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Abstract 
 
Deep-learning methods for auto-segmenting brain images either segment one slice of the image (2D), five consecutive slices 
of the image (2.5D), or an entire volume of the image (3D). Whether one approach is superior for auto-segmenting brain 
images is not known.  
 
We compared these three approaches (3D, 2.5D, and 2D) across three auto-segmentation models (capsule networks, UNets, 
and nnUNets) to segment brain structures. We used 3430 brain MRIs, acquired in a multi-institutional study, to train and 
test our models. We used the following performance metrics: segmentation accuracy, performance with limited training 
data, required computational memory, and computational speed during training and deployment.  
 
3D, 2.5D, and 2D approaches respectively gave the highest to lowest Dice scores across all models. 3D models maintained 
higher Dice scores when the training set size was decreased from 3199 MRIs down to 60 MRIs. 3D models converged 20% 
to 40% faster during training and were 30% to 50% faster during deployment. However, 3D models require 20 times more 
computational memory compared to 2.5D or 2D models.  
 
This study showed that 3D models are more accurate, maintain better performance with limited training data, and are faster 
to train and deploy. However, 3D models require more computational memory compared to 2.5D or 2D models.  
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Abbreviations: 

• 2D segmentation: two-dimensional segmentation 

• 2.5D segmentation: enhanced two-dimensional segmentation 

• 3D segmentation: three-dimensional segmentation 

• ADNI: Alzheimer’s disease neuroimaging initiative 

• CapsNet: capsule network 

• CPU: central processing unit 

• CT: computed tomography 

• GB: giga-byte 

• GPU: graphics processing unit 

• MRI: magnetic resonance imaging 
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Introduction:  
 
Segmentation of brain magnetic resonance images (MRIs) has widespread applications in the management of neurological 
disorders.1–3 In patients with neurodegenerative disorders, segmenting brain structures such as the hippocampus provides 
quantitative information about the amount of brain atrophy.4 In patients undergoing radiotherapy, segmentation is used to 
demarcate important brain structures that should be avoided to limit potential radiation toxicity.5 Pre-operative or intra-
operative brain MRIs are often used to identify important brain structures that should be avoided during neurosurgery.6,7 
Manual segmentation of brain structures on these MR images is a time-consuming task that is prone to intra- and inter-
observer variability.8 As a result, deep learning auto-segmentation methods have been increasingly used to efficiently 
segment important anatomical structures on brain MRIs.9  
 
Compared to two-dimensional (2D) auto-segmentation tasks, the three-dimensional (3D) nature of brain MRIs makes auto-
segmentation considerably more challenging (Figure 1). There have been three proposed approaches to handling auto-
segmentation of 3D images: 1) analyze and segment a two-dimensional slice of the image at a time (2D),10 2) analyze five 
consecutive two-dimensional slices at a time to generate a segmentation of the middle slice (2.5D),11 and 3) analyze and 
segment the image volume in the three-dimensional space (3D).10 Although each approach has shown some promise in 
medical image segmentation, a comprehensive comparison and benchmarking of these approaches for auto-segmentation 
of brain MRIs is lacking. Prior studies on comparing these auto-segmentation approaches have often not evaluated their 
efficacy in segmenting brain MRIs, or have limited their comparison narrowly to one deep learning architecture. 10,12–14 
Additionally, previous studies have focused primarily on segmentation accuracy and failed to evaluate more practical 
metrics such as computational efficiency or accuracy in data-limited settings. As a result, it is difficult for clinicians and 
researchers to easily choose the appropriate auto-segmentation method for a desired clinical task. There is a need to compare 
and benchmark these three approaches for brain MRI auto-segmentation across different models and using comprehensive 
performance metrics.  
 
In this study, we comprehensively compared 3D, 2.5D, and 2D approaches to brain MRI auto-segmentation across three 
different deep learning architectures and used metrics of accuracy and computational efficiency. We used a multi-
institutional cohort of 3,430 brain MRIs to train and test our models, and evaluated the efficacy of each approach across 
three clinically-relevant anatomical structures of the brain.  
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Methods: 
 
Dataset 
 
This study used a dataset of 3,430 T1-weighted brain MR images belonging to 841 patients from 19 institutions enrolled in 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.15 The inclusion and exclusion criteria of ADNI have been 
previously described.16 On average, each patient underwent four MRI acquisitions. Each patient underwent MR imaging 
using a single scanner at each site. However, the diversity of scanners in all study sites included nine different types of MR 
scanners. Appendix 1 describes the details of MRI acquisition parameters. We downloaded the anonymized MRIs of these 
patients from Image and Data Archive, which is a data-sharing platform.15 The patients were randomly split into training 
(3,199 MRIs, 93% of data), validation (117 MRIs, 3.5% of data), and test (114 MRIs, 3.5% of data) sets at the patient level. 
Therefore, all images belonging to a patient were assigned to either the training, validation, or test set. Table 1 summarizes 
patient demographics.  
 
Anatomic Segmentations 
 
We trained our models to segment three representative structures of the brain: the third ventricle, thalamus, and 
hippocampus. These structures represent varying degrees of segmentation difficulty: the third ventricle is an easy structure 
to segment because it is filled with cerebrospinal fluid (CSF) with a distinct image contrast compared to surrounding 
structures; the thalamus is a medium-difficulty structure because it is bounded by CSF on one side and is bounded by white-
matter on the other side, and the hippocampus is a difficult structure because it has a complex shape and is neighbored by 
multiple brain structures with different image contrasts.  Preliminary ground-truth segmentations were initially generated 
by FreeSurfer,4,17,18 and were manually corrected by a board-eligible radiologist (AA).  
 
Image Pre-Processing  
 
MRI preprocessing included corrections for B1-field variations as well as intensity inhomogeneities.19,20 The 3D brain image 
was cropped around the brain after removing the skull, face, and neck tissues.21 The input to the 3D capsule networks and 
3D UNets were image patches sized at 64×64×64 voxels. The inputs to the 2.5D capsule networks and 2.5D UNets were 
five consecutive slices of the image. The inputs to the 2D capsule networks and 2D UNets were one slice of the image. The 
inputs to the 3D and 2D nnUNet models were respectively 3D and 2D patches of the images with self-configured patch 
sizes that were automatically set by the nnUNet paradigm.22 Appendix 2 describes the details of pre-processing. 
 
Auto-segmentation Models 
 
We compared the 3D, 2.5D, and 2D approaches across three segmentation models: capsule networks (CapsNets),23 UNets,24 
and nnUNets.22 These models are considered the highest-performing auto-segmentation models in the biomedical 
domain.9,22,23,25–29 The 3D models process a 3D patch of the image as input, all feature maps and parameter tensors in all 
layers are 3D, and the model output is the segmented 3D patch of the image. Conversely, 2D models process a 2D slice of 
the image as input, all feature maps and parameter tensors in all layers are 2D, and the model output is the segmented 2D 
slice of the image. The 2.5D models process five consecutive slices of the image as input channels. The rest of the 2.5D 
model, including the feature maps and parameter tensors, are 2D, and the model output is the segmented 2D middle slice 
among the five slices. We did not develop 2.5D nnUNets, because the self-configuring paradigm of nnUNets is developed 
for 3D and 2D inputs but not for 2.5D inputs. Notably, the aim of training and testing nnUNets (in addition to UNets) was 
to ensure that our choices of hyperparameters did not cause one approach (such as 3D) to perform better than other 
approaches. The nnUNet can self-configure the best hyperparameters for 3D and 2D approaches but not for the 2.5D 
approach. As a result, we did not train or test 2.5D nnUNets. The model architectures are described in Appendix 3.   
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Training  
 
We trained the CapsNet and UNet models for 50 epochs using Dice loss and the Adam optimizer.30 Initial learning rate was 
set at 0.002. We used dynamic paradigms for learning rate scheduling, with a minimal learning rate of 0.0001. The 
hyperparameters for our CapsNet and UNet models were chosen based on the model with the lowest Dice loss over the 
validation set. The hyperparameters for the nnUNet model were self-configured by the model.22 Appendix 4 describes the 
training hyperparameters for CapsNet and UNet. 
 
Performance Metrics 
 
For each model (CapsNet, UNet, and nnUNet), we compared the performance of 3D, 2.5D, and 2D approaches using the 
following metrics: 1) Segmentation accuracy: we used the Dice score to quantify the segmentation accuracy of the fully 
trained models over the test set.31 We compared Dice scores between the three approaches for three representative anatomic 
structures of the brain: the third ventricle, thalamus, and hippocampus. The mean Dice scores for the auto-segmentation of 
these brain structures are reported together with their 95% confidence interval. To compute the 95% confidence interval for 
each Dice score, we used bootstrapping to sample the 114 Dice scores over the test set, with replacement, 1000 times. We 
then calculated the mean Dice score for each of the 1000 samples, giving us 1000 mean Dice scores. We then sorted these 
mean Dice scores and found the range that covered 95% of them, which is equivalent to the 95% confidence interval for 
each Dice score; 2) Performance when training data is limited: we trained the models using the complete training set and 
random subsets of the training set with 600, 240, 120, and 60 MR images. The models trained on these subsets were then 
evaluated over the test set; 3) Computational speed during training: we compared the time needed to train the 3D, 2.5D, and 
2D models per training example per epoch until the model converged; 4) Computational speed for segmenting an MR image: 
we compared how quickly each of the 3D, 2.5D, and 2D models segment one brain MRI volume; and 5) Computational 
memory: we compared how much GPU memory is required, in units of megabytes, to train and deploy each of the 3D, 2.5D, 
and 2D models.   
 
Implementation 
 
Image pre-processing was done using Python (version 3.10) and FreeSurfer (version 7). PyTorch (version 1.12) was used 
for model development and testing. Training and testing of the models were run on GPU-equipped servers (4 vCPUs, 16 
GB RAM, 16 GB NVIDIA GPU). The code used to train and test our models is available on our lab’s GitHub page: 
https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-3D2D-Segmentation. 
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Results: 
 
The segmentation accuracy of the 3D approach across all models and all anatomic structures of the brain was higher than 
2.5D or 2D approaches, with Dice scores of the 3D models above 90% for all anatomic structures (Table 2). Within the 3D 
approach, all models (CapsNet, UNet, and nnUNet) performed similarly in segmenting each anatomic structure, with their 
Dice scores within 1% of each other. For instance, the Dice scores of 3D CapsNet, UNet, and nnUNet in segmenting the 
hippocampus were respectively 92%, 93%, and 93%. Figure 2 shows auto-segmented brain structures in one patient using 
the three approaches. 
 
3D models maintained higher accuracy, compared to 2.5D and 2D models, when training data was limited (Figure 3). When 
we trained the 3D, 2.5D, and 2D CapsNets using the full training set containing 3,199 MRIs, their Dice scores in segmenting 
the third ventricle were respectively 95%, 90%, and 90%. When we trained the same models on smaller subsets of the 
training set containing 600, 240, 120, and 60 MRIs, the performance of 3D, 2.5D, and 2D CapsNets gradually decreased 
down to 90%, 88%, and 87% for the 3D, 2.5D, and 2D CapsNets, respectively (Figure 3). Importantly, the 3D CapsNet 
maintained higher Dice scores (over the test set) compared to 2.5D or 2D CapsNets in all these experiments. Similarly, 
when we trained 3D, 2.5D, and 2D UNets using the full training set, their Dice scores in segmenting the third ventricle were 
respectively 96%, 91%, and 90%. Decreasing the size of the training set down to 60 MRIs resulted in Dice scores of 90%, 
88%, and 87% for the 3D, 2.5D, and 2D UNets, respectively. Again, the 3D UNet maintained higher Dice scores compared 
to 2.5D or 2D UNets in all these experiments. Lastly, when we trained 3D and 2D nnUNets using the full training set, their 
Dice scores in segmenting the third ventricle were respectively 96% and 90%. Decreasing the size of the training set down 
to 60 MRIs resulted in Dice scores of 92% and 87% for the 3D and 2D nnUNets, respectively. Once more, the 3D nnUNet 
maintained higher Dice scores compared to the 2D nnUNet in all these experiments (Figure 3).   
 
The 3D models trained faster compared to 2.5D or 2D models (Figure 4). The 3D, 2.5D, and 2D CapsNets respectively took 
0.8, 1, and 1 seconds per training example per epoch to converge during training. The 3D, 2.5D, and 2D UNets respectively 
took 1.6, 2.2 and 2.9 seconds per training example per epoch to converge during training. The 3D and 2D nnUNets 
respectively took 2 and 2.9 seconds per training example per epoch to converge during training. Therefore, 3D models 
converged 20% to 40% faster compared to 2.5D or 2D models.  
 
Fully-trained 3D models could segment brain MRIs faster during deployment compared to 2.5D or 2D models (Figure 4). 
Fully-trained 3D, 2.5D, and 2D CapsNets could respectively segment a brain MRI in 0.2, 0.4, and 0.4 seconds. Fully-trained 
3D, 2.5D, and 2D UNets could respectively segment a brain MRI in 0.2, 0.3, and 0.3 seconds. Lastly, fully-grained 3D and 
2D nnUNets could respectively segment a brain MRI in 0.3 and 0.5 seconds. Therefore, fully-trained 3D models segment a 
brain MRI 30% to 50% faster compared to fully-trained 2.5D or 2D models. 
 
The 3D models need more computational memory to train and deploy as compared to 2.5D or 2D models (Figure 5). The 
3D, 2.5D, and 2D CapsNets respectively require 317, 19, and 19 megabytes of GPU memory during training. The 3D, 2.5D, 
and 2D UNets respectively require 3150, 180, and 180 megabytes of GPU memory. The 3D and 2D nnUNets respectively 
require 3200 and 190 megabytes of GPU memory. Therefore, 3D models required about 20 times more GPU memory 
compared to 2.5D or 2D models. Notably, CapsNets require 10 times less GPU memory compared to UNets or nnUNets. 
Therefore, 3D CapsNets only required two times more GPU memory compared to 2.5D or 2D UNets or nnUNets (Figure 
5).  
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Discussion:  
 
In this study, we compared 3D, 2.5D, and 2D approaches of auto-segmentation across three different deep learning 
architectures, and found that the 3D approach is more accurate, faster to train, and faster to deploy. Moreover, the 3D auto-
segmentation approach maintained better performance in the setting of limited training data. We found the major 
disadvantage of 3D auto-segmentation approaches to be increased computational memory requirement compared to similar 
2.5D and 2D auto-segmentation approaches.  
 
Our study extends the prior literature 10,12,13,32,33 in key ways. We provide the first comprehensive benchmarking of 3D, 
2.5D, and 2D approaches in auto-segmenting brain MRIs, measuring both accuracy and computational efficiency. We 
compared 3D, 2.5D, and 2D approaches across three of the most successful auto-segmentation models to date, namely 
capsule networks, UNets, and nnUNets. Our findings provide a practical comparison of these three auto-segmentation 
approaches that can provide insight when attempting auto-segmentation in settings where computational resources are 
bounded or when the training data is limited. 
 
We found that the 3D approache to auto-segmentation trains faster and deploys more quickly. Previous studies that 
compared the computational speed of 3D and 2D UNets have concluded conflicting results: some suggested that 2D models 
converge faster,10,13,33 while others suggested that 3D models converge faster.22 Notably, one training iteration of 2.5D or 
2D models is faster than 3D models because 2.5D and 2D models have 20 times fewer trainable parameters compared to 
3D models. However, feeding a 3D image volume into a 2.5D or 2D model requires a for loop that iterates through multiple 
slices of the image, which slows down 2.5D and 2D models. Additionally, 3D models can converge faster during training 
because they can use the contextual information in the 3D image volume to segment each structure.10 Conversely, 2.5D 
models can only use the contextual information in a few slices of the image,11 and 2D models can only use the contextual 
information in one slice only.12 Since the 3D approach provides more contextual information for each segmentation target, 
the complex shape of structures such as the hippocampus can be learned faster, and, as a result, the convergence of 3D 
models can become faster. Lastly, each training iteration through a 3D model can be accelerated by larger GPU memory, 
since the training of learnable parameters can be parallelized. However, each training iteration through a 2.5D or 2D model 
cannot be accelerated by larger GPU memory because iterations through the slices of the image (for loop) cannot be 
parallelized. We propose that our findings, that 3D models converge faster, are resulted from using state-of-the-art GPUs 
and efficient 3D models that learn contextual information in the 3D volume of the MR image faster. Our results also showed 
that the 3D models are faster during deployment since they can process the 3D volume of the image at once, while 2.5D or 
2D models must loop through 2D image slices.  
 
Our results did highlight one of the drawbacks of 3D auto-segmentation approaches. Specifically, we found that within each 
model, the 3D approach requires 20 times more computational memory compared to 2.5D or 2D approaches. Previous 
studies that compared 3D and 2D UNets have found similar results.10,32 This seems to be the only downside of the 3D 
approach compared to 2.5D or 2D approaches. Notably, the 2.5D approach was initially developed to achieve segmentation 
accuracy similar to the 3D approach while requiring computational resources similar to the 2D approach. In brain image 
segmentation, however, our results showed that the 2.5D approach could not achieve the segmentation accuracy of the 3D 
approach. This raises the question of which approach to use when computational memory is limited. Our results showed 
that 3D CapsNets outperform all 2.5D and 2D models while only requiring twice more computational memory than the 
2.5D or 2D UNets or nnUNets. Conversely, 3D UNets and nnUNets require 20 times more computational memory compared 
to 2.5D or 2D UNets and nnUNets. Therefore, 3D CapsNets may be preferred in settings where computational memory is 
limited.  
 
Our results corroborate previous studies showing that deep learning is accurate in biomedical image auto-
segmentation.9,22,26–29 Prior studies have shown that capsule networks, UNets, and nnUNets are the most accurate models to 
auto-segment biomedical images.9,11,22,23,25,26,28,34,35 Prior studies have also shown that the 3D, 2.5D, and 2D versions of these 
models can auto-segment medical images.9,11,22,23,28,29 However, evidence was lacking about which of the 3D, 2.5D, or 2D 
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approaches would be more accurate in auto-segmenting brain structures on MR images. Our study also provides practical 
benchmarking of computational efficiency between the three approaches, which is often under-reported. 
 
Our study has several notable limitations. First, we only compared the 3D, 2.5D, and 2D approaches to the auto-
segmentation of brain structures on MR images. The results of this study may not generalize to other imaging modalities or 
other body organs. Second, there are multiple ways to develop a 2.5D auto-segmentation model.11,36,37 While we did not 
implement all the different versions of 2.5D models, we believe that our implementation of 2.5D models (using five 
consecutive image slices as input channels) is the best approach to segment the neuroanatomy on brain images. Third, our 
results about the relative deployment speed of 3D models as compared to 2.5D or 2D models might change as computational 
resources change. If the GPU memory is large enough to accommodate large 3D patches of the image, 3D models can 
segment the 3D volume faster. However, in settings where the GPU memory is limited, the 3D model should loop through 
multiple smaller 3D patches of the image, eroding the faster performance of the 3D models during deployment. However, 
we used a 16 GB GPU to train and deploy our models, which is commonplace in modern computing units used for deep 
learning. Finally, we compared 3D, 2.5D, and 2D approaches across three auto-segmentation models only: CapsNets, 
UNets, and nnUNets. While multiple other auto-segmentation models are available, we believe that our study has compared 
3D, 2.5D, and 2D approaches across the most successful deep-learning models for medical image auto-segmentation. 
Further studies comparing the three approaches across other auto-segmentation models can be an area of future research. 
 
 
Conclusions: 
 
In this study, we compared 3D, 2.5D, and 2D approaches to brain image auto-segmentation across different models and 
concluded that the 3D approach is more accurate, achieves better performance in the context of limited training data, and is 
faster to train and deploy. Our results hold across various auto-segmentation models, including capsule networks, UNets, 
and nnUNets. The only downside of the 3D approach is that it requires 20 times more computational memory compared to 
the 2.5D or 2D approaches. Because 3D capsule networks only need twice the computational memory that 2.5D or 2D 
UNets and nnUNets need, we suggest using 3D capsule networks in settings where computational memory is limited.  
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Figure 1: we compared three segmentation approaches (3D, 2.5D, and 2D) across three auto-segmentation models (capsule 
networks, UNets, and nnUNets). The 2D approach analyzes and segments one slice of the image, the 2.5D approach analyzes 
five consecutive slices of the image to segment the middle slice, and the 3D approach analyzes and segments a 3D volume 
of the image. 
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Table 1: Study participants tabulated by the training, validation, and test sets.  
 

Data Partitions Number of 
MRI volumes 

Number of 
patients 

Age 
mean ± SD 

Gender† Diagnosis†† 

Training set 3199 841 76 ± 7 42% F, 58% M 29% CN, 54% MCI, 17% AD 

Validation set 117 30 75 ± 6 30% F, 70% M 21% CN, 59% MCI, 20% AD 

Test set 114 30 77 ± 7 33% F, 67% M 27% CN, 47% MCI, 26% AD 
 

† F: female; M: male. 
†† CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease. 
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Figure 2: Examples of 3D, 2.5D, and 2D segmentations of the right hippocampus by CapsNet, UNet, and nnUNet. 
Target segmentations and model predictions are respectively shown in green and red. Dice scores are provided for the 
entire volume of the right hippocampus in this patient (who was randomly chosen from the test set).  
 

 

 

 
  

3D CapsNet 2.5D CapsNet 

Dice score: 93% 

Right Hippocampus 

2D CapsNet 

Dice score: 71% 

Right Hippocampus 

Dice score: 70% 

Right Hippocampus 

3D UNet 2.5D UNet 

Dice score: 92% 

Right Hippocampus 

2D UNet 

Dice score: 84% 

Right Hippocampus 

Dice score: 84% 

Right Hippocampus 

3D nnUNet 

Dice score: 93% 

Right Hippocampus 

2D nnUNet 

Dice score: 91% 

Right Hippocampus 
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Table 2: Comparing the segmentation accuracy of 3D, 2.5D, and 2D approaches across three auto-segmentation 
models to segment brain structures. The three auto-segmentation models included CapsNet, UNet, and nnUNet. These 
models were used to segment three representative brain structures: 3rd ventricle, thalamus, and hippocampus, which 
respectively represent easy, medium, and difficult structures to segment. The segmentation accuracy was quantified by 
Dice scores over the test (114 brain MRIs).  
 

CapsNet 

Brain 
structure 

3D Dice  
(95% CI) 

2.5D Dice 
(95% CI) 

2D Dice  
(95% CI) 

3rd ventricle 
95 % 

(94 to 96) 
90 % 

(89 to 91) 
90 % 

(88 to 92) 

Thalamus 94% 
(93 to 95) 

76 % 
(74 to 78) 

75 % 
(72 to 78) 

Hippocampus 92 % 
(91 to 93) 

73 % 
(71 to 75) 

71 % 
(68 to 74) 

 
 
 

UNet 

Brain 
structure 

3D Dice  
(95% CI) 

2.5D Dice 
(95% CI) 

2D Dice  
(95% CI) 

 3rd ventricle 
96 % 

(95 to 97) 
92% 

(91 to 93) 
91 % 

(89 to 91) 

Thalamus 95 % 
(94 to 96) 

92% 
(91 to 93) 

90 % 
(88 to 92)    

Hippocampus 
93 % 

(92 to 94) 
86 % 

(84 to 88) 
88 % 

(86 to 90) 
 
 

nnUNet 

Brain 
structure 

3D Dice  
(95% CI) 

2.5D Dice 
(95% CI) 

2D Dice  
(95% CI) 

3rd ventricle 
96 % 

(95 to 97) N/A 
90 % 

(89 to 91) 

Thalamus 94 % 
(93 to 95) N/A 92 % 

(91 to 93) 

Hippocampus 
93 % 

(92 to 94) N/A 
91 % 

(90 to 92) 
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Figure 3: Comparing 3D, 2.5D, and 2D approaches when training data is limited. As we decreased the size of the 
training set from 3000 MRIs down to 60 MRIs, the 3D models maintained higher segmentation accuracy (measured by 
Dice scores).  
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Figure 4: Comparing computational time required by 3D, 2.5D, and 2D approaches to train and deploy auto-
segmentation models. The training times represent how much time it would take per training example per epoch for the 
model to converge. The deployment times represent how much time each model would require to segment one brain MRI 
volume. The 3D approach trained and deployed faster across all auto-segmentation models. 
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Figure 5: Comparing the memory required by 3D, 2.5D, and 2D approaches. The bars represent the computational 
memory required to accommodate the total size of each model, including the parameters plus the cumulative size of the 
forward- and backward-pass feature volumes. Within each auto-segmentation model (CapsNet, UNet, and nnUNet), the 
3D approach requires 20 times more computational memory compared to 2.5D or 2D approaches.  
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Appendix 1: MRI acquisition parameters 
 

 
Field strength = 3.0 tesla 
Coil = 8HR Brain 
 
Weighting = T1 
Flip angle=8.0 degree 
TR = 6.6 ms 
TE = 2.8 ms 
TI = 900.0 ms 
 
Acquisition type = 3D 
Acquisition plane = Sagittal 
Matrix size = 256×256×166 pixels (X×Y×Z) 
Pixel size = 1×1×1.2 mm (X×Y×Z) 
Pixel spacing: along X direction = 1 mm; along Y direction= 1 mm 
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Appendix 2: Pre-Processing 
 
We corrected for intensity inhomogeneities including B1-field variations. Our pre-processing pipeline first registers the 
brain image to the MNI305 atlas. Then, pixel intensities are used to roughly segment the white matter. The variations in the 
pixel intensities in the white matter are then used to estimate the B1 field map Finally, B1 bias field correction is done by 
dividing the pixel intensities by the estimated bias field.6 
 
The next step is the removal of the skull, face, and neck, only leaving the brain. We used a hybrid method of skull stripping 
that combines a watershed algorithm and a deformable surface model.7 This method first roughly segments the white-matter 
based on pixel intensities. Then, watershed algorithms are used to find the gray-white matter junction and the brain surface. 
Next, a deformable surface model is used to model the brain surface. The curvature of the brain surface at each point is 
computed, and these curvatures are used to register the brain surface onto an atlas. The atlas is formed by computing the 
curvatures of the brain sulci and gyri in several subjects. The reconstructed brain surface, registered to the atlas, is then 
automatically corrected in case the curvatures in a particular region of the surface do not make sense. The resulting corrected 
brain surface model is used for skull stripping.7 
 
 

     

Skull 
stripping 

Intensity 
inhomogeneity 
correction 

Crop MRI volume 
around the brain 

Segmentation patch 

Figure S3: Pre-processing steps.
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Appendix 3: Segmentation Models 
 
The architectures of capsule network (B), UNet (C), and the self-configured nnUNet (D) for 3D image segmentation are 
also shown. The 2D and 2.5D models had similar architectures, with the only difference that all layers of 2D models analyze 
2D image slices, and the input layer of the 2.5D models accepts five consecutive image slices as input channels.  
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Appendix 4: Training hyperparameters for CapsNet and UNet models 
 
 
 
Training set size (MRI volumes):   3199 
Validation set size (MRI volumes):   117 
Test set size (MRI volumes):   114 
 
 
Training batch size (MRI volumes):   4 
Training mini-epoch size: 30 batches: during training, the validation set loss was computed after 

each mini-epoch 
 
Training epochs:     50 
Optimizer:     Adam 
Optimizer hyperparameters:    𝛽! = 0.9, 𝛽" = 0.999, 𝜖 = 10#$ 
 
 
Initial learning rate:    0.002 
Minimal learning rate:    0.0001 
Learning rate scheduling:   Dynamic (via monitoring the validation set loss during training): 

Learning rate was decreased by half if the validation set loss did not 
improve over 10 mini-epochs 
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