

Methods: We included test-negative design (TND) studies that examined VE
against infection or severe disease (hospitalization, ICU admission, or death) for
primary vaccination series. To determine the impact of prior infections on VE
estimates, we compared studies that excluded or included people with prior
COVID-19 infection. We also compared VE estimates by the cumulative incidence
of cases before the start of and incidence rates during each study in the study
locations, as further measures of prior infections in the community.

Findings: We identified 67 studies that met inclusion criteria. Pooled VE among
studies that included people with prior COVID-19 infection was lower against
infection (pooled VE: 77%; 95% confidence interval (CI): 72%, 81%) and severe
disease (pooled VE: 86%; 95% CI: 83%, 89%), compared with studies that
excluded people with prior COVID-19 infection (pooled VE against infection:
87%; 95% CI: 85%, 89%; pooled VE against severe disease: 93%; 95% CI: 91%,
95%). There was a negative correlation between the cumulative incidence of
cases before the start of the study and VE estimates against infection (spearman
correlation (p) =-0.32; 95% CI: -0.45, -0.18) and severe disease (p=-0.49; 95%
CI: -0.64, -0.30). There was also a negative correlation between the incidence

rates of cases during the study period and VE estimates against infection (p= -

0.48; 95% CI: -0.59, -0.34) and severe disease (p=-0.42; 95% CI: -0.58, -0.23).
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Interpretation: Based on a review of published VE estimates we found clear
empirical evidence that higher levels of pre-existing immunity in a population
were associated with lower VE estimates. Excluding previously infected
individuals from VE studies may result in higher VE estimates with limited
generalisability to the wider population. Prior infections should be treated as
confounder and effect modificatory when the policies were targeted to whole

population or stratified by infection history, respectively.


https://doi.org/10.1101/2022.11.03.22281925
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.11.03.22281925; this version posted November 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

INTRODUCTION

COVID-19 vaccines reduce the risk of infection and can also ameliorate disease
severity when breakthrough infection occurs (1, 2). Ongoing evaluation of
COVID-19 vaccine effectiveness (VE) has largely been measured through
observational studies, particularly test-negative design (TND) studies, which
share some similarities with case control studies (3). However, there has been
substantial variation among reported VE estimates (4-7), which may be
attributable to differences in study design, the vaccines used, disease incidence
and population characteristics. Importantly, pre-existing population immunity as
a result of infection could explain changes in COVID-19 VE over time and among

populations (8, 9).

Infection with SARS-CoV-2 induces an immune response to protect against
reinfection (10-14). However, reinfection could occur due to waning naturally-
induced immunity (15, 16) or virus evolution (17, 18). Nevertheless, studies
have shown that compared to persons with no prior infection, vaccination
among people with prior infection enhances neutralising antibody activity as
well as cell-mediated responses that can protect against (re)infection (19),
suggesting prior infections may modify the protection from vaccinations. In
settings where a large proportion of the population has prior exposure through
infection, the unvaccinated will be more protected from infection than in a naive
population, thereby diluting the apparent effectiveness of vaccination. Under
these two scenarios, prior infection modifies the effect of vaccination

(Supplementary note 1).
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Prior infection can also alter people’s decision to be vaccinated and present for
care. For example, vaccination requirements vary for people with recent prior
infection in Hong Kong (20). Moreover, individuals with recent infection may
choose not to be vaccinated if they believe they have sufficient pre-existing
immunity to prevent re-infection and ameliorate the severity of any re-infections
that do occur (21). Additionally, these individuals may also choose not to present
for care believing their COVID-like symptoms are due to another illness, leading
to differential under-ascertainment of previously-infected COVID-19 cases in
surveillance data. Other individual-level factors may also affect the decision to
vaccinate and engage in infection-risk behaviors, such as perceived risk of severe
disease post-infection (22-24). Acting in this way, prior infection may create a
confounding bias along of the vaccination-COVID-19 association (Supplementary

note 1).

Here, we aim to review systematically and meta-analyse published data to
characterize the potential impact of pre-existing population immunity on VE
estimates for completed primary vaccination series of COVID-19. We also
conducted meta-regression to account for the influence of key design features

such as vaccine types, circulating virus strains.

METHODS

Search strategy and selection criteria

This systematic review was conducted following the Preferred Reporting Items
for Systematic Review and Meta-analysis (PRISMA) statement (25). A

standardized search was done in PubMed, Embase and Web of Science, using the
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search term “(“test negative” OR “effectiveness”) AND (“vaccine”) AND (“COVID-
19” OR “SARS-CoV-2")". The search was done on 11 July 2022, with no language
restrictions. Additional relevant articles from the reference sections of identified
articles were also reviewed. Two authors (XH and CW) independently screened
the titles and full texts, and extracted data from the included studies, with
disagreement resolved by consensus together with a third author (TKT). Studies

identified from different databases were de-duplicated.

Studies that reported using a test-negative approach in which all cases and non-
cases were tested were included (26, 27). We included published TND studies
with participants recruited from the general population, and reported estimates
of VE for completed primary vaccination series (two doses for most vaccines;
one dose for Janssen) against at least one of the following endpoints: 1) positive
test result, 2) symptomatic disease, 3) hospitalization, 4) ICU admission, 5)
severe COVID, 6) death. We excluded articles if: 1) the study participants were
recruited from a specific sub-population, such as healthcare professionals; 2)
studies that only reported VE for booster doses; 3) studies that summarised or
re-analysed already-published data; 4) studies that only reported pooled VE
estimates for different vaccines; 5) the study was a preprint; or 6) the full text

was not available.

Data were extracted from included studies using a standardised data collection
form (Table S1) that collected information about: 1) study period; 2) region(s); 3)
population; 4) the use of clinical criteria for enrolment; and 5) whether

participants with prior SARS-CoV-2 infection were included. For each study, VE
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estimates with confidence intervals were extracted separately for each endpoint
(e.g. infection, hospitalisation), vaccine and the circulating virus. In some studies,
VEs specific to time intervals after vaccination were reported. Therefore, we
extracted VE estimates for the first available time interval at least 14 days post-
vaccination, because antibodies have been shown to peak by then in naive
persons (28). For studies that reported multiple estimates, such as by age group
or type of vaccine, all subgroup-specific estimates were included, but the overall

estimates were excluded.

Meta-analysis

In all identified studies, VE was defined as 100%*(1-0R). The extracted VE
estimates were meta-analysed to estimate pooled VE. VE estimates were
transformed to the odds ratios scale, meta-analysed, then back-transformed to
the VE scale for interpretation. The pooled odds ratio was estimated by random
effects meta-analyses using the inverse variance method and restricted
maximum likelihood estimator for heterogeneity (29-32). Heterogeneity was
assessed using Cochran’s Q and the [2 statistic (33). We considered an IZ value
more than 75% to be indicative of high heterogeneity (34). We also conducted a

sensitivity analysis using fixed effects meta-analyses.

The main study feature of interest was if pooled VE against infection or severe
disease varied depending on whether the studies included or excluded
participants with prior infection. Severe disease was based on whether the
estimate was limited to cases who required hospitalization, ICU admission and

death. Otherwise the estimate was classified as VE against infection, which
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included estimates of VE against test positive or symptomatic infection (without

hospitalisation).

Pooled estimates were additionally disaggregated by the probable circulating
virus and vaccine administered. Most studies did not report variant-specific VE
estimates but did report study periods and the general prevalence of variants
during that period. Therefore, estimates were grouped according to the
predominant circulating virus: 1) Omicron, 2) late-Delta, which was the period
with co-circulation of Delta and Omicron, 3) Delta, 4) pre-Delta, which included
ancestral strains and variants preceding Delta. Type of vaccine was grouped as
follows: 1) mRNA vaccines, including vaccines produced by Moderna and Pfizer-
BioNTech; 2) Adenovirus vector vaccines, including vaccine produced by
AstraZeneca, Janssen and Gamaleya; and 3) Inactivated virus vaccines, including

vaccine produced by Sinovac Biotech and Sinopharm.

Meta-regression

To evaluate the impact of pre-existing immunity on VE estimates, we used a
meta-regression approach. Three proxies of prior immunity were explored: 1)
inclusion versus exclusion of participants with prior infection; 2) cumulative
incidence of COVID-19 since December 2019 in each of the study
countries/regions before the start of study; and 3) the incidence rate of COVID-
19 in the country/region during the study period. For this, we downloaded
population denominator data and daily COVID-19 case data from the World
Health Organization website (35, 36). We first used correlation analysis,

including Pearson (r) and Shearman (p) correlation coefficient, to determine the
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association between pre-existing immunity and VE estimates. Meta-regression
models were adjusted for age group (age below or above 65 years), types of
vaccines used, predominant circulating virus, and the use of clinical criteria for
enrolment. A sensitivity analysis was conducted for additionally adjusting for

location and duration of the study.

The fitted meta-regression model estimated the ratio of ORs (ROR) for each of
the prior immunity proxies explored. On the OR scale, values closer to 0
indicated a more effective vaccine, while values closer to 1 indicated a less
effective vaccine. This was counter to the VE scale where values closer to 0
indicated an ineffective vaccine. Therefore, using inclusion versus exclusion of
participants with prior infection as an example, if ROR > 1, then the OR estimated
from studies including participants with prior infection was higher than that
from studies excluding participants with prior infection. On the VE scale, this
translates to lower VE for studies that included participants with prior infection

than studies that excluded these participants.

We plotted the expected change in VE estimate to visualize the impact of each
prior immunity proxy based on the ROR obtained from meta-regression. To
illustrate the change in VE scale, we showed the change in estimate based on the
ROR assuming VE for the reference group of 80% against infection and 90%
against severe disease. Statistical analyses were conducted using R version 4.0.5

(R Foundation for Statistical Computing, Vienna, Austria).
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RESULTS

We identified 6904 studies, among which 2929 were duplicates. Title and
abstract screening of the remaining articles identified 480 for full text review, of
which 67 met our inclusion criteria (4-7, 37-99) (Figure 1; Table S2). Studies
were set in 17 countries/regions. Most were from the United States (29) and
United Kingdom (10). Fifty-one studies provided 173 VE estimates against
infection (Figure S1-2), and 41 studies provided 93 estimates against severe
disease (Figure S3-4). Among all 67 studies, 45 included and 24 studies excluded
participants with prior COVID-19 infection (including two studies which
provided VE estimates including and excluding participants with COVID-19
infection). A summary of study characteristics and the corresponding number of
estimates, including handling of participants with prior infections, enrolment

criteria, vaccine types and circulating virus are provided in Table S3-S5.

Vaccine effectiveness against infection and severe disease

The 173 VE point estimates against infection ranged from 14% to 98%, with
[2=100%, indicating high heterogeneity (Figure 2-3). Among them, 95 (55%)
were higher than 80%. The 93 point estimates against severe disease were also
highly heterogeneous (12=100%), ranging from 20% to 100% (Figure 2-3).
Among them, 71 (76%) were higher than 80%. For both outcomes, we observed

declining VE over time from early 2021 to mid 2022 (Figure S5).

Impact of type of vaccine and circulating viruses
Our meta-analysis (Figure 3) indicated that pooled VE against infection for a

primary course of mRNA vaccines was 86% (95% CI: 84%, 88%), compared to

11
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69% (95% CI: 64%, 73%) for adenovirus vector vaccines and 67% (95% CI: 34%,
84%) for inactivated virus vaccines. When we examined differences in pooled VE
by the circulating virus, we found that VE against infection during the Omicron
period was far lower (VE: 52%; 95% CI: 45%, 59%) than during the pre-Delta
(VE: 89%; 95% CI: 87%, 91%), Delta (VE: 78%; 95% CI: 58%, 88%), and the late-
Delta periods (VE: 79%; 95% CI: 74%, 92%) . Similarly, VE against severe

disease during the Omicron period was 64% (95% CI: 56%, 71%), which was
lower than for pre-Delta (VE: 92%; 95% CI: 89%, 94%), Delta (VE: 87%; 95% CI:
76%, 93%), and late-Delta periods (VE: 91%; 95% CI: 88%, 93%). The results
were similar when further disaggregated by including or excluding prior

infection (Table $8), or using fixed-effects analysis (Figure S6).

Role of prior infection on VE estimates

In general, we found that VE estimates derived from study participants with

lower pre-existing immunity were higher. The pooled VE against infection for
studies that excluded participants with prior COVID-19 infection was higher (VE:
87%; 95% CI: 85%, 89%) than from studies that included these participants (VE:
77%: 95% CI: 72%, 81%). Similarly, pooled VE against severe disease from
studies that excluded participants with prior COVID-19 infection (VE: 93%; 95%
CI: 91%, 95%) was higher than from studies that included these participants (VE:
87%: 95% CI: 84%, 90%). There was high heterogeneity among the estimates (12 >

99%). The pooled estimates from fixed-effect analysis were similar (Figure S6).

In meta-regression adjusting for vaccine type, circulating virus, and enrolment

criteria (Table S6; Figure 4A-B), the OR against infection from studies that

12
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included participants with prior COVID-19 infection (higher pre-existing
immunity) was 1.56-fold higher (95% CI: 1.29, 1.89) than the OR from studies
that excluded these participants (i.e. with generally lower pre-existing
immunity). Therefore, the VE against infection in a study that originally excluded
participants with prior COVID-19 infection was 80%, it would be expected to
yield an estimate of 69% (95% CI: 62%, 74%) had they included those
participants. Similarly, the OR against severe disease from studies that included
participants with prior COVID-19 infection was 1.73-fold higher (95% CI: 1.23,
2.45) than from studies that excluded these participants. Assuming a baseline VE
against severe disease of 90%, the corresponding VE expected when participants
with prior infection were included would be 83% (95% CI: 76%, 87%). The
results were similar with adjustment for location and duration of study (Table

S7).

Impact of cumulative incidence

There was a modest, negative correlation between the cumulative incidence of
cases in the study locations prior to the start of the study, as a proxy of pre-
existing population immunity (Figure $8), and VE against infection (Pearson
correlation (r) =-0.42; 95% CI: -0.54, -0.30; Shearman correlation (p) = -0.32; 95%
CI: -0.45, -0.18) and severe disease (r=-0.41, 95% CI: -0.56, -0.22; p=-0.49; 95%
CI: -0.64, -0.30). In meta-regression, adjusting for vaccine type, circulating virus,
and enrolment criteria (Table S6; Figure 4A-B), the ROR against infection
associated with a doubling of the cumulative incidence of cases before the start

of studies was 1.10 (95% CI: 1.02, 1.20). Therefore, if the baseline VE against

infection from a study was 80%, then the corresponding VE for a setting with
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twice the cumulative incidence of cases before the start of a study would

represent a two-percentage point reduction in VE (VE=78%; 95% CI: 76%, 79.6%
for a doubling). The ROR against severe disease for each doubling of the
cumulative incidence of cases before the start of a study (higher pre-existing
immunity) was 1.47 (95% CI: 1.26, 1.71). Therefore, assuming a baseline VE
against severe diseases of 90%), the corresponding VE for a setting with twice the
cumulative incidence of cases before the start of a study would represent a 5
percentage point drop in VE (VE=85%, 95% CI: 83%, 87% for the initial

doubling).

Impact of incidence rate during the study period

There was a modest, negative correlation between the incidence rates of cases in
the study locations prior to the start of the study, as a proxy of pre-existing
population immunity (Figure S8), and VE against infection (r =-0.38; 95% CI: -
0.50,-0.24; p=-0.48; 95% CI: -0.59, -0.34) and severe disease (r=-0.50, 95% CI:
-0.64, -0.33; p=-0.42; 95% CI: -0.58, -0.23). After adjusting for vaccine type,
circulating virus and enrolment criteria (Table S6), we estimated that the ROR
against infection for each doubling of the incidence of cases during the study
period was 1.16 (95% CI: 1.07, 1.25). If the baseline VE against infection from a
study was 80%, then the corresponding VE from a study with twice the incidence
of cases during the study period would be 77% (95% CI: 75%, 79%). We also
estimated that the ROR against severe disease associated with a doubling in the
incidence of cases and death during the study was 1.20 (95% CI: 1.03, 1.40).

Therefore, assuming a baseline VE of 90% against severe disease, the

14
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corresponding VE for a study with twice as many cases during the study period

would be 88% (95% CI: 86%, 89.7%).

DISCUSSION

In this study, we summarized VE estimates from TND studies to understand the
impact of prior infections on VE estimates. We found that higher pre-existing
immunity in the source population, indicated by including participants with
prior COVID-19 infection, higher pre-study cumulative incidence of cases, and

higher incidence rate of cases during study period, was associated with lower VE.

Prior infection could be a confounder, effect modifier or both. As a confounder it
could affect peoples’ decisions to vaccinate and modify their risk behaviours as
well as providing protection against reinfection (12, 13, 21). Hence, the VE
obtained from individuals with or without prior infection would be similar, if the
influence of the confounding could be controlled in analysis. On the other hand, if
prior infection were only an effect modifier (i.e. only associated with the risk of
(re)infection and not the propensity to be vaccinated) vaccination in settings
with higher pre-existing immunity would appear to have a relatively modest
effect on further increasing protection at the population level because VE would
be lower among previously infected participants (12, 13). In reality prior
infection is probably both a confounder and effect modifier and therefore studies
should consider both appropriate confounding control, such as through
covariate adjustment or stratification, as well as inclusion of interaction terms to

explore the potential effect modification.

15
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When VE was estimated based on studies excluding participants with prior
infection, these VE estimates should be interpreted as the VE for a hypothetical
population with no pre-existing immunity. As of late 2022, these estimates
would have limited practical value in most locations which have experienced
substantial epidemics. Epidemic forecasting models used to inform public health
control policies should separate individuals into different compartments based
on infection history to improve the precision of their forecasts. Therefore, groups
estimating VE estimates to inform policy should stratify by infection history so

that their work will be more broadly useful for policy (100, 101).

Our observation that higher incidence rates during a study period were
associated with lower VE estimates suggests that SARS-CoV-2 vaccines provide
leaky protection (102), since the VE depended on the number of exposure
(proxied by incidence rates during study period) . It has previously been shown
that the ORs derived from TND studies were biased (103), so that VE estimates
for leaky vaccines would decrease with time since vaccination, even if the true
VE remained unchanged (102). For COVID vaccines, the antigenic drift observed
for SARS-CoV-2 viruses makes it difficult to disentangle reduced VE associated
with a leaky vaccine from reduced VE associated with vaccine antigenic match,

and a decreased proportion of susceptible in the community.

Although 55% of VE estimates against infection and 76% of estimates against
severe disease were higher than 80%), heterogeneity was very high, as indicated
by the high 1% values observed. Consistent with previous reviews, high

heterogeneity could be attributed to differences in effectiveness among vaccine
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types, or the predominant circulating virus in each study (8, 105). However, we
continued to observe high heterogeneity when estimating pooled VE against
specific vaccine types and the predominant virus. Our meta-regression identified
some sources of the heterogeneity, such as pre-existing immunity. However,
heterogeneity remained high and further investigation is needed to identify
other causes to ensure valid VE estimates are available for ongoing optimization

of vaccination strategies (106).

Our study had some limitations. First, our review focused on VE of primary
vaccination series. Further analysis would be required to determine whether
similar issues apply to estimation of VE for booster doses, which are complicated
by dosing schedules that mix vaccine types, the number of doses received,
greater antigenic differences between the vaccines received and the dominant
circulating virus, changes in vaccine formulation including bivalent formulations,
and the accumulation of immunity through both vaccination and infection over
time. Second, most studies were conducted in adults, so that our results may not
be generalizable to children. Finally, TND studies included in our review were
observational in nature. Some confounders were adjusted in these studies,
including age, sex, being health care workers, or pre-existing conditions.
However, we did not include a bias assessment to evaluate whether studies
adequately addressed confounding nor have we considered other potential

sources of bias such as measurement errors.

In conclusion, we observed reduced VE associated with higher pre-existing

immunity in the population. Exclusion of participants with prior infection could

17


https://doi.org/10.1101/2022.11.03.22281925
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.11.03.22281925; this version posted November 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

artificially inflate VE estimates and affect their generalisability to the wider
population. If the goal of a study is to inform policy that applies to the whole
population, participants with prior infection should be included and their status
included as a covariate for confounder control. However, if decision-makers
desire different vaccination policies dependent on infection history then studies
need to stratify accordingly, or including interaction term, instead of excluding
participants with prior infection. Studies unable to adjust for prior infection
could consider using external adjustment (107) to assess the potential effect of
this confounder on their estimates. Optimal design of VE studies remains a
research priority. In particular, further work is needed to understand how prior

infection influences VE for booster doses and as vaccine formulations change.
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FIGURE LEGENDS

Figure 1. Selection of studies for the systematic review

Figure 2. VE point estimates from identified studies based on prior infection
(Panel A), predominant circulating virus (Panel B) and vaccine type (Panel C).
Each point represents the VE point estimate. Estimates are jittered to enable
visualisation. Black points represent the pooled VE estimate from meta-analysis
with black lines representing the 95% confidence interval around the pooled
estimate. Shaded area is the violin plot, showing the smoothed density of the VE

point estimates.

Figure 3. Pooled VE estimates against infection and severe disease by circulating
virus, vaccine types, and the inclusion or exclusion of participants with prior

COVID-19 infection from random-effect meta-analysis.

Figure 4. Predicted VE for a group of individuals based on the estimated ratio of
odds ratios (ROR) estimated from meta-regression, and the VE for the
individuals in the reference group. Panel A and B indicate predicted VE against
infection and severe disease, respectively. Prior COVID-19 infection, cumulative
incidence of cases before the study, and the incidence rate of cases during study
are considered. Models adjusted for age group, type of vaccine, predominant

circulating virus, and enrolment criteria.
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Factors No. of estimates VE range VE (95% CI) 12

VE against infection

Including participants with prior COVID-19 infection Excluded 96 (32, 98) ° 87 (85, 89) 100
Included 77 (14, 98) - 77 (72, 81) 100
Vaccine type mMRNA vaccines 126 (14, 98) o 86 (84, 88) 100
Adenovirus vector vaccines 41 (33, 96) - 69 (64, 73) 100
Inactivated virus vaccines 6 (44, 94) — 67 (34, 84) 100
Predominant circulating virus pre—Delta 92 (44, 98) ° 89 (87, 91) 99
Delta 9 (32, 96) —e— 78 (58, 88) 100
late-Delta 54 (33,97) - 79 (74, 82) 100
Omicron 18 (14, 75) - 52 (44, 59) 99
VE against severe disease
Including participants with prior COVID-19 infection Excluded 40 (20, 99) ° 93 (91, 95) 98
Included 53 (55, 100) ° 86 (83, 89) 99
Vaccine type MRNA vaccines 73 (20, 100) ° 91 (89, 93) 99
Adenovirus vector vaccines 16 (60, 95) -- 85 (79, 90) 98
Inactivated virus vaccines 4 (56, 82) —e— 71 (55, 81) 99
Predominant circulating virus pre—Delta 35 (56, 100) ° 92 (89, 94) 97
Delta 8 (65, 97) —o 87 (76, 93) 98
late—Delta 42 (60, 99) o 91 (88, 93) 99
Omicron 8 (20, 86) —e— 64 (52, 73) 84
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