1 Prior infections and effectiveness of SARS-CoV-2 vaccine in test-negative

2 study: A systematic review and meta-analysis

- 4 Tim K. Tsang^{1,2}, Sheena G. Sullivan³, Xiaotong Huang¹, Can Wang¹, Yifan Wang¹,
- Joshua Nealon¹, Bingyi Yang¹, Kylie E. C. Ainslie^{1,4}, Benjamin J. Cowling^{1,2}

Affiliations:

3

6

7

8

20

- 1. WHO Collaborating Centre for Infectious Disease Epidemiology and
- 9 Control, School of Public Health, Li Ka Shing Faculty of Medicine, The
- University of Hong Kong, Hong Kong Special Administrative Region, China
- 11 2. Laboratory of Data Discovery for Health Limited, Hong Kong Science and
- 12 Technology Park, New Territories, Hong Kong Special Administrative
- Region, China
- 14 3. WHO Collaborating Centre for Reference and Research on Influenza,
- Royal Melbourne Hospital, and Doherty Department, University of
- Melbourne, at the Peter Doherty Institute for Infection and Immunity,
- 17 Melbourne, Australia
- 4. Centre for Infectious Disease Control, National Institute for Public Health
- and Environment (RIVM), Bilthoven, the Netherlands

21 Corresponding author:

- 22 Dr. Tim K. Tsang, School of Public Health, Li Ka Shing Faculty of Medicine, The
- University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong.
- 24 Tel: +852 3917 9715; Fax: +852 3520 1945; email: timtsang@connect.hku.hk

Prof. Benjamin J Cowling, School of Public Health, The University of Hong Kong,
21 Sassoon Road, Pokfulam, Hong Kong.
Tel: +852 3917 6711; Fax: +852 3520 1945; email: bcowling@hku.hk

Word count: (Abstract: 353)

(Main text: 3,360)

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

ABSTRACT Background: Prior infection with SARS-CoV-2 can provide protection against infection and severe COVID-19. In settings with high pre-existing immunity, vaccine effectiveness (VE) should decrease with higher levels of immunity among unvaccinated individuals. Here, we conducted a systematic review and meta-analysis to understand the influence of prior infection on VE. **Methods**: We included test-negative design (TND) studies that examined VE against infection or severe disease (hospitalization, ICU admission, or death) for primary vaccination series. To determine the impact of prior infections on VE estimates, we compared studies that excluded or included people with prior COVID-19 infection. We also compared VE estimates by the cumulative incidence of cases before the start of and incidence rates during each study in the study locations, as further measures of prior infections in the community. **Findings**: We identified 67 studies that met inclusion criteria. Pooled VE among studies that included people with prior COVID-19 infection was lower against infection (pooled VE: 77%; 95% confidence interval (CI): 72%, 81%) and severe disease (pooled VE: 86%; 95% CI: 83%, 89%), compared with studies that excluded people with prior COVID-19 infection (pooled VE against infection: 87%: 95% CI: 85%, 89%: pooled VE against severe disease: 93%: 95% CI: 91%. 95%). There was a negative correlation between the cumulative incidence of cases before the start of the study and VE estimates against infection (spearman correlation (ρ) = -0.32; 95% CI: -0.45, -0.18) and severe disease (ρ = -0.49; 95% CI: -0.64, -0.30). There was also a negative correlation between the incidence rates of cases during the study period and VE estimates against infection (ρ = -

0.48: 95% CI: -0.59, -0.34) and severe disease (ρ = -0.42; 95% CI: -0.58, -0.23).

Interpretation: Based on a review of published VE estimates we found clear empirical evidence that higher levels of pre-existing immunity in a population were associated with lower VE estimates. Excluding previously infected individuals from VE studies may result in higher VE estimates with limited generalisability to the wider population. Prior infections should be treated as confounder and effect modificatory when the policies were targeted to whole population or stratified by infection history, respectively.

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

INTRODUCTION COVID-19 vaccines reduce the risk of infection and can also ameliorate disease severity when breakthrough infection occurs (1, 2). Ongoing evaluation of COVID-19 vaccine effectiveness (VE) has largely been measured through observational studies, particularly test-negative design (TND) studies, which share some similarities with case control studies (3). However, there has been substantial variation among reported VE estimates (4-7), which may be attributable to differences in study design, the vaccines used, disease incidence and population characteristics. Importantly, pre-existing population immunity as a result of infection could explain changes in COVID-19 VE over time and among populations (8, 9). Infection with SARS-CoV-2 induces an immune response to protect against reinfection (10-14). However, reinfection could occur due to waning naturallyinduced immunity (15, 16) or virus evolution (17, 18). Nevertheless, studies have shown that compared to persons with no prior infection, vaccination among people with prior infection enhances neutralising antibody activity as well as cell-mediated responses that can protect against (re)infection (19), suggesting prior infections may modify the protection from vaccinations. In settings where a large proportion of the population has prior exposure through infection, the unvaccinated will be more protected from infection than in a naïve population, thereby diluting the apparent effectiveness of vaccination. Under these two scenarios, prior infection modifies the effect of vaccination (Supplementary note 1).

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

Prior infection can also alter people's decision to be vaccinated and present for care. For example, vaccination requirements vary for people with recent prior infection in Hong Kong (20). Moreover, individuals with recent infection may choose not to be vaccinated if they believe they have sufficient pre-existing immunity to prevent re-infection and ameliorate the severity of any re-infections that do occur (21). Additionally, these individuals may also choose not to present for care believing their COVID-like symptoms are due to another illness, leading to differential under-ascertainment of previously-infected COVID-19 cases in surveillance data. Other individual-level factors may also affect the decision to vaccinate and engage in infection-risk behaviors, such as perceived risk of severe disease post-infection (22-24). Acting in this way, prior infection may create a confounding bias along of the vaccination-COVID-19 association (Supplementary note 1). Here, we aim to review systematically and meta-analyse published data to characterize the potential impact of pre-existing population immunity on VE estimates for completed primary vaccination series of COVID-19. We also conducted meta-regression to account for the influence of key design features such as vaccine types, circulating virus strains. **METHODS** Search strategy and selection criteria This systematic review was conducted following the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement (25). A standardized search was done in PubMed, Embase and Web of Science, using the

6

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

search term "("test negative" OR "effectiveness") AND ("vaccine") AND ("COVID-19" OR "SARS-CoV-2")". The search was done on 11 July 2022, with no language restrictions. Additional relevant articles from the reference sections of identified articles were also reviewed. Two authors (XH and CW) independently screened the titles and full texts, and extracted data from the included studies, with disagreement resolved by consensus together with a third author (TKT). Studies identified from different databases were de-duplicated. Studies that reported using a test-negative approach in which all cases and noncases were tested were included (26, 27). We included published TND studies with participants recruited from the general population, and reported estimates of VE for completed primary vaccination series (two doses for most vaccines; one dose for Janssen) against at least one of the following endpoints: 1) positive test result, 2) symptomatic disease, 3) hospitalization, 4) ICU admission, 5) severe COVID, 6) death. We excluded articles if: 1) the study participants were recruited from a specific sub-population, such as healthcare professionals; 2) studies that only reported VE for booster doses; 3) studies that summarised or re-analysed already-published data; 4) studies that only reported pooled VE estimates for different vaccines; 5) the study was a preprint; or 6) the full text was not available. Data were extracted from included studies using a standardised data collection form (Table S1) that collected information about: 1) study period; 2) region(s); 3) population; 4) the use of clinical criteria for enrolment; and 5) whether participants with prior SARS-CoV-2 infection were included. For each study, VE

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

estimates with confidence intervals were extracted separately for each endpoint (e.g. infection, hospitalisation), vaccine and the circulating virus. In some studies, VEs specific to time intervals after vaccination were reported. Therefore, we extracted VE estimates for the first available time interval at least 14 days postvaccination, because antibodies have been shown to peak by then in naïve persons (28). For studies that reported multiple estimates, such as by age group or type of vaccine, all subgroup-specific estimates were included, but the overall estimates were excluded. Meta-analysis In all identified studies, VE was defined as 100%*(1-0R). The extracted VE estimates were meta-analysed to estimate pooled VE. VE estimates were transformed to the odds ratios scale, meta-analysed, then back-transformed to the VE scale for interpretation. The pooled odds ratio was estimated by random effects meta-analyses using the inverse variance method and restricted maximum likelihood estimator for heterogeneity (29-32). Heterogeneity was assessed using Cochran's Q and the I^2 statistic (33). We considered an I^2 value more than 75% to be indicative of high heterogeneity (34). We also conducted a sensitivity analysis using fixed effects meta-analyses. The main study feature of interest was if pooled VE against infection or severe disease varied depending on whether the studies included or excluded participants with prior infection. Severe disease was based on whether the estimate was limited to cases who required hospitalization, ICU admission and death. Otherwise the estimate was classified as VE against infection, which

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

included estimates of VE against test positive or symptomatic infection (without hospitalisation). Pooled estimates were additionally disaggregated by the probable circulating virus and vaccine administered. Most studies did not report variant-specific VE estimates but did report study periods and the general prevalence of variants during that period. Therefore, estimates were grouped according to the predominant circulating virus: 1) Omicron, 2) late-Delta, which was the period with co-circulation of Delta and Omicron, 3) Delta, 4) pre-Delta, which included ancestral strains and variants preceding Delta. Type of vaccine was grouped as follows: 1) mRNA vaccines, including vaccines produced by Moderna and Pfizer-BioNTech; 2) Adenovirus vector vaccines, including vaccine produced by AstraZeneca, Janssen and Gamaleya; and 3) Inactivated virus vaccines, including vaccine produced by Sinovac Biotech and Sinopharm. **Meta-regression** To evaluate the impact of pre-existing immunity on VE estimates, we used a meta-regression approach. Three proxies of prior immunity were explored: 1) inclusion versus exclusion of participants with prior infection; 2) cumulative incidence of COVID-19 since December 2019 in each of the study countries/regions before the start of study; and 3) the incidence rate of COVID-19 in the country/region during the study period. For this, we downloaded population denominator data and daily COVID-19 case data from the World Health Organization website (35, 36). We first used correlation analysis. including Pearson (r) and Shearman (ρ) correlation coefficient, to determine the

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

association between pre-existing immunity and VE estimates. Meta-regression models were adjusted for age group (age below or above 65 years), types of vaccines used, predominant circulating virus, and the use of clinical criteria for enrolment. A sensitivity analysis was conducted for additionally adjusting for location and duration of the study. The fitted meta-regression model estimated the ratio of ORs (ROR) for each of the prior immunity proxies explored. On the OR scale, values closer to 0 indicated a more effective vaccine, while values closer to 1 indicated a less effective vaccine. This was counter to the VE scale where values closer to 0 indicated an ineffective vaccine. Therefore, using inclusion versus exclusion of participants with prior infection as an example, if ROR > 1, then the OR estimated from studies including participants with prior infection was higher than that from studies excluding participants with prior infection. On the VE scale, this translates to lower VE for studies that included participants with prior infection than studies that excluded these participants. We plotted the expected change in VE estimate to visualize the impact of each prior immunity proxy based on the ROR obtained from meta-regression. To illustrate the change in VE scale, we showed the change in estimate based on the ROR assuming VE for the reference group of 80% against infection and 90% against severe disease. Statistical analyses were conducted using R version 4.0.5 (R Foundation for Statistical Computing, Vienna, Austria).

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

RESULTS We identified 6904 studies, among which 2929 were duplicates. Title and abstract screening of the remaining articles identified 480 for full text review, of which 67 met our inclusion criteria (4-7, 37-99) (Figure 1; Table S2). Studies were set in 17 countries/regions. Most were from the United States (29) and United Kingdom (10). Fifty-one studies provided 173 VE estimates against infection (Figure S1-2), and 41 studies provided 93 estimates against severe disease (Figure S3-4). Among all 67 studies, 45 included and 24 studies excluded participants with prior COVID-19 infection (including two studies which provided VE estimates including and excluding participants with COVID-19 infection). A summary of study characteristics and the corresponding number of estimates, including handling of participants with prior infections, enrolment criteria, vaccine types and circulating virus are provided in Table S3-S5. Vaccine effectiveness against infection and severe disease The 173 VE point estimates against infection ranged from 14% to 98%, with $I^2=100\%$, indicating high heterogeneity (Figure 2-3). Among them, 95 (55%) were higher than 80%. The 93 point estimates against severe disease were also highly heterogeneous ($I^2=100\%$), ranging from 20% to 100% (Figure 2-3). Among them, 71 (76%) were higher than 80%. For both outcomes, we observed declining VE over time from early 2021 to mid 2022 (Figure S5). *Impact of type of vaccine and circulating viruses* Our meta-analysis (Figure 3) indicated that pooled VE against infection for a primary course of mRNA vaccines was 86% (95% CI: 84%, 88%), compared to

Timary course of mixivit vaccines was 6670 (7570 cir. 6170, 6670), compared to

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

69% (95% CI: 64%, 73%) for adenovirus vector vaccines and 67% (95% CI: 34%, 84%) for inactivated virus vaccines. When we examined differences in pooled VE by the circulating virus, we found that VE against infection during the Omicron period was far lower (VE: 52%; 95% CI: 45%, 59%) than during the pre-Delta (VE: 89%; 95% CI: 87%, 91%), Delta (VE: 78%; 95% CI: 58%, 88%), and the late-Delta periods (VE: 79%; 95% CI: 74%, 92%). Similarly, VE against severe disease during the Omicron period was 64% (95% CI: 56%, 71%), which was lower than for pre-Delta (VE: 92%; 95% CI: 89%, 94%), Delta (VE: 87%; 95% CI: 76%, 93%), and late-Delta periods (VE: 91%; 95% CI: 88%, 93%). The results were similar when further disaggregated by including or excluding prior infection (Table S8), or using fixed-effects analysis (Figure S6). Role of prior infection on VE estimates In general, we found that VE estimates derived from study participants with lower pre-existing immunity were higher. The pooled VE against infection for studies that excluded participants with prior COVID-19 infection was higher (VE: 87%; 95% CI: 85%, 89%) than from studies that included these participants (VE: 77%: 95% CI: 72%, 81%). Similarly, pooled VE against severe disease from studies that excluded participants with prior COVID-19 infection (VE: 93%; 95% CI: 91%, 95%) was higher than from studies that included these participants (VE: 87%: 95% CI: 84%, 90%). There was high heterogeneity among the estimates ($1^2 >$ 99%). The pooled estimates from fixed-effect analysis were similar (Figure S6). In meta-regression adjusting for vaccine type, circulating virus, and enrolment criteria (Table S6; Figure 4A-B), the OR against infection from studies that

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

included participants with prior COVID-19 infection (higher pre-existing immunity) was 1.56-fold higher (95% CI: 1.29, 1.89) than the OR from studies that excluded these participants (i.e. with generally lower pre-existing immunity). Therefore, the VE against infection in a study that originally excluded participants with prior COVID-19 infection was 80%, it would be expected to yield an estimate of 69% (95% CI: 62%, 74%) had they included those participants. Similarly, the OR against severe disease from studies that included participants with prior COVID-19 infection was 1.73-fold higher (95% CI: 1.23, 2.45) than from studies that excluded these participants. Assuming a baseline VE against severe disease of 90%, the corresponding VE expected when participants with prior infection were included would be 83% (95% CI: 76%, 87%). The results were similar with adjustment for location and duration of study (Table S7). Impact of cumulative incidence There was a modest, negative correlation between the cumulative incidence of cases in the study locations prior to the start of the study, as a proxy of preexisting population immunity (Figure S8), and VE against infection (Pearson correlation (r) = -0.42; 95% CI: -0.54, -0.30; Shearman correlation (ρ) = -0.32; 95% CI: -0.45, -0.18) and severe disease (r = -0.41, 95% CI: -0.56, -0.22; $\rho = -0.49; 95\%$ CI: -0.64, -0.30). In meta-regression, adjusting for vaccine type, circulating virus, and enrolment criteria (Table S6; Figure 4A-B), the ROR against infection associated with a doubling of the cumulative incidence of cases before the start of studies was 1.10 (95% CI: 1.02, 1.20). Therefore, if the baseline VE against infection from a study was 80%, then the corresponding VE for a setting with

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

twice the cumulative incidence of cases before the start of a study would represent a two-percentage point reduction in VE (VE=78%; 95% CI: 76%, 79.6%) for a doubling). The ROR against severe disease for each doubling of the cumulative incidence of cases before the start of a study (higher pre-existing immunity) was 1.47 (95% CI: 1.26, 1.71). Therefore, assuming a baseline VE against severe diseases of 90%, the corresponding VE for a setting with twice the cumulative incidence of cases before the start of a study would represent a 5 percentage point drop in VE (VE=85%, 95% CI: 83%, 87% for the initial doubling). Impact of incidence rate during the study period There was a modest, negative correlation between the incidence rates of cases in the study locations prior to the start of the study, as a proxy of pre-existing population immunity (Figure S8), and VE against infection (r = -0.38; 95% CI: -0.50, -0.24; ρ = -0.48; 95% CI: -0.59, -0.34) and severe disease (r = -0.50, 95% CI: -0.64, -0.33; $\rho = -0.42$; 95% CI: -0.58, -0.23). After adjusting for vaccine type, circulating virus and enrolment criteria (Table S6), we estimated that the ROR against infection for each doubling of the incidence of cases during the study period was 1.16 (95% CI: 1.07, 1.25). If the baseline VE against infection from a study was 80%, then the corresponding VE from a study with twice the incidence of cases during the study period would be 77% (95% CI: 75%, 79%). We also estimated that the ROR against severe disease associated with a doubling in the incidence of cases and death during the study was 1.20 (95% CI: 1.03, 1.40). Therefore, assuming a baseline VE of 90% against severe disease, the

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

corresponding VE for a study with twice as many cases during the study period would be 88% (95% CI: 86%, 89.7%). **DISCUSSION** In this study, we summarized VE estimates from TND studies to understand the impact of prior infections on VE estimates. We found that higher pre-existing immunity in the source population, indicated by including participants with prior COVID-19 infection, higher pre-study cumulative incidence of cases, and higher incidence rate of cases during study period, was associated with lower VE. Prior infection could be a confounder, effect modifier or both. As a confounder it could affect peoples' decisions to vaccinate and modify their risk behaviours as well as providing protection against reinfection (12, 13, 21). Hence, the VE obtained from individuals with or without prior infection would be similar, if the influence of the confounding could be controlled in analysis. On the other hand, if prior infection were only an effect modifier (i.e. only associated with the risk of (re)infection and not the propensity to be vaccinated) vaccination in settings with higher pre-existing immunity would appear to have a relatively modest effect on further increasing protection at the population level because VE would be lower among previously infected participants (12, 13). In reality prior infection is probably both a confounder and effect modifier and therefore studies should consider both appropriate confounding control, such as through covariate adjustment or stratification, as well as inclusion of interaction terms to explore the potential effect modification.

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

When VE was estimated based on studies excluding participants with prior infection, these VE estimates should be interpreted as the VE for a hypothetical population with no pre-existing immunity. As of late 2022, these estimates would have limited practical value in most locations which have experienced substantial epidemics. Epidemic forecasting models used to inform public health control policies should separate individuals into different compartments based on infection history to improve the precision of their forecasts. Therefore, groups estimating VE estimates to inform policy should stratify by infection history so that their work will be more broadly useful for policy (100, 101). Our observation that higher incidence rates during a study period were associated with lower VE estimates suggests that SARS-CoV-2 vaccines provide leaky protection (102), since the VE depended on the number of exposure (proxied by incidence rates during study period). It has previously been shown that the ORs derived from TND studies were biased (103), so that VE estimates for leaky vaccines would decrease with time since vaccination, even if the true VE remained unchanged (102). For COVID vaccines, the antigenic drift observed for SARS-CoV-2 viruses makes it difficult to disentangle reduced VE associated with a leaky vaccine from reduced VE associated with vaccine antigenic match, and a decreased proportion of susceptible in the community. Although 55% of VE estimates against infection and 76% of estimates against severe disease were higher than 80%, heterogeneity was very high, as indicated by the high I² values observed. Consistent with previous reviews, high heterogeneity could be attributed to differences in effectiveness among vaccine

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

types, or the predominant circulating virus in each study (8, 105). However, we continued to observe high heterogeneity when estimating pooled VE against specific vaccine types and the predominant virus. Our meta-regression identified some sources of the heterogeneity, such as pre-existing immunity. However, heterogeneity remained high and further investigation is needed to identify other causes to ensure valid VE estimates are available for ongoing optimization of vaccination strategies (106). Our study had some limitations. First, our review focused on VE of primary vaccination series. Further analysis would be required to determine whether similar issues apply to estimation of VE for booster doses, which are complicated by dosing schedules that mix vaccine types, the number of doses received, greater antigenic differences between the vaccines received and the dominant circulating virus, changes in vaccine formulation including bivalent formulations, and the accumulation of immunity through both vaccination and infection over time. Second, most studies were conducted in adults, so that our results may not be generalizable to children. Finally, TND studies included in our review were observational in nature. Some confounders were adjusted in these studies, including age, sex, being health care workers, or pre-existing conditions. However, we did not include a bias assessment to evaluate whether studies adequately addressed confounding nor have we considered other potential sources of bias such as measurement errors. In conclusion, we observed reduced VE associated with higher pre-existing immunity in the population. Exclusion of participants with prior infection could

artificially inflate VE estimates and affect their generalisability to the wider population. If the goal of a study is to inform policy that applies to the whole population, participants with prior infection should be included and their status included as a covariate for confounder control. However, if decision-makers desire different vaccination policies dependent on infection history then studies need to stratify accordingly, or including interaction term, instead of excluding participants with prior infection. Studies unable to adjust for prior infection could consider using external adjustment (107) to assess the potential effect of this confounder on their estimates. Optimal design of VE studies remains a research priority. In particular, further work is needed to understand how prior infection influences VE for booster doses and as vaccine formulations change.

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

ACKNOWLEDGEMENTS The authors thank Hang Qi for technical assistance. This project was supported by the National Institute of General Medical Sciences (grant no. R01 GM139926), and the Theme-based Research Scheme (Project No. T11-712/19-N) of the Research Grants Council of the Hong Kong SAR Government. BJC is supported by an RGC Senior Research Fellowship (grant number: HKU SRFS2021-7S03) and the AIR@innoHK program of the Innovation and Technology Commission of the Hong Kong SAR Government. The WHO Collaborating Centre for Reference and Research on Influenza is supported by the Australian Government Department of Health and Aged Care. **COMPETING INTERESTS STATEMENT** BJC reports honoraria from AstraZeneca, Fosun Pharma, GSK, Haleon, Moderna, Pfizer, Roche and Sanofi Pasteur. JN was previously employed by and owns stocks in Sanofi. The authors report no other potential conflicts of interest.

REFERENCES

422

- 423 1. Bergwerk M, Gonen T, Lustig Y, Amit S, Lipsitch M, Cohen C, et al. Covid-19
- 424 Breakthrough Infections in Vaccinated Health Care Workers. N Engl J Med.
- 425 2021;385(16):1474-84.
- 426 2. Lipsitch M, Krammer F, Regev-Yochay G, Lustig Y, Balicer RD. SARS-CoV-2
- 427 breakthrough infections in vaccinated individuals: measurement, causes and
- 428 impact. Nat Rev Immunol. 2022;22(1):57-65.
- 429 3. Belongia EA, Simpson MD, King JP, Sundaram ME, Kelley NS, Osterholm
- 430 MT, et al. Variable influenza vaccine effectiveness by subtype: a systematic
- review and meta-analysis of test-negative design studies. Lancet Infect Dis.
- 432 2016;16(8):942-51.
- 433 4. Bruxvoort KJ, Sy LS, Qian L, Ackerson BK, Luo Y, Lee GS, et al.
- Effectiveness of mRNA-1273 against delta, mu, and other emerging variants of
- SARS-CoV-2: test negative case-control study. Bmj. 2021;375:e068848.
- 436 5. Andrews1 N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al.
- 437 Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J
- 438 Med. 2022.
- 439 6. Tseng HF, Ackerson BK, Luo Y, Sy LS, Talarico CA, Tian Y, et al.
- 440 Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants.
- 441 Nat Med. 2022.
- 442 7. Chemaitelly 2 H, Yassine HM, Benslimane FM, Al Khatib HA, Tang P, Hasan
- 443 MR, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and
- B.1.351 variants and severe COVID-19 disease in Qatar. Nat Med.
- 445 2021;27(9):1614-21

- 446 8. Higdon MM, Wahl B, Jones CB, Rosen JG, Truelove SA, Baidya A, et al. A
- 447 Systematic Review of Coronavirus Disease 2019 Vaccine Efficacy and
- 448 Effectiveness Against Severe Acute Respiratory Syndrome Coronavirus 2
- Infection and Disease. Open Forum Infect Dis. 2022;9(6):ofac138.
- 450 9. Lewnard JA, Patel MM, Jewell NP, Verani JR, Kobayashi M, Tenforde MW,
- 451 et al. Theoretical Framework for Retrospective Studies of the Effectiveness of
- 452 SARS-CoV-2 Vaccines. Epidemiology. 2021;32(4):508-17.
- 453 10. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and
- 454 immune responses. J Med Virol. 2020;92(4):424-32.
- 455 11. Suryadevara N, Shrihari S, Gilchuk P, VanBlargan LA, Binshtein E, Zost SJ,
- et al. Neutralizing and protective human monoclonal antibodies recognizing the
- N-terminal domain of the SARS-CoV-2 spike protein. Cell. 2021;184(9):2316-31
- 458 e15.
- 459 12. Kojima N, Shrestha NK, Klausner JD. A Systematic Review of the
- 460 Protective Effect of Prior SARS-CoV-2 Infection on Repeat Infection. Eval Health
- 461 Prof. 2021;44(4):327-32.
- 462 13. Leidi A, Koegler F, Dumont R, Dubos R, Zaballa ME, Piumatti G, et al. Risk
- of Reinfection After Seroconversion to Severe Acute Respiratory Syndrome
- 464 Coronavirus 2 (SARS-CoV-2): A Population-based Propensity-score Matched
- 465 Cohort Study. Clin Infect Dis. 2022;74(4):622-9.
- 466 14. Hansen CH, Michlmayr D, Gubbels SM, Molbak K, Ethelberg S. Assessment
- of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested
- individuals in Denmark in 2020: a population-level observational study. Lancet.
- 469 2021;397(10280):1204-12.

- 470 15. Long QX, Liu BZ, Deng HJ, Wu GC, Deng K, Chen YK, et al. Antibody
- responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020;26(6):845-8.
- 472 16. Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological
- 473 memory to SARS-CoV-2 assessed for up to 8 months after infection. Science.
- 474 2021;371(6529).
- 475 17. Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C,
- 476 Groome MJ, et al. Increased risk of SARS-CoV-2 reinfection associated with
- emergence of Omicron in South Africa. Science. 2022;376(6593):eabn4947.
- 478 18. Townsend JP, Hassler HB, Wang Z, Miura S, Singh J, Kumar S, et al. The
- durability of immunity against reinfection by SARS-CoV-2: a comparative
- evolutionary study. Lancet Microbe. 2021;2(12):e666-e75.
- 481 19. Reynolds CJ, Pade C, Gibbons JM, Butler DK, Otter AD, Menacho K, et al.
- Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first
- 483 vaccine dose Science 2021.
- 484 20. The Government of the Hong Kong Special Administrative Region. Vaccine
- pass, https://www.coronavirus.gov.hk/eng/vaccine-pass.html (accessed Aug 26,
- 486 2022) [
- 487 21. Troiano G, Nardi A. Vaccine hesitancy in the era of COVID-19. Public
- 488 Health. 2021;194:245-51.
- 489 22. Robinson E, Jones A, Lesser I, Daly M. International estimates of intended
- 490 uptake and refusal of COVID-19 vaccines: A rapid systematic review and meta-
- 491 analysis of large nationally representative samples. Vaccine. 2021;39(15):2024-
- 492 34
- 493 23. Parker DM, Bruckner T, Vieira VM, Medina C, Minin VN, Felgner PL, et al.
- 494 Predictors of Test Positivity, Mortality, and Seropositivity during the Early

- 495 Coronavirus Disease Epidemic, Orange County, California, USA. Emerg Infect Dis.
- 496 2021;27(10):2604-18.
- 497 24. Jara A, Undurraga EA, González C, Paredes F, Fontecilla T, Jara G, et al.
- 498 Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N Engl J Med.
- 499 2021;385(10):875-84.
- 500 25. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for
- systematic reviews and meta-analyses: the PRISMA statement. PLoS Med.
- 502 2009;6(7):e1000097.
- 503 26. Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the
- Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness.
- 505 Am J Epidemiol. 2016;184(5):345-53.
- 506 27. Jackson ML, Nelson JC. The test-negative design for estimating influenza
- vaccine effectiveness. Vaccine. 2013;31(17):2165-8.
- 508 28. Yang B, Huang X, Gao H, Leung NH, Tsang TK, Cowling BJ. Immunogenicity,
- efficacy, and safety of SARS-CoV-2 vaccine dose fractionation: a systematic
- review and meta-analysis. BMC Med. 2022;20(1):409.
- 511 29. Hedges LV, Vevea JL. Fixed- and random-effects models in meta-analysis.
- 512 Psychological Methods. 1998;3(4):486-504.
- 513 30. Langan D, Higgins JPT, Jackson D, Bowden J, Veroniki AA, Kontopantelis E,
- et al. A comparison of heterogeneity variance estimators in simulated random-
- effects meta-analyses. Res Synth Methods. 2019;10(1):83-98.
- 516 31. Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a
- comparison of methods. Stat Med. 1999;18(20):2693-708.

- 518 32. Veroniki AA, Jackson D, Bender R, Kuss O, Langan D, Higgins JPT, et al.
- Methods to calculate uncertainty in the estimated overall effect size from a
- random-effects meta-analysis. Res Synth Methods. 2019;10(1):23-43.
- 521 33. Cochran WG. The combination of estimates from different experiments.
- 522 Biometrics. 1954;10:101-29.
- 523 34. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in
- meta-analyses. Bmj. 2003;327(7414):557-60.
- World Health Organization. Daily cases and deaths by date reported to
- WHO [Available from: https://covid19.who.int/WHO-COVID-19-global-data.csv.
- 36. World Health Organization. COVID-19 Explorer [Available from:
- 528 https://worldhealthorg.shinyapps.io/covid/.
- 529 37. Abu-Raddad1 LJ, Chemaitelly H, Ayoub HH, Yassine HM, Benslimane FM,
- Al Khatib HA, et al. Waning of mRNA-1273 vaccine effectiveness against SARS-
- CoV-2 infection in Qatar. N Engl J Med. 2022;16.
- 38. Abu-Raddad2 LJ, Chemaitelly H, Butt AA. Effectiveness of the BNT162b2
- Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. N Engl J Med.
- 534 2021;385(2):187-9.
- 39. Amirthalingam G, Bernal JL, Andrews NJ, Whitaker H, Gower C, Stowe J, et
- al. Serological responses and vaccine effectiveness for extended COVID-19
- vaccine schedules in England. Nat Commun. 2021;12(1):7217.
- 538 40. Andrejko KL, Pry J, Myers JF, Jewell NP, Openshaw J, Watt J, et al.
- Prevention of COVID-19 by mRNA-based vaccines within the general population
- of California. Clin Infect Dis. 2021.

- 41. Andrews 2 N, Tessier E, Stowe J, Gower C, Kirsebom F, Simmons R, et al.
- 542 Duration of Protection against Mild and Severe Disease by Covid-19 Vaccines.
- New England Journal of Medicine. 2022;386(4):340-50.
- 544 42. Bernal1 JL, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al.
- 545 Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. New
- 546 England Journal of Medicine. 2021;385(7):585-94.
- 547 43. Bernal2 JL, Andrews N, Gower C, Robertson C, Stowe J, Tessier E, et al.
- 548 Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-
- 19 related symptoms, hospital admissions, and mortality in older adults in
- England: Test negative case-control study. The BMJ. 2021;373 (no pagination).
- 551 44. Britton A, Fleming-Dutra KE, Shang N, Smith ZR, Dorji T, Derado G, et al.
- Association of COVID-19 Vaccination With Symptomatic SARS-CoV-2 Infection by
- Time Since Vaccination and Delta Variant Predominance. Jama.
- 554 2022;327(11):1032-41.
- 555 45. Butt AA, Omer SB, Yan P, Shaikh OS, Mayr FB. SARS-CoV-2 Vaccine
- 556 Effectiveness in a High-Risk National Population in a Real-World Setting. Ann
- 557 Intern Med. 2021;174(10):1404-8.
- 558 46. Cerqueira-Silva T, Katikireddi SV, de Araujo Oliveira V, Flores-Ortiz R,
- Júnior JB, Paixão ES, et al. Vaccine effectiveness of heterologous CoronaVac plus
- 560 BNT162b2 in Brazil. Nat Med. 2022.
- 561 47. Chemaitelly 1 H, Tang P, Hasan MR, AlMukdad S, Yassine HM, Benslimane
- FM, et al. Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection
- in Qatar. N Engl J Med. 2021;385(24):e83.
- 564 48. Chung 1 H, He S, Nasreen S, Sundaram ME, Buchan SA, Wilson SE, et al.
- 565 Effectiveness of BNT162b2 and mRNA-1273 covid-19 vaccines against

- symptomatic SARS-CoV-2 infection and severe covid-19 outcomes in Ontario,
- 567 Canada: test negative design study. Bmj. 2021;374:n1943.
- 568 49. Chung 2 JR, Kim SS, Belongia EA, McLean HQ, King JP, Nowalk MP, et al.
- Vaccine Effectiveness against COVID-19 among Symptomatic Persons Aged >=12
- Years with Reported Contact with COVID-19 Cases, February September 2021.
- Influenza Other Respi Viruses. 2022:1-7.
- 572 50. Collie S, Champion J, Moultrie H, Bekker LG, Gray G. Effectiveness of
- 573 BNT162b2 Vaccine against Omicron Variant in South Africa. N Engl J Med.
- 574 2022;386(5):494-6.
- 575 51. Corrao G, Franchi M, Rea F, Cereda D, Barone A, Borriello CR, et al.
- 576 Protective action of natural and induced immunization against the occurrence of
- delta or alpha variants of SARS-CoV-2 infection: a test-negative case-control
- 578 study. BMC Med. 2022;20(1):52.
- 579 52. Drawz PE, DeSilva M, Bodurtha P, Benitez GV, Murray A, Chamberlain AM,
- et al. Effectiveness of BNT162b2 and mRNA-1273 Second Doses and Boosters for
- SARS-CoV-2 infection and SARS-CoV-2 Related Hospitalizations: A Statewide
- 582 Report from the Minnesota Electronic Health Record Consortium. Clin Infect Dis.
- 583 2022.
- 584 53. Embi PJ, Levy ME, Naleway AL, Patel P, Gaglani M, Natarajan K, et al.
- 585 Effectiveness of two-dose vaccination with mRNA COVID-19 vaccines against
- 586 COVID-19-associated hospitalizations among immunocompromised adults Nine
- 587 States, January-September 2021. American Journal of Transplantation.
- 588 2022;22(1):306-14.
- 589 54. Ferdinands JM, Rao S, Dixon BE, Mitchell PK, DeSilva MB, Irving SA, et al.
- Waning 2-Dose and 3-Dose Effectiveness of mRNA Vaccines Against COVID-19-

- Associated Emergency Department and Urgent Care Encounters and
- Hospitalizations Among Adults During Periods of Delta and Omicron Variant
- 593 Predominance VISION Network, 10 States, August 2021-January 2022. MMWR
- 594 Morb Mortal Wkly Rep. 2022;71(7):255-63.
- 595 55. Grannis SJ, Rowley EA, Ong TC, Stenehjem E, Klein NP, DeSilva MB, et al.
- Interim Estimates of COVID-19 Vaccine Effectiveness Against COVID-19-
- Associated Emergency Department or Urgent Care Clinic Encounters and
- Hospitalizations Among Adults During SARS-CoV-2 B.1.617.2 (Delta) Variant
- 599 Predominance Nine States, June-August 2021. MMWR Morb Mortal Wkly Rep.
- 600 2021;70(37):1291-3.
- 601 56. Hitchings MDT, Ranzani OT, Dorion M, D'Agostini TL, de Paula RC, de
- Paula OFP, et al. Effectiveness of ChAdOx1 vaccine in older adults during SARS-
- 603 CoV-2 Gamma variant circulation in São Paulo. Nat Commun. 2021;12(1):6220.
- 604 57. Kim SS, Chung JR, Belongia EA, McLean HQ, King JP, Nowalk MP, et al.
- 605 mRNA Vaccine Effectiveness against COVID-19 among Symptomatic Outpatients
- Aged ≥16 Years in the United States, February May 2021. J Infect Dis. 2021.
- 58. Lauring AS, Tenforde MW, Chappell JD, Gaglani M, Ginde AA, McNeal T, et
- al. Clinical severity of, and effectiveness of mRNA vaccines against, covid-19 from
- omicron, delta, and alpha SARS-CoV-2 variants in the United States: prospective
- observational study. Bmj. 2022;376:e069761.
- 611 59. Lewis NM, Naioti EA, Self WH, Ginde AA, Douin DJ, Talbot HK, et al.
- 612 Effectiveness of mRNA vaccines in preventing COVID-19 hospitalization by age
- and burden of chronic medical conditions among immunocompetent US adults,
- March-August 2021. | Infect Dis. 2021.

- 615 60. Li XN, Huang Y, Wang W, Jing QL, Zhang CH, Qin PZ, et al. Effectiveness of
- inactivated SARS-CoV-2 vaccines against the Delta variant infection in
- 617 Guangzhou: a test-negative case-control real-world study. Emerg Microbes Infect.
- 618 2021;10(1):1751-9.
- 619 61. Maeda H, Saito N, Igarashi A, Ishida M, Suami K, Yagiuchi A, et al.
- 620 Effectiveness of mRNA COVID-19 vaccines against symptomatic SARS-CoV-2
- 621 infections during the Delta variant epidemic in Japan: Vaccine Effectiveness Real-
- time Surveillance for SARS-CoV-2 (VERSUS). Clinical Infectious Diseases.
- 623 2022;23.
- 624 62. Mallow C, Ferreira T, Shukla B, Warde P, Sosa MA, Parekh DJ, et al. Real
- 625 world SARS-COV-2 vaccine effectiveness in a Miami academic institution. Am J
- 626 Emerg Med. 2022;54:97-101.
- 627 63. Nasreen S, Chung H, He S, Brown KA, Gubbay JB, Buchan SA, et al.
- 628 Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection
- and severe outcomes with variants of concern in Ontario. Nat Microbiol.
- 630 2022;7(3):379-85.
- 631 64. Ngyen LBL, Bauer R, Lesieur Z, Galtier F, Duval X, Vanhems P, et al.
- Vaccine effectiveness against COVID-19 hospitalization in adults in France: A test
- 633 negative case control study. Infectious Diseases Now. 2022;52(1):40-3.
- 634 65. Olson 1 SM, Newhams MM, Halasa NB, Price AM, Boom JA, Sahni LC, et al.
- 635 Effectiveness of Pfizer-BioNTech mRNA Vaccination Against COVID-19
- Hospitalization Among Persons Aged 12-18 Years United States, June-
- 637 September 2021. MMWR Morb Mortal Wkly Rep. 2021;70(42):1483-8.

- 638 66. Olson 2 SM, Newhams MM, Halasa NB, Price AM, Boom JA, Sahni LC, et al.
- 639 Effectiveness of BNT162b2 Vaccine against Critical Covid-19 in Adolescents. N
- 640 Engl J Med. 2022;386(8):713-23.
- 641 67. Pardo-Seco J, Mallah N, López-Pérez LR, González-Pérez JM, Rosón B,
- 0tero-Barrós MT, et al. Evaluation of BNT162b2 Vaccine Effectiveness in Galicia,
- Northwest Spain. Int J Environ Res Public Health. 2022;19(7).
- 644 68. Price AM, Olson SM, Newhams MM, Halasa NB, Boom JA, Sahni LC, et al.
- 645 BNT162b2 Protection against the Omicron Variant in Children and Adolescents.
- 646 N Engl J Med. 2022.
- 647 69. Ranzani 1 O, Hitchings MDT, Dorion M, D'Agostini TL, de Paula RC, de
- Paula OFP, et al. Effectiveness of the CoronaVac vaccine in older adults during a
- gamma variant associated epidemic of covid-19 in Brazil: test negative case-
- control study. Bmj-British Medical Journal. 2021;374.
- 70. Ranzani 2 OT, Silva AAB, Peres IT, Antunes BBP, Gonzaga-da-Silva TW,
- 652 Soranz DR, et al. Vaccine effectiveness of ChAdOx1 nCoV-19 against COVID-19 in
- a socially vulnerable community in Rio de Janeiro, Brazil: a test-negative design
- study. Clin Microbiol Infect. 2022.
- 655 71. Rearte A, Castelli JM, Rearte R, Fuentes N, Pennini V, Pesce M, et al.
- 65.6 Effectiveness of rAd26-rAd5, ChAd0x1 nCoV-19, and BBIBP-CorV vaccines for
- risk of infection with SARS-CoV-2 and death due to COVID-19 in people older
- than 60 years in Argentina: a test-negative, case-control, and retrospective
- longitudinal study. Lancet. 2022;399(10331):1254-64.
- 660 72. Self WH, Tenforde MW, Rhoads JP, Gaglani M, Ginde AA, Douin DJ, et al.
- 661 Comparative Effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson &
- Johnson) Vaccines in Preventing COVID-19 Hospitalizations Among Adults

- Without Immunocompromising Conditions United States, March-August 2021.
- MMWR Morb Mortal Wkly Rep. 2021;70(38):1337-43.
- 565 73. Sheikh A, McMenamin J, Taylor B, Robertson C. SARS-CoV-2 Delta VOC in
- 666 Scotland: demographics, risk of hospital admission, and vaccine effectiveness.
- 667 Lancet. 2021;397(10293):2461-2.
- 668 74. Sritipsukho P, Khawcharoenporn T, Siribumrungwong B, Damronglerd P,
- Suwantarat N, Satdhabudha A, et al. Comparing real-life effectiveness of various
- 670 COVID-19 vaccine regimens during the delta variant-dominant pandemic: a test-
- 671 negative case-control study. Emerg Microbes Infect. 2022;11(1):585-92.
- 75. Tabak YP, Sun X, Brennan TA, Chaguturu SK. Incidence and Estimated
- Vaccine Effectiveness Against Symptomatic SARS-CoV-2 Infection Among
- Persons Tested in US Retail Locations, May 1 to August 7, 2021. JAMA Netw Open.
- 675 2021;4(12):e2143346.
- 676 76. Tang P, Hasan MR, Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib
- HA, et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the
- 678 SARS-CoV-2 Delta variant in Qatar. Nat Med. 2021;27(12):2136-43.
- 77. Tenforde MW, Olson SM, Self WH, Talbot HK, Lindsell CJ, Steingrub JS, et al.
- 680 Effectiveness of Pfizer-BioNTech and Moderna Vaccines Against COVID-19
- Among Hospitalized Adults Aged ≥65 Years United States, January-March 2021.
- 682 MMWR Morb Mortal Wkly Rep. 2021;70(18):674-9.
- 78. Thiruvengadam R, Awasthi A, Medigeshi G, Bhattacharya S, Mani S,
- 684 Sivasubbu S, et al. Effectiveness of ChAdOx1 nCoV-19 vaccine against SARS-CoV-
- 2 infection during the delta (B.1.617.2) variant surge in India: a test-negative,
- case-control study and a mechanistic study of post-vaccination immune
- responses. Lancet Infect Dis. 2022;22(4):473-82.

- Thompson MG, Stenehjem E, Grannis S, Ball SW, Naleway AL, Ong TC, et al.
- 689 Effectiveness of Covid-19 Vaccines in Ambulatory and Inpatient Care Settings. N
- 690 Engl J Med. 2021;385(15):1355-71.
- 691 80. Winkelman TNA, Rai NK, Bodurtha PJ, Chamberlain AM, DeSilva M, Jeruzal
- 692 J, et al. Trends in COVID-19 Vaccine Administration and Effectiveness Through
- 693 October 2021. JAMA Netw Open. 2022;5(3):e225018.
- 694 81. Zambrano LD, Newhams MM, Olson SM, Halasa NB, Price AM, Boom JA, et
- al. Effectiveness of BNT162b2 (Pfizer-BioNTech) mRNA Vaccination Against
- 696 Multisystem Inflammatory Syndrome in Children Among Persons Aged 12-18
- 697 Years United States, July-December 2021. MMWR Morb Mortal Wkly Rep.
- 698 2022;71(2):52-8.
- 699 82. Altarawneh HN, Chemaitelly H, Ayoub HH, Tang P, Hasan MR, Yassine HM,
- et al. Effects of Previous Infection and Vaccination on Symptomatic Omicron
- 701 Infections. N Engl J Med. 2022;387(1):21-34.
- 702 83. Andrews N, Stowe J, Kirsebom F, Toffa S, Sachdeva R, Gower C, et al.
- 703 Effectiveness of COVID-19 booster vaccines against COVID-19-related symptoms,
- hospitalization and death in England. Nature Medicine. 2022;28(4):831-+.
- 705 84. Chemaitelly H, Ayoub HH, AlMukdad S, Coyle P, Tang P, Yassine HM, et al.
- 706 Duration of mRNA vaccine protection against SARS-CoV-2 Omicron BA.1 and
- 707 BA.2 subvariants in Qatar. Nat Commun. 2022;13(1):3082.
- 708 85. Embi PJ, Levy ME, Naleway AL, Patel P, Gaglani M, Natarajan K, et al.
- 709 Effectiveness of 2-Dose Vaccination with mRNA COVID-19 Vaccines Against
- 710 COVID-19-Associated Hospitalizations Among Immunocompromised Adults -
- 711 Nine States, January-September 2021. MMWR Morb Mortal Wkly Rep.
- 712 2021;70(44):1553-9.

- 713 86. Fleming-Dutra KE, Britton A, Shang N, Derado G, Link-Gelles R, Accorsi EK,
- et al. Association of Prior BNT162b2 COVID-19 Vaccination With Symptomatic
- 715 SARS-CoV-2 Infection in Children and Adolescents During Omicron
- 716 Predominance. Jama-Journal of the American Medical Association.
- 717 87. Husin M, Tok PSK, Suah JL, Thevananthan T, Tng BH, Peariasamy KM, et al.
- 718 Real-world effectiveness of BNT162b2 vaccine against SARS-CoV-2 infection
- among adolescents (12 to 17-year-olds) in Malaysia. Int J Infect Dis.
- 720 2022;121:55-7.
- 721 88. Kirsebom FCM, Andrews N, Stowe J, Toffa S, Sachdeva R, Gallagher E, et al.
- 722 COVID-19 vaccine effectiveness against the omicron (BA.2) variant in England.
- 723 Lancet Infect Dis. 2022;22(7):931-3.
- 724 89. Lewis NM, Self WH, Gaglani M, Ginde AA, Douin DJ, Keipp Talbot H, et al.
- 725 Effectiveness of the Ad26.COV2.S (Johnson & Johnson) COVID-19 Vaccine for
- 726 Preventing COVID-19 Hospitalizations and Progression to High Disease Severity
- in the United States. Clin Infect Dis. 2022.
- 728 90. Nadeem I, ul Munamm SA, Rasool MU, Fatimah M, Abu Bakar M, Rana ZK,
- et al. Safety and efficacy of Sinopharm vaccine (BBIBP-CorV) in elderly
- 730 population of Faisalabad district of Pakistan. Postgraduate Medical Journal.
- 731 91. Niessen FA, Knol MJ, Hahne SJM, Bonten MJM, Bruijning-Verhagen PCJL,
- Peters V, et al. Vaccine effectiveness against COVID-19 related hospital admission
- in the Netherlands: a test-negative case-control study. Vaccine. 2022;10.
- 734 92. Powell AA, Kirsebom F, Stowe J, McOwat K, Saliba V, Ramsay ME, et al.
- 735 Effectiveness of BNT162b2 against COVID-19 in adolescents. Lancet Infect Dis.
- 736 2022;22(5):581-3.

- 737 93. Skowronski DM, Febriani Y, Ouakki M, Setayeshgar S, El Adam S, Zou M, et
- 738 al. Two-Dose Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
- 739 Vaccine Effectiveness With Mixed Schedules and Extended Dosing Intervals:
- 740 Test-Negative Design Studies From British Columbia and Quebec, Canada.
- 741 Clinical Infectious Diseases.
- 742 94. Suarez Castillo M, Khaoua H, Courtejoie N. Vaccine effectiveness and
- 743 duration of protection against symptomatic infections and severe Covid-19
- outcomes in adults aged 50 years and over, France, January to mid-December
- 745 2021. Glob Epidemiol. 2022;4:100076.
- 746 95. Suarez Castillo M, Khaoua H, Courtejoie N. Vaccine-induced and naturally-
- acquired protection against Omicron and Delta symptomatic infection and
- severe COVID-19 outcomes, France, December 2021 to January 2022. Euro
- 749 Surveill. 2022;27(16).
- 750 96. Tartof SY, Slezak JM, Puzniak L, Hong V, Xie F, Ackerson BK, et al.
- 751 Durability of BNT162b2 vaccine against hospital and emergency department
- admissions due to the omicron and delta variants in a large health system in the
- 753 USA: a test-negative case-control study. Lancet Respir Med. 2022;10(7):689-99.
- 754 97. Tenforde MW, Patel MM, Ginde AA, Douin DJ, Talbot HK, Casey JD, et al.
- 755 Effectiveness of Severe Acute Respiratory Syndrome Coronavirus 2 Messenger
- 756 RNA Vaccines for Preventing Coronavirus Disease 2019 Hospitalizations in the
- 757 United States. Clin Infect Dis. 2022;74(9):1515-24.
- 758 98. Tenforde MW, Self WH, Zhu Y, Naioti EA, Gaglani M, Ginde AA, et al.
- 759 Protection of mRNA vaccines against hospitalized COVID-19 in adults over the
- 760 first year following authorization in the United States. Clin Infect Dis. 2022.

- 761 99. Whitaker HJ, Tsang RSM, Byford R, Andrews NJ, Sherlock J, Pillai PS, et al.
- 762 Pfizer-BioNTech and Oxford AstraZeneca COVID-19 vaccine effectiveness and
- immune response amongst individuals in clinical risk groups. Journal of Infection.
- 764 2022;84(5):675-83.
- 765 100. Bubar KM, Reinholt K, Kissler SM, Lipsitch M, Cobey S, Grad YH, et al.
- 766 Model-informed COVID-19 vaccine prioritization strategies by age and
- 767 serostatus. Science. 2021;371(6532):916-21.
- 768 101. Cai J, Deng X, Yang J, Sun K, Liu H, Chen Z, et al. Modeling transmission of
- 769 SARS-CoV-2 Omicron in China. Nat Med. 2022.
- 102. Lewnard JA, Tedijanto C, Cowling BJ, Lipsitch M. Measurement of Vaccine
- 771 Direct Effects Under the Test-Negative Design. Am J Epidemiol.
- 772 2018;187(12):2686-97.
- 773 103. Halloran ME, Longini IM, Jr., Struchiner CJ. Design and interpretation of
- vaccine field studies. Epidemiol Rev. 1999;21(1):73-88.
- 775 104. Trogen B, Caplan A. Risk Compensation and COVID-19 Vaccines. Ann
- 776 Intern Med. 2021;174(6):858-9.
- 777 105. Khandker SS, Godman B, Jawad MI, Meghla BA, Tisha TA, Khondoker MU,
- et al. A Systematic Review on COVID-19 Vaccine Strategies, Their Effectiveness,
- and Issues. Vaccines (Basel). 2021;9(12).
- 780 106. Singh JA, Upshur REG. The granting of emergency use designation to
- 781 COVID-19 candidate vaccines: implications for COVID-19 vaccine trials. Lancet
- 782 Infect Dis. 2021;21(4):e103-e9.
- 783 107. Greenland S. Basic methods for sensitivity analysis of biases. Int J
- 784 Epidemiol 1996;25(6):1107-16.

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

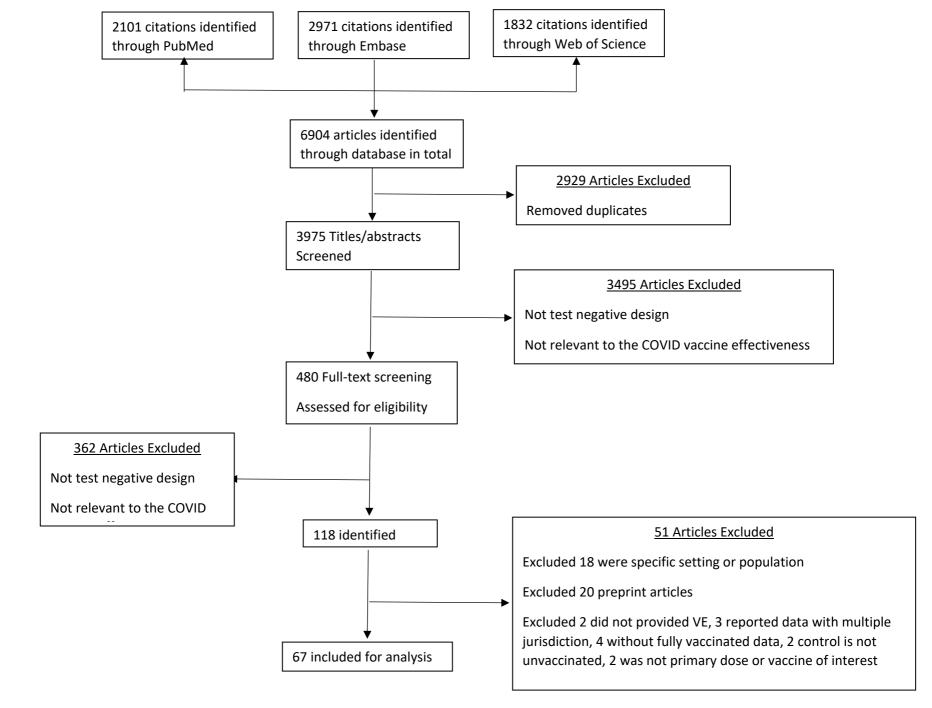
801

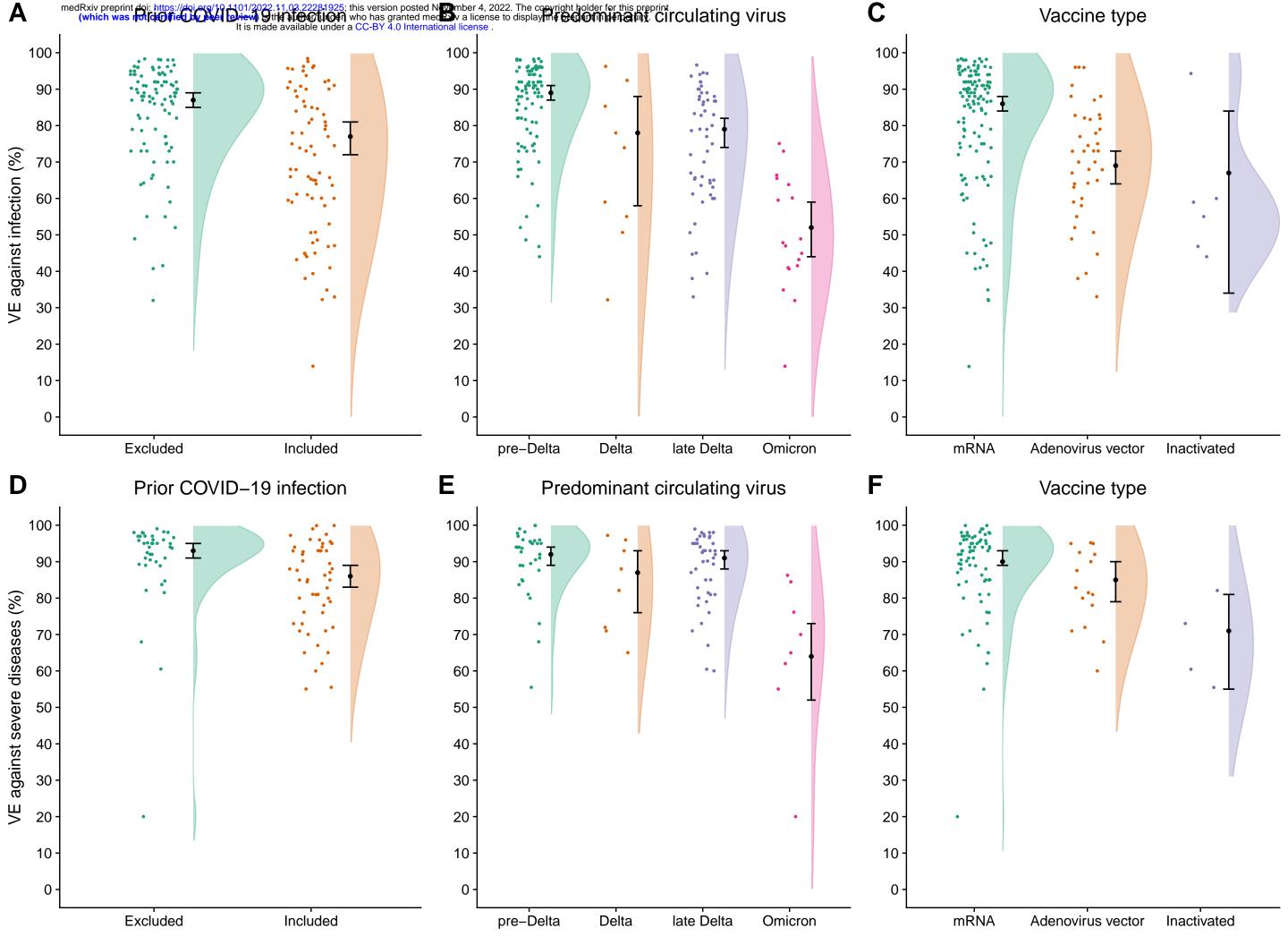
802

803

804

805


806


807

808

809

FIGURE LEGENDS **Figure 1**. Selection of studies for the systematic review **Figure 2.** VE point estimates from identified studies based on prior infection (Panel A), predominant circulating virus (Panel B) and vaccine type (Panel C). Each point represents the VE point estimate. Estimates are jittered to enable visualisation. Black points represent the pooled VE estimate from meta-analysis with black lines representing the 95% confidence interval around the pooled estimate. Shaded area is the violin plot, showing the smoothed density of the VE point estimates. Figure 3. Pooled VE estimates against infection and severe disease by circulating virus, vaccine types, and the inclusion or exclusion of participants with prior COVID-19 infection from random-effect meta-analysis. Figure 4. Predicted VE for a group of individuals based on the estimated ratio of odds ratios (ROR) estimated from meta-regression, and the VE for the individuals in the reference group. Panel A and B indicate predicted VE against infection and severe disease, respectively. Prior COVID-19 infection, cumulative incidence of cases before the study, and the incidence rate of cases during study are considered. Models adjusted for age group, type of vaccine, predominant circulating virus, and enrolment criteria.

Factors		No. of estimates	VE range		VE (95% CI)	l^2
VE against infection						
Including participants with prior COVID-19 infection	n Excluded	96	(32, 98)	•	87 (85, 89)	100
	Included	77	(14, 98)	•	77 (72, 81)	100
Vaccine type	mRNA vaccines	126	(14, 98)	•	86 (84, 88)	100
	Adenovirus vector vaccines	41	(33, 96)	•	69 (64, 73)	100
	Inactivated virus vaccines	6	(44, 94)		67 (34, 84)	100
Predominant circulating virus	pre-Delta	92	(44, 98)	•	89 (87, 91)	99
	Delta	9	(32, 96)		78 (58, 88)	100
	late-Delta	54	(33, 97)	•	79 (74, 82)	100
	Omicron	18	(14, 75)	-	52 (44, 59)	99
VE against severe disease						
Including participants with prior COVID-19 infection	n Excluded	40	(20, 99)	•	93 (91, 95)	98
	Included	53	(55, 100)	•	86 (83, 89)	99
Vaccine type	mRNA vaccines	73	(20, 100)	•	91 (89, 93)	99
	Adenovirus vector vaccines	16	(60, 95)	-	85 (79, 90)	98
	Inactivated virus vaccines	4	(56, 82)	—	71 (55, 81)	99
Predominant circulating virus	pre-Delta	35	(56, 100)	•	92 (89, 94)	97
	Delta	8	(65, 97)	-	87 (76, 93)	98
	late-Delta	42	(60, 99)	•	91 (88, 93)	99
	Omicron	8	(20, 86)	-•-	64 (52, 73)	84

0 25 50 75 100

