It is made available under a	CC-BY 4.0	International	license.
------------------------------	-----------	---------------	----------

1

1	A DISTRIBUTIONAL REGRESSION APPROACH TO MODELING THE IMPACT
2	OF STRUCTURAL AND INTERMEDIARY SOCIAL DETERMINANTS ON
3	COMMUNITIES BURDENED BY TUBERCULOSIS IN EASTERN AMAZONIA –
4	BRAZIL
5	
6	Authors:
7	Clóvis Luciano Giacomet ¹ , Antônio Carlos Vieira Ramos ² , Heriederson Sávio Dias Moura ² ,
8	Thaís Zamboni Berra ² , Yan Mathias Alves ² , Felipe Mendes Delpino ^{2,3} , Jason E. Farley ⁴ , Nancy
9	R. Reynolds ⁴ , Jonas Bodini Alonso ⁵ , Titilade Kehinde Ayandeyi Teibo ² , Ricardo Alexandre
10	Arcêncio ^{6*}
11	
12	¹ Interunits PhD Program in Nursing, University of São Paulo College of Nursing at Ribeirão
13	Preto, Ribeirão Preto, Brazil
14	² Graduate Program in Public Health Nursing, University of São Paulo College of Nursing at
15	Ribeirão Preto, Ribeirão Preto, Brazil
16	³ Postgraduate Program in Nursing, Federal University of Pelotas, Pelotas, Brazil
17	⁴ The Center for Infectious Disease and Nursing Innovation, Johns Hopkins School of
18	Nursing, Baltimore, United States of America
19	⁵ Research Support Center, University of São Paulo College of Nursing at Ribeirão Preto,
20	Ribeirão Preto, Brazil
21	⁶ Department of Maternal and Child Nursing and Public Health, University of São Paulo
22	College of Nursing at Ribeirão Preto, Ribeirão Preto, Brazil
23	
24	*Corresponding author

25 Exercite init is people with the second that has not been certified by peer review and should not be used to guide clinical practice.

2

26 ABSTRACT

Background: TB is a disease affected by social determinants of health; however, it is unclear what its structural and intermediary determinants are in Eastern Amazonia. The region contains many natural resources, yet it suffers drastically from poverty, inequality, and neglected diseases. Here, we aimed to employ mathematical modeling to evaluate the influence of structural and intermediary determinants of health on TB in Eastern Amazonia – Brazil.

Methods: We conducted an ecological study. We considered cases diagnosed of TB and collected data by census tract to measure the social determinants. We applied the *generalized additive model for location, scale, and shape* (GAMLSS) framework to identify the effect of social determinants on communities with a high prevalence of TB. The Double Poisson distribution (DPO) was selected and we tested the inclusion of quadratic effects.

Results: 1,730 people were selected. The majority were female (59.3%), aged 31 to 59 years (47.6%), blacks (67.9%), schooling level of 5 to 8 years (18.7%). Prevalence of alcoholism was 8.6% and mental illness 0.7%. The GAMLSS analyses showed that the risk of community incidence of TB is associated with the proportion of the population without basic sanitation and also with the age groups 16-31 years and > 61 years.

42 **Conclusions**: The study revealed that GAMLSS is an strategic tool to identify territories at 43 greatest risk for TB. Models should have broader scope to include social determinants so as to 44 better inform policy to reduce inequality and achieving the goal of the End TB strategy.

3

45 INTRODUCTION

Brazil is among the countries with the highest tuberculosis (TB) burden[1]. According to the latest report from the World Health Organization (WHO), Brazil identified more than 66,819 cases in 2020. This shows a decrease of 18% compared with data from the year 2019, but at the same time, there was an increase in TB-related mortality[1].

Although Brazil has committed to ending TB by 2050, the country has faced enormous challenges in achieving this ambitious goal. This is largely due to austerity measures that have cut social benefits to lower socio-economic groups as well as to a serious economic crisis brought on by the pandemic and government policies[2]. According to forecast models, the TB targets of the UN Sustainable Development Goals (SDGs) (which aims for a 90% reduction in TB deaths by 2030) are not likely to be achieved.

56 There is a broad agreement that progress in tuberculosis control will require not only 57 investment in strengthening tuberculosis control programs, diagnostics, and treatment, but also 58 action on the Social and structural Determinants of TB. The Structural factors include 59 governing action, economic and social policies, and the position of power, prestige, and resources in accordance with the social level occupied by an individual, family, or 60 61 community[3]. Intermediary determinants consist of material circumstances, psychosocial behavior, biological factors, and the health system[3]. Literature is replete with evidence of 62 their influence in the context of TB,[4-9] but are without making distinctions on the dimensions 63 64 of these determinants.

Mathematical modelling can be useful in exploring the contribution of health drivers to face the epidemic and browse through evidences to End TB strategies. However, current TB models have limitations, for example, a systematic review conducted by Pedrazzoli and colleagues showed that that few studies employing mathematical modeling have addressed underlying Social and Structural determinants, which makes this a knowledge gap[4].

4

Although many mathematical models have been used for forecasting TB, most of them tended
to ignore the differences in variance and its asymmetry/imbalance and they retain almost
exclusively the mean for explaining the outcome[10], which has revealed an important gap in
knowledge.

Studies have provided results that are more satisfactory when alternative regressions techniques are applied. Generalized additive models for location, scale, and shape (GAMLSS) has allowed a more expanded approach where it worked with not only the mean (or location) but also all the parameters of the conditional distribution of outcome to be modeled as parametric/or nonparametric additive functions of independent variables and/or random-effects terms[11,12]. Therefore, here, we aimed to employ mathematical modeling to evaluate the impact of structural and intermediary social determinants on TB in Eastern Amazonia – Brazil.

81

- 82 METHODS
- 83 Study design
- 84 We used an ecological, mathematical modeling study design.

85

86 The setting of the study

We conducted the study in Macapá, the capital of Amapá state, Eastern Amazonia (Fig
1). It has a population of about 398,204 inhabitants, and a demography density near 62.14
people per km2. It is the most populous city in Northern Amazonas State.

90

91 Fig 1. Map of the study setting.

92

Regarding TB, the city presented an incidence of 17.5 cases per 100,000 in 2020, which
 represented a decrease of 25% compared to the previous year's data[13]. A problematic

5

situation is that only 39.3% of the patients diagnosed with TB had confirmation from the
bacteriological analysis (microscopy or GeneXpert MTB/RIF), and 47.3% did not have
confirmation of the diagnosis of TB through a bacteriological test[14].

98

99 The population of the study and criteria

100 The population was composed of all the cases diagnosed with tuberculosis and registered 101 in the Notification of Notifiable Diseases System (SINAN) in the period from 2001 to 2017. 102 We gathered socio-demographic data (age, gender, race/ color self-reported and years of study 103 and occupation) and clinical information (type of case – new or retreatment; clinical form – 104 pulmonary or extrapulmonary; coinfection with TB-HIV; alcoholism; mental disorders; 105 comorbid TB-diabetes).

106 In accordance with the WHO guidelines, the diagnosis of TB refers to the recognition of 107 an active case when a patient with Mycobacterium tuberculosis complex is identified from a 108 clinical specimen, either by microscopy, culture, or a newer method such as a molecular line 109 probe assay[15]. In Brazil, a pulmonary case with one or more initial sputum smear 110 examinations positive for acid-fast bacilli (AFB) is also defined as a "case"[16]. Eventually, 111 the diagnosis can be established only through clinical examination by a physician and X-ray; 112 however, it is not recommended by the Brazilian sanitary authorities. New patients are defined 113 as those who have no history of prior TB treatment or who have been treated for at least/less 114 one month. These cases should receive a regimen containing six months of rifampicin: 115 2HRZE/4HR[16].

116

117 Unity of study analysis and variables

The unit of study analysis was 811 Urban Census Tract (UCT) contained in Macapá,
collected from the Brazilian Institute of Geography and Statistics (IBGE). The UCT consists

6

of the smallest territorial unit formed by a continuous area located in an urban area, with a
defined size, number of households, and number of residents, used for Brazilian surveys and
statistical research[17]. The information regarding UCT was obtained from the 2010 Brazilian
Demographic Census, which collected data regarding both structural and intermediary
determinants expressed by household conditions and characteristics of the territories (UCT). In
Fig 2 is shown the variable under study.

126

Fig 2. Structural and intermediary determinants selected for the study, Eastern
Amazonia – Brazil.

129

130 Analysis plan

Initially, the variables were analyzed by descriptive statistics. Additionally, for identifying the structural and intermediary determinants associated with TB, we used the model GAMLSS[11]. The reason for applying this model is because the modeling of the response variable (TB cases) did not follow a distribution of exponential family, and it showed heterogeneity in terms of distribution scale and shape. The response variable changed with the explanatory variables[19].

137 Since $y^T = (y_1, ..., y_n)$ is a vector of size n of the response variable with density function 138 $f(y_i|\theta^i, \text{where }\theta^i = (\theta_{1i}, \theta_{2i}, \theta_{3i}, \theta_{4i}) = (\mu_i, \sigma_i, \nu_i, \tau_i)$, and let k = 1, 2, 3, 4 e let $g_k(.)$ a monotone 139 link function that relates the parameters to the independent variables from the equations:

140
$$\begin{pmatrix} g_1(\mu) = n_1 = X_1\beta_1 + \sum_{j=1}^{J_1} Z_{j1}\gamma_{j1}, \\ g_2(\sigma) = n_2 = X_2\beta_2 + \sum_{j=1}^{J_2} Z_{j2}\gamma_{j2}, \\ g_3(\nu) = n_3 = X_3\beta_3 + \sum_{j=1}^{J_3} Z_{j3}\gamma_{j3}, \\ g_4(\tau) = n_4 = X_4\beta_4 + \sum_{j=1}^{J_4} Z_{j4}\gamma_{j4}. \end{cases}$$

7

141 Where
$$\mu$$
, σ , $\nu \in \tau$ are vectors of length n, $\beta_k = (\beta_{1k}, \beta_{2k}, ..., \beta_{j^k})$ is a vector of length j^k

142 eX_k is the delineation matrix of order n x j^k. The function h_{jk}

143 Non additive function of the independent variable X_k evaluated at x_{ik} .

The selection of the dependent variable distribution was performed using the Generalized Akaike information criterion, defined by $GAIC = -2l(\hat{\theta}) + bdf$, where $l(\hat{\theta})$ the likelihood function, b is is a penalty parameter, and df denotes the degrees of freedom of the model[20]. For b = 2 we have the original Akaike information criterion (AIC). According to literature[21] all distributions falling in the GAMLSS class are presented.

The selection of the independent variables was made in 2 steps. In the first step, the presence of multicollinearity among the independent variables was evaluated. The multicollinearity assessment evaluates the entry of variables in the model that are highly correlated with each other. One of the most used measures is the Variance Inflation Factor, whose expression is defined by:

154

$$4 VIF_j = \frac{1}{1 - R_j^2}$$

155 Where R_j^2 is the multiple correlation coefficient resulting from regressing X_j on the other 156 p – 1 regressor. The higher the degree of dependence of X_j on the remaining regressors, the 157 stronger the dependence and the higher the value of R_j^2 . A VIF value > 5 was adopted as the 158 cutoff point[12,22]. Since the independent variables are the same for both outcomes, the result 159 of this analysis is also considered valid for both.

160 Additionally, we applied the stepwise method using the Generalized Akaike 161 Information Criterion (GAIC) with k = 4[12] for the remaining variables from the first stage. 162 After this analysis, The Double Poisson distribution (DPO) was selected in accordance with 163 the AIC value (Table 3), where DPO (μ , σ) has the following probability density function[21].

164
$$f(y|\mu,\sigma) = (\frac{1}{\sigma})^{\frac{1}{2}} e^{-\frac{\mu}{\sigma}} (\frac{e^{-y}y^{y}}{y!}) (\frac{e\mu}{y})^{y/\sigma} dx^{y}$$

8

165	Where y = 0, 1, 2,, ∞ , $\mu > 0$ and $\sigma > 0$, where C is a proportionality constant that is
166	calculated numerically. The link function between the parameters and the independent
167	variables is the log function, i.e., $g_1(\mu) = \log(\mu)$ and $g_2(\sigma) = \log(\sigma)[21]$.

168 We verified the model's adequacy through the model's diagnostic graphics: Fitted 169 Values x Residuals, Order of Observations x Residuals, Distribution of Residuals, and the 170 Quantile-Quantile plot (Q-Q plot). Additionally, the Shapiro-Wilk Normality test was applied to the model's residuals to verify if they are fit with the Standard Normal distribution. We 171 172 considered the dependent variable, the number of TB cases in each UCT, and the structural and 173 intermediary determinants indicators as the independent variables (Table 1). These variable/ 174 proxy indicators were selected in accordance with the theoretical framework defined in the 175 study[4, 19].

176

177 Table 1. Socio-demographic and clinical-epidemiological profile of Tuberculosis cases,

178	Eastern A	mazonia	(Brazil)).
1,0				,.

Variables	N=1,730 (%)
Age (years)	
0 to 14 years	74 (4.3)
15 to 30 years old	640 (37.0)
31 to 59 years	823 (47.6)
Above 60 years old	175 (10.1)
Blank/Ignored	18 (1.0)
Gender	
Male	704 (40,7)
Female	1026 (59,3)
Years of study	
Illiterate	128 (7.4)
Elementary school complete	112 (6.5)
Elementary School Incomplete	803 (46.6)
High School Complete	224 (12.9)
Higher Education Incomplete	52 (3.0)
Higher education complete	127 (7.3)
Blank/Ignored	284 (16.4)
Registration types	
New	682 (39.4)
Relapse	9 (0.5)

9

	a (a a)
Retreatment after abandonment	0 (0.0)
Retreatment	1 (0.1)
Transfer	1 (0.1)
After death	26 (1.5)
Blank/Unknown	1.011 (58.4)
Clinic form	
Extrapulmonary	236 (13.6)
Pulmonary	1472 (85.1)
Pulmonary + Extrapulmonary	18 (1.0)
Blank/Ignored	4 (0.3)
Coinfection TB-HIV	
No	787 (45.5)
Yes	77 (4.5)
Blank/Ignored	866 (50.0)
Coinfection TB-Diabetes	
No	912 (52.8)
Yes	94 (5.4)
Blank/Ignored	724 (41,8)
Alcoholism	
No	896 (51.7)
Yes	148 (8.6)
Blank/ Ignored	686 (39.7)
Mental Disorders	
No	1001 (57.8)
Yes	12 (0.7)
Blank/Ignored	717 (41.5)

179

We performed the GAIC selection of the independent variables considering only the 180 181 linear effects. Additionally, we tested the inclusion of quadratic effects since in the scatter plots, 182 the fitted curve (by the loess method = local polynomial regression) evidenced a possible 183 quadratic relationship. To compare the two models, linear terms versus quadratic terms, we 184 used the Likelihood Ratio Test (LR). Once we selected the fittest model, we estimated the 185 Relative Increase, expressed in percentage, in the Average Number of Tuberculosis Cases 186 through the expression $AR(\beta) = [\exp(\beta) - 1] * 100\%$. The R program version 4.1.1 through the GAMLSS library[23] was used to perform the data analysis for this part. 187

188

Ethics approval and consent to participate 189

10

In compliance with Resolution 499/2012 of the National Health Council in Brazil, the study was authorized by the Municipal Health Secretariat of Macapá- Brazil and approved by the Research Ethics Committee from the University of São Paulo College of Nursing at Ribeirão Preto, which had the Certificate of Submission for Ethics Appreciation (CAAE) Number. 23043019.2.0000.5393. Consent to participate not applicable, because we work with secondary data. All participant identifiers were removed.

196

197 **RESULTS**

198 We identified 1,730 patients diagnosed with TB. Table 1 shows the main characteristics 199 of the patients, in which is observed an age ranging from 1 to 89 years (median = 44.5 years). 200 Most were female (59.3%), aged 31 to 59 years (47.6%), blacks (67.9%), and with an education 201 level of 5 to 8 incomplete years (18.7%). In terms of the clinical and epidemiological profile, 202 cases were mostly characterized as new (39.4%) and pulmonary (85.1%) TB. Regarding 203 comorbidities, we observed a TB-HIV prevalence of 4.5%; TB-Diabetes of 5.4%; Alcoholism 204 at 8.6%; and mental illness at 0.7%. We observed an excess of cases numbers with ignored or 205 blank data.

In Fig 3, evidences the spatial distribution of TB cases, considering the comorbid or
 health condition: TB-HIV coinfection mental disorder, diabetes or alcoholism.

208

209 Fig 3. Spatial distribution of tuberculosis in the study, Eastern Amazonia.

210

In Table 2, we presented the main information obtained from the descriptive statistics. For the dependent variable, we considered the total of cases and the independents (proxy variables of structural and intermediary social determinants) the proportion of households in each UCT under those conditions characterized by the variable.

215 Table 2. Statistics descriptive of the variables defined in the study, Eastern Amazonia.

216							
Variables	Mean	Standard Deviation	Minimum	Q0.25	Q0.5	Q0.75	Maximum
Cases of TB per UCT *	3.43	3.00	0.00	1.00	3.00	5.00	23.00
v1 Proportion of households with 1 to 3 people	42.32	7.56	19.15	37.77	42.21	47.19	76.81
v2 Proportion of households with 4 to 6 people	43.79	5.42	15.94	40.70	43.81	47.34	56.52
v3 Proportion of households with 7 to 9 people	10.82	4.07	0.00	8.28	10.17	12.86	29.79
v4 Proportion of households with higher than 10 people	3.08	2.19	0.00	1.60	2.70	4.04	14.89
v5 Proportion of males without schooling	18.33	7.28	3.28	13.09	17.60	22.73	44.06
v6 Proportion of females without schooling	17.14	6.82	2.33	12.33	16.12	21.38	43.90
v7 Proportion of own and paid-up domiciles	76.05	12.20	17.55	69.28	77.94	84.40	100.00
v8 Proportion of rented dwellings	16.70	9.72	0.00	9.45	15.32	22.65	67.11
v9 Proportion of domiciles in another property' condition (not owned, rented, and not granted)	0.19	0.67	0.00	0.00	0.00	0.00	10.20
v10 Proportion of households with a bathroom for exclusive use by residents or a toilet and drainage in a general sewage or rainwater network	65.63	14.40	9.09	56.64	65.60	75.00	100.00
v11 Proportion of houses without a bathroom for the exclusive use of residents or toilet	1.11	1.86	0.00	0.00	0.36	1.48	12.00
v12 Permanent particular residences with water supply from the general network	59.39	36.91	0.00	22.02	70.27	94.16	100.00
v13 Permanent particular residences with water supply from wells or springs on the property	36.73	34.79	0.00	4.49	25.65	70.83	100.00
v14 Permanent Particular Domiciles with Another Form of Water Supply	3.28	7.78	0.00	0.00	0.80	2.88	82.50
v15 Permanent private households with a bathroom exclusively for residents or sanitary	98.29	4.36	22.33	97.89	99.32	100.00	100.00
v16 Permanent private households with exclusive use of bathroom or toilet and sanitary sewage via the general sewage network or rainwater drainage	10.06	21.83	0.00	0.00	1.06	5.27	98.90

v17 Permanent private households with a bathroom for exclusive use by the residents or a toilet and sanitary	18.73	26.59	0.00	0.88	6.02	25.09	100.00
sewage via a septic tank							
v18 Permanent private households with a bathroom for							
exclusive use by the residents or a toilet and sanitary	49.23	33.94	0.00	14.18	54.88	81.91	99.36
sewage via a rudimentary septic tank							
v19 Permanent private households with a bathroom for							
exclusive use by the residents or a toilet and sewage via	17.28	28.16	0.00	0.00	1.09	21.06	100.00
river, lake, or sea							
v20 Proportion of households with no nominal monthly	4.07	4.02	0.00	1.01	2 (0	5.00	20.74
income per capita	4.07	4.83	0.00	1.31	2.68	5.06	38.64
v21 Proportion of households with per capita nominal		20.22	5 (2)	10 (1	(0.00	50.51	
monthly income of up to $1/8$ to 1 minimum wage	58.02	20.22	7.63	43.61	60.00	/3./1	96.09
v22 Proportion of households with a nominal monthly							
per capita income of more than 1 to 2 minimum wages	18.82	7.02	2.61	13.28	20.19	24.24	38.94
v23 Proportion of domiciles with nominal monthly							
income per capita of more than 2 to 3 minimum wages	7.75	5.63	0.00	3.14	6.85	11.41	36.36
x24 Proportion of households with a nominal monthly							
income per conita of more than 2 to 5 minimum wages	6.47	5.70	0.00	1.64	5.00	10.21	24.29
income per capita of more than 5 to 5 minimum wages							
v25 Proportion of nousenoids with a nominal monthly	3.93	4.57	0.00	0.71	2.24	5.55	23.25
income per capita of more than 5 to 10 minimum wages							
v26 Proportion of households with nominal monthly	1 20	2.05	0.00	0.00	0.42	1 42	
income per capita higher than 10 minimum wages	1.20	2.05	0.00	0.00	0.12	1.12	
v27 Proportion of resident people of white race or	27 10	6 51	5 88	23 31	26.96	30.70	1/112
ethnicity	27.10	0.51	5.00	25.51	20.70	50.70	14.12
v28 Proportion of black residents	9.18	5.49	0.00	5.63	8.57	11.57	52.63
v29 Proportion of resident people of vellow race or	1 1 0	1.2.4	0.00	0.0	0.00	1.00	20.00
ethnicity	1.19	1.34	0.00	0.26	0.80	1.80	39.60
v30 Proportion of resident people of mixed race or							
ethnicity	62.34	8.35	31.15	57.59	61.96	67.50	94.12
v31 Proportion of resident people of indigenous race or							
ethnicity	0.20	0.51	0.00	0.00	0.00	0.16	

v32 Proportion of people aged 0-15	32.74	7.21	9.44	27.46	32.64	38.28	6.77
v33 Proportion of people aged 16 to 30 years old	31.35	3.12	23.23	29.43	31.16	33.26	51.47
v34 Proportion of persons aged 31 to 60 years old	32.76	5.08	19.22	29.36	32.72	36.37	54.44
v35 Proportion of people aged 61 and over	5.16	2.93	0.87	3.21	4.16	6.10	47.73

In Table 3, we observed the results from the AIC criterion's application for the selection

218

219	of the most appropriate probability distribution considering the t	otal number of TB cases, by
220	which we can identify that the Double Poisson distribution (DPO)	presented the best result (the
221	highest AIC).	
222		
223	Table 3. The main distributions for fitting a GAMLSS model	selected in accordance with
224	the Akaike Information Criterion value, Eastern Amazonia (Brazil).
225		Akaike information
	Distribution for fitting a GAMLSS model	criterion (AIC)
	The Double Poisson distribution (DPO)	2004.25
	Zero Inflated Negative Binomial Distribution (ZINBI)	2006.04
	Zero adjusted negative binomial distribution (ZANBI)	2006.04
	Zero adjusted (hurdle) of the beta negative binomial distribution (ZABNB)	2008.02
	Zero-inflated of the beta negative binomial distribution (ZIBNB)	2008.02
	The Zipf and zero adjusted Zipf distributions (ZINBF)	2008.04
	The Sichel distribution (ZISICHEL)	2008.04
	Zero-inflated Poisson inverse Gaussian distribution (ZIPIG)	2008.22
	Negative Binomial type II distribution (SNBII)	2010.27
	Negative Binomial type I distribution (SBNBI)	2010.27
226 227	In Fig 4, we have the superposition of the DPO density of	ver the data distribution. The
228	application of the Shapiro-Wilk normality test on the model's rest	iduals shows the adequacy of
229	the fit ($W = 0.9967$; p-value = 0.5245).	
230		
231	Fig 4. Histograms of Tuberculosis cases with fit to the tra	ansformed Double Poisson
232	distribution, Eastern Amazonia (Brazil).	
233		
234	In Table 4, we included the statistics obtained from the n	nodeling analysis, where we
235	identify the complete model (saturated) selected through GAIC	C (no outlier) with quadratic

15

236 terms and no quadratic outlier (v33 and v19). These variables represent factors associated with 237 territories specifically deficient or absent of a sewage disposal system and the prevalence of 238 younger people (16 to 30 years old) or older (higher than 61 years old). After the application 239 of LR, the model with the quadratic terms was more fit when compared to the linear model. In

μ	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.4331	0.2063	2.0995	0.0364**
v19 ¹ Permanent private households with a bathroom for exclusive use by the residents or a toilet and sewage via river, lake, or sea	-6.9247	1.9192	-3.6081	0.0003**
v19 ² Permanent private households with a bathroom for exclusive use by the residents or a toilet and sewage via river, lake, or sea	-3.4713	1.1011	-3.1526	0.0017**
v33^1 Proportion of people aged 16 to 30 years old	2.6266	0.9350	2.8091	0.0052
v33 ² Proportion of people aged 16 to 30 years old	-2.4703	1.0115	-2.4423	0.0150**
v17 Permanent private households with a bathroom for exclusive use by the residents or a toilet and sanitary sewage via a septic tank	0.0044	0.0023	1.9035	0.0577
v35 Proportion of people aged 61 and over	0.0731	0.0163	4.4791	0.0000**
v18 Permanent private households with a bathroom for exclusive use by the residents or a toilet and sanitary sewage via a rudimentary septic tank	0.0042	0.0021	2.0369	0.0423**
Σ	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0,7195	0,0761	9,4514	0,0000**

the table, v19¹ is the linear term of v19 and v19² is the quadratic term of v19. The same 240

241 explanation should be considered in v33.

242

243 Table 4. Model of the structural and intermediary social determinants associated with

244 community TB infection in Eastern Amazonia (Brazil).

- 245
- *Shapiro-Wilk normality test; data: residuals (ajuste o2c) 246
- W = 0.99681, p-value = 0.5654; Likelihood Ratio Test for nested GAMLSS models; 247
- 248 (No check whether the models are nested is performed). Null model: deviance= 1884.811 with 249 7 deg. of freedom
- Alternative model: deviance= 1866.812 with 9 deg. of freedom; LRT = 17.99909 with 2 deg. 250
- of freedom and p-value= 0.0001234661 251

252 **p<0.05

254	Fig 5 presents the graph of predicted values containing the values of the variables with
255	quadratic terms v19 and v33. Considering that variables v17, v18 and v35 are equal in terms
256	of their respective medians, in other words, $v17 = 18.74\%$, $v18 = 49.35\%$ and $v35 = 5.17\%$).
257	In this case, if we consider that v19=10%, v33=20%, the expected average number of TB cases
258	is 0.7367; When we consider $v19 = 20\%$ and $v33 = 30\%$, the expected average number of cases
259	is 3.7824; and if we consider $v19 = 30\%$ and $v33 = 40\%$, the average expected number of cases
260	is 2.86. Fig 6 has been added as supplementary material for predicting the number of cases in
261	accordance with the ranged value of v19 and v33.
262	
263	Fig 5. Graph with predicted values obtained from the modeling with quadratic terms,
264	Eastern Amazonia (Brazil).
265	
266	Fig 6. Predicting the number of cases according to the range value of v19 and v33.
267	
268	DISCUSSION
269	We found evidence that GAMLSS is superior when compared to the other techniques
270	applied for studying the social determinants[12]. The first potentiality is because the GAMLSS
271	estimates the complete conditional distribution, which means that the response variable can be
272	better estimated by a probability distribution such as the gamma or lognormal distribution[24].
273	Another potentiality or advantage is that all resources are available through R packages, where
274	it is allowed to adjust more than 50 different kinds of distributions.
275	Through our findings, we identified the structural determinants (represented by age)
276	and intermediary (expressed by sanitary conditions of the environment such as treated sewage).
277	The literature has evidenced that people of economically active age who are males were more
278	commonly affected by TB, which might be related to our findings[25].

17

According to the national data, nearly 8.5% of TB cases that were diagnosed in 2017 were in people 19 or younger[25]. In Brazil, TB in adolescents has long remained a hidden pandemic and still continues to be neglected. TB in adolescents needs to be considered a sentinel event since it is related to a recent infection through contact with a bacilliferous adult[25].

284 Another issue that may be associated with our findings is a situation revealed by a recent IBGE survey, which concluded that the country has 14.8 million unemployed people, which 285 286 represents 14.7% of the economically active population. However, this rate is even higher 287 among young people; in the 14 to 17 age group, 46% are looking for work; and from 18 to 24 288 years old, unemployment affects 31% of people, which takes these people into an extreme 289 social vulnerability zone. The study also evidenced that long-term unemployment is 290 characterized by the predominance of people between the ages of 17 and 29. This data is from 291 Brazil, but when it is considered data from Eastern Amazonia, this situation can become even more serious[26]. 292

293 We also found the association with territories with a predominance of elderly people 294 (age older than 61 years old), and the literature has shown that the elderly are more vulnerable 295 to falling into poverty when compared to the other groups[27]. This is because the elderly have 296 a lesser chance of recovering from a negative income shock, and they have difficulties 297 (re)entering the labor market because productivity and employability decline with age from 298 around the age of 60. As a result of the difficulty of recovering from negative income shocks 299 among the elderly, poverty tends to be a more permanent feature than with other groups in the 300 society[27], which makes them vulnerable to poverty as well as to the TB determinants[28].

301 A study from Eastern Amazonia has shown a growth of TB among the elderly, which 302 is related to the deterioration of social conditions because of austerity politics adopted in Brazil,

18

mainly related to the weakness in social security in ensuring social protection to the elderlies,and their difficulty in getting good food, quality of life and improved house conditions[29].

We also observed that the context favorable for sickness due to TB is associated with access to basic sanitation. This is another serious situation observed in developing countries; according to literature, more than 2 billion people worldwide do not have access to basic sanitation, which represents more than 25% of the world's population[30]. According to a study that assessed the access to basic sanitation in Brazil, almost 90% of the residents of Macapá do not have access to the sewage network, and as in the whole country, Macapá invests less than 30% of their financial resources picked up with taxes[31].

Investments in terms of better housing conditions and basic sanity is a condition essential for the quality of life of people as well as for avoiding neglected diseases such as TB. The Sustainable Development Goals, also known as the Global Goals, seek to reconcile economic growth, environmental balance, and social progress, ensuring that all people have the same opportunities and can lead a better life without compromising the planet[32]. It is among its goals by 2030 to achieve universal and equitable access to basic sanitation and clean water; however, achieving these goals is a challenge in Brazil, mainly in Eastern Amazonia.

319 Eastern Amazonia has the largest percentage of its territory set aside for integral natural 320 protection through the so-called Legally Allocated Areas, and contradictorily, has almost half 321 of its population living below the poverty line, with 45.9% of people having one full meal every 322 three days. A large part living in subhuman conditions in hangover areas, worsening the 323 pictures of violence, suicide, and public health, while leaving 20.2% of its entire labor force unemployed. Therefore, all these aspects contributed a lot to the sickness of the community 324 325 due to TB. It is important to find strategies not only for prevention, diagnosis, treatment, and 326 recovery / rehabilitation, but to fundamentally find solutions sustainable and balanced with the environment in Amazonia. 327

19

Therefore, politics addressed to ensure sustainability is quite important for bringing better conditions of life to the people who live in the region. Historically, the poverty in the region became evident from the decolonization process with the formation of a dependent labor market in extremely precarious conditions. New strategies are important and effective public policies aimed at social justice to the specificities of the Amazon region and not just an attempt to solve social inequalities with compensatory policies such as the *Bolsa Familia*[33].

The study advances knowledge by evidencing the structural and intermediary social determinants of TB in Eastern Amazonia. However, the model only included cases of TB. It would be interesting to advance with other aspects of the disease through mathematical models such as infection and confirm if they are the same as the disease[4]. We used the GAMLSS that evidenced important aspects for understanding the context of TB and how the structural and intermediary determinants impacted on communities burdened by TB, where it was possible to estimate the number of cases for each territory or UCT under study.

We used a more usual approach, which did not assume the existence of the constraint, which may be a potential limitation of the study. This is the first study applied in Eastern Amazonia that confirms its novelty and originality. Unfortunately, Brazil has not carried out its Demographic Census yet, mainly because of the budget shortfall. Therefore, the social situation identified may have worsened, mainly due to the COVID-19 pandemic, which means that the goal End TB by 2050 seems more distant than we think.

347

348 **Competing interests**

- 349 The authors declare that they have no competing interests.
- 350

351 Acknowledgements

The authors greatly appreciate the outstanding and committed study assistance of Health
Bureau of Mapacá – AP Brazil. We thank Jason Farley and Nancy Reynolds for critically

reading the manuscript. Moreover, we thank CAPES and CNPq for contributing to the study.

20

- 355
- 356 **Author Contributions**
- 357 Conceptualization: Clóvis Luciano Giacomet, Antônio Carlos Vieira Ramos, Heriederson
- 358 Sávio Dias Moura, Thaís Zamboni Berra, Ricardo Alexandre Arcêncio.
- 359 Data curation: Clóvis Luciano Giacomet, Antônio Carlos Vieira Ramos, Thaís Zamboni
- 360 Berra, Jonas Bodini Alonso.
- 361 Formal analysis: Clóvis Luciano Giacomet, Antônio Carlos Vieira Ramos, Thaís Zamboni
- 362 Berra, Jonas Bodini Alonso.
- 363 Funding acquisition: Clóvis Luciano Giacomet, Heriederson Sávio Dias Moura, Ricardo
- 364 Alexandre Arcêncio.
- Methodology: Clóvis Luciano Giacomet, Antônio Carlos Vieira Ramos, Thaís Zamboni 365
- Berra, Felipe Mendes Delpino, Jonas Bodini Alonso, Ricardo Alexandre Arcêncio. 366
- 367 Software: Jonas Bodini Alonso, Ricardo Alexandre Arcêncio.
- 368 Supervision: Clóvis Luciano Giacomet, Ricardo Alexandre Arcêncio.
- 369 Validation: Clóvis Luciano Giacomet, Antônio Carlos Vieira Ramos, Thaís Zamboni Berra,
- 370 Jason E. Farley, Nancy R. Reynolds, Jonas Bodini Alonso, Ricardo Alexandre Arcêncio.
- 371 Writing - original draft: Clóvis Luciano Giacomet, Antônio Carlos Vieira Ramos,
- 372 Heriederson Sávio Dias Moura, Thaís Zamboni Berra, Yan Mathias Alves, Felipe Mendes
- 373 Delpino, Jonas Bodini Alonso, Ricardo Alexandre Arcêncio
- 374 Writing – review & editing: Clóvis Luciano Giacomet, Antônio Carlos Vieira Ramos,
- Heriederson Sávio Dias Moura, Thaís Zamboni Berra, Yan Mathias Alves, Felipe Mendes 375
- 376 Delpino, Jason E. Farley, Nancy R. Reynolds, Jonas Bodini Alonso, Titilade Kehinde
- 377 Ayandeyi Teibo, Ricardo Alexandre Arcêncio.
- 378

379 Funding

- 380 CAPES (code 001) and CNPg (scholarship Research productivity fellowship at the 1C level -381 process 304483/2018-4).
- 382

383 REFERENCES

- 384 1. World Health Organization. Global tuberculosis report 2021, 2021. Accessed: Dec 10,
- 2021. Available from: https://apps.who.int/iris/handle/10665/346387. 385
- 386 2. United Nations. World Social Report 2020: Inequality in a Rapidly Changing World,

387		2020. Accessed Dec 10, 2021. Available from: https://www.un-ilibrary.org/economic-
388		and-social-development/world-social-report-2020_7f5d0efc-en.
389	3.	Silva S, Arinaminpathy N, Atun R, Goosby E, Reid M. Economic impact of
390		tuberculosis mortality in 120 countries and the cost of not achieving the Sustainable
391		Development Goals tuberculosis targets: a full-income analysis. Lancet Glob Health.
392		202;9(10): e1372-9. doi: 10.1016/S2214-109X(21)00299-0.
393	4.	Pedrazzoli D, Boccia D, Dodd PJ, Lönnroth K, Dowdy DW, Siroka A, et al.
394		Modelling the social and structural determinants of tuberculosis: opportunities and
395		challenges. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2017;21(9): 957-
396		64. doi: 10.5588/ijtld.16.0906.
397	5.	Moreira ASR, Kritski AL, Carvalho ACC. Social determinants of health and
398		catastrophic costs associated with the diagnosis and treatment of tuberculosis. J Bras
399		Pneumol. 2020;46(05): e20200015. doi: 10.36416/1806-3756/e20200015.
400	6.	Duarte R, Lönnroth K, Carvalho C, Lima F, Carvalho ACC, Muñoz-Torrico M, et al.
401		Tuberculosis, social determinants and co-morbidities (including HIV). Pulmonology
402		2018;24(2): 115-119. doi: 10.1016/j.rppnen.2017.11.003.
403	7.	Zille AI, Werneck GL, Luiz RR, Conde MB. Social determinants of pulmonary
404		tuberculosis in Brazil: an ecological study. BMC Pulm Med. 19(1): 87. doi:
405		10.1186/s12890-019-0855-1.
406	8.	Kilabuk E, Momoli F, Mallick R, Van Dyk D, Pease C, Zwerling A, et al. Social
407		determinants of health among residential areas with a high tuberculosis incidence in a
408		remote Inuit community. J Epidemiol Community Health. 73(5): 401-406. doi:
409		10.1136/jech-2018-211261.
410	9.	Wingfield T, Tovar MA, Datta S, Saunders MJ, Evans CA. Addressing social
411		determinants to end tuberculosis. Lancet. 391(10126): 1129-1132. doi:

412		10.1016/S0140-6736(18)30484-7.
413	10	. Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and
414		shape. J R Stat Soc Ser C Appl Stat. 2005;54(3): 507-54. doi: 10.1111/j.1467-
415		9876.2005.00510.x.
416	11	. De Bastiani F, Rigby RA, Stasinopoulous DM, Cysneiros AHMA, Uribe-Opazo MA.
417		Gaussian Markov random field spatial models in GAMLSS. J Appl Stat. 45(2018):
418		168-86. doi: 10.1080/02664763.2016.1269728.
419	12	. Giacomet CL, Santos MS, Berra TZ, Alves YM, Alves LS, Costa FBP, et al.
420		Temporal trend of tuberculosis incidence and its spatial distribution in Macapá –
421		Amapá. Rev Saude Publica. 55: 96. doi: 10.11606/s1518-8787.2021055003431.
422	13	. Santana JLA, Magrini AT, Ribeiro LA, Rigelli RH, Araujo MHM. Adesão ao
423		tratamento da tuberculose no Amapá: Um quinquênio de análise epidemiológica. Rev
424		Científica Multidiscip Núcleo Conhecimento. 10: 69-87.
425		doi: 10.32749/nucleodoconhecimento.com.br/saude/tratamento-da-tuberculose.
426	14	. World Health Organization. Meeting report of the WHO expert consultation on drug-
427		resistant tuberculosis treatment outcome definitions, 17-19 November 2020.
428		Accessed: Dec 13, 2021. Available from:
429		https://apps.who.int/iris/handle/10665/340284.
430	15	. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de
431		Vigilância das Doenças Transmissíveis. Manual de Recomendações para o Controle
432		da Tuberculose no Brasil, 2019; 2a ed. atualizada, 364. Accessed: Dec 13, 2021.
433		Available from:
434		https://bvsms.saude.gov.br/bvs/publicacoes/manual_recomendacoes_controle_tubercu
435		lose_brasil_2_ed.pdf.
436	16	. Boing AF, Boing AC, Subramanian SV. Inequalities in the access to healthy urban

437	structure and housing: an analysis of the Brazilian census data. Cad Saúde Pública.
438	37(6): e00233119. doi: 10.1590/0102-311X00233119.
439	17. Solar O, Irwin A. A conceptual framework for action on the social determinants of
440	health, Social Determinants of Health Discussion Paper 2 (Policy and Practice).
441	Geneva, Switzerland: World Health Organization. 2010. Accessed: Dec 10, 2021.
442	Available from: https://apps.who.int/iris/handle/10665/44489.
443	18. Florencio LA. Engenharia de avaliações com base nos modelos GAMLSS. Master's
444	Thesis, Federal University of Pernambuco, 2010. Available from:
445	https://repositorio.ufpe.br/handle/123456789/6227.
446	19. Akaike H. A new look at the statistical model identification. IEEE Trans Autom
447	Control. 19(6): 716-23. doi: 10.1109/TAC.1974.1100705.
448	20. Stasinopoulos M, Rigby B, Akantziliotou C. Instructions on how to use the gamlss
449	package in R, 2008. Accessed: Dec 14, 2021. Available from:
450	http://www.gamlss.com/wp-content/uploads/2013/01/gamlss-manual.pdf.
451	21. Myers RH, Montgomery DC, Anderson-Cook CM. Response surface methodology:
452	process and product optimization using designed experiments. Vanderbilt University,
453	Hoboken, New Jersey: Wiley, 2016. Accessed: Dec 21, 2021. Available from:
454	https://catalog.library.vanderbilt.edu/discovery/fulldisplay/alma991043342547203276
455	/01VAN_INST:vanui.
456	22. Stasinopoulos DM, Rigby RA. Generalized Additive Models for Location Scale and
457	Shape (GAMLSS) in R. Journal of Statistical Software. 23(7): 1–46.
458	https://doi.org/10.18637/jss.v023.i07.
459	23. Jesus FB, Lima FCA, Martins CBG, Matos KF, Souza SPS. Vulnerabilidade na
460	adolescência: a experiência e expressão do adolescente. Rev Gaúcha Enferm. 32(2):
461	359-67. doi: 10.1590/S1983-14472011000200021.

462	24.	Shelby T, Meyer AJ, Ochom E, Turimumahoro P, Babirye D, Katamba A, et al.
463		Social determinants of tuberculosis evaluation among household contacts: a
464		secondary analysis. Public Health Action. 8(3): 118-123. doi: 10.5588/fa.18.0025.
465	25.	Santos BA, Cruz RPS, Lima SVMA, Santos AD, Duque M, Araújo KCGM, et al.
466		Tuberculose em crianças e adolescentes: uma análise epidemiológica e espacial no
467		estado de Sergipe, Brasil, 2001-2017. Ciênc Saúde Coletiva. 25(8): 2939-48. doi:
468		10.1590/1413-81232020258.25692018.
469	26.	Brasil. Instituto Brasileiro de Geografia e Estatísticas. Pesquisa aponta que os jovens
470		são os mais afetados pelo desemprego, 2021. Accessed: Jan 21, 2021. Available from:
471		https://agenciabrasil.ebc.com.br/radioagencia-nacional/economia/audio/2021-
472		08/pesquisa-aponta-que-os-jovens-sao-os-mais-afetados-pelo-desempregohtml.
473	27.	Travassos GF, Coelho AB, Arends-Kuenning MP. The elderly in Brazil: demographic
474		transition, profile, and socioeconomic condition. Rev Bras Estud Popul. 37: 1–27. doi:
475		10.20947/S0102-3098a0129.
476	28.	Negin J, Abimbola S, Marais BJ. Tuberculosis among older adults – time to take
477		notice. Int J Infect Dis. 32: 135–7. doi: 10.1016/j.ijid.2014.11.018.
478	29.	Mesquita CR, Lima KVB, Souza e Guimarães RJP, Santos BO, Rodrigues LHA,
479		Costa RJF, et al. Análise retrospectiva de casos de tuberculose em idosos. Rev Bras
480		Em Promoção Saúde 2021;34: 1117. doi: 10.5020/18061230.2021.11117.
481	30.	Swe KT, Rahman MM, Rahman MS, Teng Y, Abe SK, Hashizume M, et al. Impact of
482		poverty reduction on access to water and sanitation in low- and lower-middle-income
483		countries: country-specific Bayesian projections to 2030. Trop Med Int Health. 26(7):
484		760-774. doi: 10.1111/tmi.13580.
485	31.	Instituto Trata Brasil. Ranking do Saneamento 2021, 2021. Accessed: Jan 19, 2022.
486		Available from:

25

500	Supporting information
499	
498	estado-do-amazonas-em-foco.pdf.
497	riqueza-na-regiao-amazonica-e-a-contribuicao-da-politica-de-assistencia-social-o-
496	from: http://www.joinpp.ufma.br/jornadas/joinpp2015/pdfs/eixo4/a-pobreza-e-a-
495	de Pós-Graduação em Políticas Públicas 2015:13. Accessed: Jan 19, 2022. Available
494	Públicas. Universidade Federal do Maranhão. Centro de Ciências Sociais. Programa
493	assistência social: o Estado do Amazonas em foco. VII Jornada Internacional Políticas
492	33. Rolim DC. A pobreza e a riqueza na região amazônica e a contribuição da política de
491	doi: 10.1016/S2212-5671(15)00852-7.
490	Development - Ways to Achieve Welfare. Procedia Econ Finance. 26(2015): 812-7.
489	32. Duran DC, Artene A, Gogan LM, Duran V. The Objectives of Sustainable
488	eamen to_2021tabela_das_100_maiores_cidades_do_Brasilpdf.
487	https://tratabrasil.org.br/images/estudos/Ranking_saneamento_2021/Ranking_do_San

501 S1 – Dataset

Social Determinants	Definition	proxy indicators	Variables	Code
	The structural determinant		- Proportion of households with no nominal monthly income per capita	v20
	are those that interplay		- Proportion of households with per capita nominal monthly income of up to 1/8 to 1 minimum wage	v21
	between context and	Income	 Proportion of households with a nominal monthly per capita income of more than 1 to 2 minimum wages 	v22
medRxiv preprint doi:	socioeconomic position,		- Proportion of domiciles with nominal monthly income per capita of more than 2 to 3 minimum wages	v23
preprint (which was	no Certified by poor feview) is the reinforthing a celars bable un	author/funder, who has granted n perpetuity. nder a CC-BY 4.0 International lic	ensincome per capita of more than 3 to 5 minimum wages	
Structural	the socio-		- Proportion of households with a nominal monthly income per capita of more than 5 to 10 minimum wages	v24
	position within			v25
	hierarchies of power, prestige,	Education and gender	 Proportion of males without schooling Proportion of females without schooling 	v05 v06
	and access to resources[18].	Race/ ethnicity	 Proportion of resident people of white race or ethnicity Proportion of black residents 	v26
			 Proportion of resident people of yellow race or ethnicity Proportion of resident people of mixed race or ethnicity 	v27 v28
			- Proportion of resident people of indigenous race or ethnicity	v29
				v30
	Structural determinants operate through a series of factors that will influence the health condition of a person, which WHO[18] named as the intermediary social factors. These factors are accumulative in a person's life course and flow from the social	Agglomeration (quantitative of people who live in the domiciles)	 Proportion of households with 1 to 3 people The proportion of households with 4 to 6 people The proportion of households with 7 to 9 people The proportion of households with higher than 10 people 	v01 v02 v03 v04
		Age	 Proportion of people aged 0-15 Proportion of people aged 16 to 30 years old Proportion of persons aged 31 to 60 years old Proportion of people aged 61 and over 	v31 v32 v33 v34
Intermediary		Conditions of domiciles' property	 Proportion of own and paid-up domiciles Proportion of rented dwellings Proportion of domiciles in another property condition (not owned, rented, and not granted) 	v07 v08 v09
		Conitation	 Proportion of households with a bathroom for exclusive use by residents or a toilet and drainage in a general sewage or rainwater network 	v10
	stratification, determining differences in	conditions	 Proportion of houses without a bathroom for the exclusive use of residents or toilet Permanent particular residences with water supply from 	v11
	exposure and vulnerability and		the general network	v12

are therefore,		- Permanent particular residences with water supply from	v13
health-		wells or springs on the property	
compromising		- Permanent Particular Domiciles with Another Form of	v14
conditions. These		Water Supply	
factors are		 Permanent private households with a bathroom 	v15
material		exclusively for residents or a toilet and sanitary sewage via	
circumstances;		the general sewage system or rainwater drainage system	v16
psychosocial		- Permanent private households with a bathroom for	
circumstances;		exclusive use by the residents or a toilet and sanitary	v17
behavioral and/or		sewage via a septic tank	
biological factors,		 Permanent private households with a bathroom for 	
and the health		exclusive use by the residents or a toilet and sanitary	v18
system		sewage via a rudimentary septic tank	
medRxiv preprint doi: https://doi.org/10.1101/2022.11.03.22 preprint (which was not certified by peer review) is the It is made available un	281901; this version posted Nove author/funder, who has granted n perpetuity. der a CC-BY 4.0 International lice	mbe Permanent private households with a bathroom for edexivalicense to display the preprint in exclusive use by the residents or a toilet and sewage via	v19
		river, lake, or sea	

Predict value with quadratic terms model

medRxiv preprint doi: https://doi.org/10.1101/2022.11.03.22281901; this version posted November 4, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license .

	v19	v33	v17	v18	v35	Predicted
	0	0	18.74	49.35	5.17	0.0001
	1	0	18.74	49.35	5.17	0.0001
	2	0	18.74	49.35	5.17	0.0001
	3	0	18.74	49.35	5.17	0.0001
	4	0	18.74	49.35	5.17	0.0001
	5	0	18.74	49.35	5.17	0.0001
	6	0	18.74	49.35	5.17	0.0001
	7	0	18.74	49.35	5.17	0.0001
	8	0	18.74	49.35	5.17	0.0001
	9	0	18.74	49.35	5.17	0.0001
nedRxiv preprint doi: https://doi.org/10.1101. preprint (which was not certified by peer	/2022.11.03.222819 review) is the authority	01; this version pos or/funder who has arpetuity.	sted November 4, 2 grantedonedRxiv a	122. The copyright license to disptay th	holder for this te preprint in 7	0.0001
It is ma	de available under a 11	CC-BY 4.0 Interna	18.74	49.35	5.17	0.0001
	12	0	18.74	49.35	5.17	0.0001
	13	0	18.74	49.35	5.17	0.0001
	14	0	18.74	49.35	5.17	0.0001
	15	0	18.74	49.35	5.17	0.0001
	16	0	18.74	49.35	5.17	0.0001
	17	0	18.74	49.35	5.17	0.0001
	18	0	18.74	49.35	5.17	0.0001
	19	0	18.74	49.35	5.17	0.0001
	20	0	18.74	49.35	5.17	0.0001
	21	0	18.74	49.35	5.17	0.0001
	22	0	18.74	49.35	5.17	0.0001
	23	0	18.74	49.35	5.17	0.0001
	24	0	18,74	49.35	5.17	0.0001
	25	0	18,74	49.35	5.17	0.0001
	26	0	18.74	49.35	5.17	0.0001
	27	0	18.74	49.35	5.17	0.0001
	28	0	18.74	49.35	5.17	0.0001
	29	0	18.74	49.35	5.17	0.0001
	30	0	18.74	49.35	5.17	0.0001
	31	0	18.74	49.35	5.17	0.0001
	32	0	18.74	49.35	5.17	0.0001
	33	0	18.74	49.35	5.17	0.0001
	34	0	18.74	49.35	5.17	0.0001
	35	0	18.74	49.35	5.17	0.0001
	36	0	18.74	49.35	5.17	0.0001
	37	0	18.74	49.35	5.17	0.0001
	38	0	18.74	49.35	5.17	0.0001
	39	0	18.74	49.35	5.17	0.0001
	40	0	18.74	49.35	5.17	0.0001
	41	0	18.74	49.35	5.17	0.0001
	42	0	18.74	49.35	5.17	0.0001

	43	0	18.74	49.35	5.17	0.0001
	44	0	18.74	49.35	5.17	0.0001
	45	0	18.74	49.35	5.17	0.0001
	46	0	18.74	49.35	5.17	0.0001
	47	0	18.74	49.35	5.17	0.0001
	48	0	18.74	49.35	5.17	0.0001
	49	0	18.74	49.35	5.17	0.0001
	50	0	18.74	49.35	5.17	0.0001
	51	0	18.74	49.35	5.17	0.0001
	52	0	18.74	49.35	5.17	0.0001
	53	0	18.74	49.35	5.17	0.0001
dDviv proprint doi: https://doi.org/10.1101/	54		18.74	49.35	5.17	0.0001
reprint (which was not certified by peer	review) is the authority pe	or/funder, who has g rpetuity.	ranted medRxiv a	icense to display th	e preprint in 7	0.0001
It is mad	te available under a 56	CC-BY 4.0 Interna	18.74	49.35	5.17	0.0001
	57	0	18.74	49.35	5.17	0.0001
	58	0	18.74	49.35	5.17	0.0001
	59	0	18.74	49.35	5.17	0.0001
	60	0	18.74	49.35	5.17	0.0001
	61	0	18.74	49.35	5.17	0.0001
	62	0	18.74	49.35	5.17	0.0001
	63	0	18.74	49.35	5.17	0.0001
	64	0	18.74	49.35	5.17	0.0001
	65	0	18.74	49.35	5.17	0.0001
	66	0	18.74	49.35	5.17	0.0001
	67	0	18.74	49.35	5.17	0.0001
	68	0	18.74	49.35	5.17	0.0001
	69	0	18.74	49.35	5.17	0.0001
	70	0	18.74	49.35	5.17	0.0001
	71	0	18.74	49.35	5.17	0.0001
	72	0	18.74	49.35	5.17	0.0000
	73	0	18.74	49.35	5.17	0.0000
	74	0	18.74	49.35	5.17	0.0000
	75	0	18.74	49.35	5.17	0.0000
	76	0	18.74	49.35	5.17	0.0000
	77	0	18.74	49.35	5.17	0.0000
	78	0	18.74	49.35	5.17	0.0000
	79	0	18.74	49.35	5.17	0.0000
	80	0	18.74	49.35	5.17	0.0000
	81	0	18.74	49.35	5.17	0.0000
	82	0	18.74	49.35	5.17	0.0000
	83	0	18.74	49.35	5.17	0.0000
	84	0	18.74	49.35	5.17	0.0000
	85	0	18.74	49.35	5.17	0.0000
	86	0	18.74	49.35	5.17	0.0000
	87	0	18.74	49.35	5.17	0.0000
		-				

88	0	18.74	49.35	5.17	0.0000
89	0	18.74	49.35	5.17	0.0000
90	0	18.74	49.35	5.17	0.0000
91	0	18.74	49.35	5.17	0.0000
92	0	18.74	49.35	5.17	0.0000
93	0	18.74	49.35	5.17	0.0000
94	0	18.74	49.35	5.17	0.0000
95	0	18.74	49.35	5.17	0.0000
96	0	18.74	49.35	5.17	0.0000
97	0	18.74	49.35	5.17	0.0000
98	0	18.74	49.35	5.17	0.0000