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 2 

Abstract 10 

A minority of people infected with SARS-CoV-2 will develop severe COVID-19 disease. To help 11 

physicians predict who is more likely to require admission to ICU, we conducted an unsupervised 12 

stratification of the circulating proteome that identified six endophenotypes (EPs) among 731 13 

SARS-CoV-2 PCR-positive hospitalized participants in the Biobanque Québécoise de la COVID-19, 14 

with varying degrees of disease severity and times to intensive care unit (ICU) admission. One 15 

endophenotype, EP6, was associated with a greater proportion of ICU admission, ventilation 16 

support, acute respiratory distress syndrome (ARDS) and death. Clinical features of EP6 included 17 

increased levels of C-reactive protein, D-dimers, interleukin-6, ferritin, soluble fms-like tyrosine 18 

kinase-1, elevated neutrophils, and depleted lymphocytes, whereas another endophenotype 19 

(EP5) was associated with cardiovascular complications, congruent with elevated blood 20 

biomarkers of cardiovascular disease like N-terminal pro B-type natriuretic peptide (NT-proBNP), 21 

Growth Differentiation Factor-15 (GDF-15), and Troponin T. Importantly, a prognostic model 22 

solely based on clinical laboratory measurements was developed and validated on 903 patients 23 

that generalizes the EPs to new patients recruited across all pandemic waves (2020-2022) and 24 

create new opportunities for automated identification of high-risk groups in the clinic. Thus, this 25 

novel way to address pathogenesis that leverages detailed phenotypic information but relies on 26 

routinely available information in the clinic to favor translation may find applications in other 27 

diseases beyond COVID-19. 28 

 29 

  30 
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 3 

Introduction 31 

An important challenge facing respirologists and critical care physicians is the heterogeneity in 32 

outcome following SARS-CoV-2 infections. A minority of people infected with SARS-CoV-2 will 33 

develop a severe form of coronavirus disease 2019 (COVID-19) requiring hospitalization and 34 

respiratory support. Defining the molecular mechanisms related to specific severe outcomes is 35 

important to identify treatable traits and improve the survival of critically ill patients. Successfully 36 

reaching this precision medicine goal requires a more granular definition of the underlying 37 

pathophysiology. A symptom-based method to discover molecular mechanisms of the disease is 38 

inherently confounded by the fact that the same higher-level condition, such as severe COVID-39 

19 disease, can be produced by several different molecular mechanisms, a phenomenon termed 40 

the “many-one” limitation (1). Recent advances in computing strategies, such as machine 41 

learning, have enabled the development of methods that help overcome this limitation by, 42 

instead of using symptoms, starting from molecular profiles to define endophenotypes, i.e., 43 

subgroups of individuals who are inapparent to traditional classification methods but share a 44 

common set of molecular factors that can lead to identification of treatable traits (2-4). Current 45 

investigations of endophenotypes in COVID-19 have mainly relied on supervised approaches 46 

using fixed outcomes (such as disease severity) and integrating clinical variables at the onset (5). 47 

We hypothesize that using an unsupervised approach and exploiting a rich molecular dataset can 48 

provide novel mechanistic insights into the pathobiology of severe COVID-19 that can help 49 

physicians improve diagnosis, prognosis, and clinical management. 50 

 51 
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This study identified six endophenotypes linked to diverse clinical trajectories of COVID-19 using 52 

the extensive molecular phenotyping of a cohort of 731 SARS-CoV-2 positive hospitalized patients 53 

from the Biobanque Québécoise de la COVID-19 (BQC19, www.quebeccovidbiobank.ca) (6), a 54 

prospective observational cohort of SARS-CoV-2-positive and negative participants recruited in 55 

the province of Québec, Canada, to improve our understanding of COVID-19 pathobiology and 56 

our capacity to alter disease outcomes. The molecular signature of each endophenotype was 57 

used to build a prognostic model of disease severity that generalizes the EPs to new patients and 58 

was validated on a separate group of 903 patients. This prognostic model solely utilizes clinical 59 

laboratory measurements, creating the possibility of automated identification of high-risk groups 60 

in the clinic. 61 

 62 

Results 63 

Unsupervised clustering of SARS-CoV-2-positive hospitalized BQC19 participants reveal 64 

endophenotypes associated with varying disease severity  65 

We aimed to identify endophenotypes of COVID-19, based on the circulating proteome of 66 

patients, in a cohort of SARS-CoV-2 positive hospitalized participants in the BQC19 (Table 1) using 67 

an unsupervised approach. Figure S1 shows the distribution of the patient hospital admission 68 

dates and the corresponding waves of COVID-19 infection as defined by National Institute of 69 

Public Health of Quebec (INSPQ, https://www.inspq.qc.ca/covid-19). Consensus agglomerative 70 

clustering was performed on participants (n = 731, Table 1) for whom the circulating proteome 71 

was measured using a multiplex SOMAmer affinity array (SomaLogic, ~5,000 aptamers) (7). The 72 

optimal number of clusters (k = 6) was identified first using two criteria: Akaike's Information 73 
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Criteria (AIC) and Bayesian Information Criteria (BIC) (Figure 1A). Then, consensus agglomerative 74 

clustering (Euclidean distance and Ward linkage) (8, 9) using 1000 bootstrap subsamples of the 75 

participants was performed to obtain six robust clusters (Figure 1, Figures S2 and S3).  The 76 

distribution of Rand-Index, showing the concordance between each one of the 1000 subsampled 77 

clusterings and the final consensus clustering, is provided in Figure S2B (mean Rand-Index = 78 

0.823), reflecting a high degree of consistency and robustness. 79 

 80 

The clinical and pathological characteristics of patients in each endophenotype is provided in 81 

Table 1. To characterize the identified endophenotypes (EPs) with respect to disease severity, we 82 

performed two-sided Fisher’s exact tests to assess their enrichment (or depletion) in either of 83 

“severe” or “deceased” outcomes. EP6 was significantly enriched in the severe/deceased 84 

outcomes (Benjamini–Hochberg false discovery rate (FDR) = 1.74E-21) with either of these 85 

outcomes observed in 74.6% of EP6 patients. Meanwhile, EP1 was significantly depleted in 86 

severe/deceased outcomes (FDR = 1.89E-13) (Figure 2A, Table 1, Table S1) with either of these 87 

outcomes observed in only 13.2% of EP1 patients. In addition, EP6 was enriched in participants 88 

(a) receiving oxygen therapy (FDR = 4.23E-18), (b) receiving ventilatory support (FDR = 4.59E-18), 89 

and (c) being admitted to intensive care unit (ICU) (FDR = 9.51E-28) (Figure 2A, Table 1, Table S1). 90 

Kaplan–Meier analysis (10) also confirmed that the identified EPs have a distinct temporal 91 

pattern of admission to ICU (multivariate logrank test P = 5.00E-30), with EP1 and EP6 having the 92 

highest and lowest probability, respectively, of not being admitted to ICU or dying prior to that 93 

in a 40-day span since their admission to the hospital (Figure 2C). A similar pattern was also 94 

observed when patients that died before admission to ICU were excluded (Figure S4, multivariate 95 
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 6 

logrank test P = 5.39E-30). A two-sided Mann–Whitney U (MWU) test showed that patients in 96 

EP5 were generally older than other EPs (FDR = 7.73E-5), while EP3 included younger patients 97 

(FDR = 1.53E-4). Notably, EP6 (which had the most severe patients) did not show enrichment in 98 

older patients or individuals with high body mass index (BMI) (two-sided MWU FDR > 0.05) 99 

(Figures 2D-F, Table 1, Table S1).  100 

 101 

These analyses revealed that the unsupervised approach using the circulating proteome of the 102 

patients was able to identify endophenotypes with distinct disease characteristics and outcomes. 103 

We identified EP6 as a group of participants with an increase in key measures of COVID-19 disease 104 

severity, including admission to ICU and the need for ventilatory support.  105 

 106 

EP6 is enriched among BQC19 participants with acute respiratory distress syndrome 107 

To better characterize all EPs with regards to different complications, we performed two-sided 108 

Fisher’s exact tests comparing each EP to the rest. In accordance with increased COVID-19 disease 109 

severity, EP6 was enriched in several medical complications including ARDS (FDR = 1.12E-11), 110 

acute kidney injury (FDR = 5.73E-8), secondary bacterial pneumonia (FDR = 2.25E-5), liver 111 

dysfunction (FDR = 1.37E-3), cardiovascular complications (FDR = 1.37E-3), and bacteremia (FDR 112 

= 4.28E-3) (for the full list, see Figure 3 and Table S2). Notably, the frequency of ARDS was 9% in 113 

EP1 compared to 50% in EP6 making this complication a key feature of this endophenotype 114 

(Figure 3, Table S2).  115 

 116 
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Clinical laboratories reveal that members of EP6 have increased levels of C-reactive protein, D-117 

dimers, elevated neutrophils, and depleted lymphocytes 118 

To further characterize each EP, we assessed the clinical laboratory results obtained from blood 119 

draws and compared them between the groups. We focused on 21 markers that were measured 120 

in at least 50% of the patients of the cohort and used the summary value reported in the BQC19 121 

database corresponding to the most extreme measurement among multiple blood draws (Figure 122 

4A, Table S3 also includes first blood draw characteristics). Figure 3A shows the elevation and 123 

depletion of these markers in the identified EPs. EP6 is characterized by abnormal values in 124 

markers of inflammation (lymphopenia, total white blood cell count, neutrophilia, C-reactive 125 

protein (CRP)), liver damage (alanine aminotransferase (ALT)), coagulopathy (D-dimers, low 126 

hemoglobin, International Normalized Ratio (INR), and hyperglycemia (glucose). We also used 22 127 

markers from the Elecsys diagnostic panel (Roche Diagnostic) to further characterize EP6, (Figure 128 

4B and Table S3). This led to additional elevated and highly significant markers: (a) alpha-1 129 

antitrypsin, an acute phase reactant elevated during inflammatory conditions; (b) Interleukin 6 130 

(IL-6), a pleiotropic cytokine associated with systemic inflammatory response syndrome (11), 131 

shown to be elevated in severe COVID-19 (12) and linked to endothelial damage and liver injury 132 

(13); (c) ferritin, an iron-storage protein and acute phase reactant, elevated in COVID-19, and like 133 

other hyperferritinic syndrome, associated with coagulopathy (14, 15); and (d) soluble vascular 134 

endothelial growth factor (VEGF) receptor sFLT1 (soluble fms-like tyrosine kinase-1), previously 135 

shown to be associated with endothelial damage and COVID-19 severity (16). The overall 136 

characteristics of each EP are summarized in Table 2.  137 

 138 
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EP5 is associated with cardiovascular complications 139 

EP5 comes second in the order of severity established in Figure 2. Interestingly, it is molecularly 140 

and clinically distinct from EP6 (Figures 2-4, Table 1). A striking feature of EP5 is the increase in 141 

markers of cardiovascular diseases, such as higher levels of N-terminal pro B-type natriuretic 142 

peptide (NT-proBNP), indicative of ventricular dysfunction (17), Growth Differentiation Factor-15 143 

(GDF-15) associated with cardiometabolic risk (18) and Troponin T linked to cardiac damage all 144 

suggestive of high risk for cardiovascular events (19) (Figure 4B). Accordingly, this group was 145 

enriched for cardiovascular complications during hospitalization (FDR = 1.46E-2, Figure 3). As 146 

postulated, the unsupervised clustering was able to distinguish different types of COVID-19 147 

disease trajectory. 148 

 149 

A computational prognostic model based on blood biomarkers predicts EPs in a separate 150 

validation cohort 151 

Since each EP showed a clear and distinct clinical laboratory result signature based on 21 blood 152 

markers and 22 Elecsys diagnostic markers, we sought to develop a computational prognostic 153 

model of disease severity based on these signatures. We focused on data from the first blood 154 

draw (Figure 4B and S5, Table S3) and developed a nearest-centroid classifier, capable of dealing 155 

with missing values, to predict EPs based on these 43 markers (see Methods for details). To test 156 

the prognostic ability of this model on an independent yet similar dataset, we analyzed 903 SARS-157 

CoV-2 positive hospitalized BQC19 participants that did not have circulating proteome data and 158 

had not been used to identify the endophenotypes (see Figure S6 for the distribution of the 159 

patient hospital admission dates). These patients were recruited across all waves of the pandemic 160 
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between March 2020 and October 2022. The clinical and pathological characteristics of patients 161 

in each predicted endophenotype (PEP) are provided in Figure 5 and Table S4.  162 

 163 

Our prognostic model identified 167 of these 903 patients as belonging to predicted EP6 (PEP6). 164 

Fisher’s exact tests showed significant enrichments of PEP6 in severe/deceased (FDR = 5.62E-21), 165 

while PEP1 and PEP2 were significantly depleted in these outcomes (FDR = 5.29E-8 and FDR = 166 

1.19E-8, respectively), as shown in Table S4. Like EP6, PEP6 was also significantly enriched in 167 

participants (a) receiving oxygen therapy (FDR = 2.87E-13), (b) receiving ventilatory support (FDR 168 

= 1.50E-13), and (c) being admitted to ICU (FDR = 1.34E-19) (Table S4). Kaplan–Meier analysis 169 

also confirmed that these PEPs have a distinct temporal pattern of admission to ICU (multivariate 170 

logrank test P = 1.56E-21), with PEP6 having the highest chance of being admitted to ICU (or dying 171 

prior to that) in the 40-day span following admission to hospital (Figure 5B). These results suggest 172 

that our prognostic model based on 43 blood biomarkers can be used to generalize the definition 173 

of endophenotypes to patients for whom proteomic data is not available. Since the 21 blood 174 

markers are more commonly available, we also developed a prognostic model only based on 175 

these markers, which also showed strong prognostic capabilities (Figure S7). Therefore, it is 176 

possible to leverage detailed molecular information on a smaller number of participants to 177 

predict clinical outcomes on a larger population using routinely available information collected 178 

during hospitalization.  179 

 180 

Discussion 181 
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In this study, we have bridged the gap between the circulating proteome and routinely available 182 

blood diagnostic biomarkers, using machine learning algorithms, to prognosticate COVID-19 183 

outcomes in hospitalized patients. The model performed on participants recruited across all the 184 

pandemic waves from 2020 to 2022, demonstrating that it performs despite mutations in 185 

infecting strains and the development of immunity. This showcases a novel analytical pipeline 186 

that can support physicians in making more informed decision on potential unfavorable 187 

trajectories early during hospitalization and adjust follow-ups and treatments accordingly.  188 

 189 

The major strength of this study is the use of an unsupervised approach for analysis of a large 190 

and well-phenotyped cohort. This broad-based approach led to the identification of six COVID-191 

19 disease endophenotypes in hospitalized patients that could not be captured by simply 192 

classifying the population solely based on severity, with different clinical trajectories and 193 

distinguishing characteristics that are summarized in Tables 1 and 2. We identified two 194 

endophenotypes with more favorable outcomes (EP1 and EP2), three endophenotypes with 195 

intermediate outcomes in terms of severity (EP3, EP4 and EP5) and one endophenotype which 196 

led to worst outcomes compared to all others (EP6). EP6, was associated with ARDS, the worst 197 

clinical manifestation of COVID-19 that was reflected by a greater proportion of ICU admission, 198 

mechanical ventilation, and severe/fatal outcomes (Figures 2 and 3). Clinical features of this 199 

endophenotype were consistent with published literature, including increased levels of CRP, D-200 

dimers, IL-6, ferritin, sFLT1, elevated circulating neutrophils, and reduced peripheral blood 201 

lymphocytes (Figure 3, Table S3), presenting a profile associated with systemic inflammatory 202 

response syndrome and abnormal coagulation. Possible molecular effectors of COVID-19 disease 203 
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severity in EP6 are discussed in an accompanying study. Another endophenotype (EP5), while 204 

leading to unfavorable clinical trajectory during hospitalization, was instead associated with clear 205 

markers of cardiovascular disease, cardiovascular complications during hospitalization, and older 206 

age. The distribution of clinical laboratories in each endophenotype was sufficient to train an 207 

accurate prognostic model that could readily support future clinical care, since it only requires 208 

data from routine clinical laboratory results for prognosis.  209 

 210 

The identification of endophenotypes was done systematically using robust consensus clustering 211 

of aptamer expression levels in which the optimum number of clusters was determined 212 

congruently using two well-established measures: AIC and BIC. The consensus clustering using 213 

bootstrap sampling (1000 times) ensured identification of robust clusters that are not sensitive 214 

to exclusion of some of the samples (20% randomly selected and excluded at each cycle). The 215 

mean Rand-index between each of the 1000 subsampled clusterings and the final consensus 216 

clustering was 0.823, reflecting a high degree of concordance and robustness. Moreover, 217 

identifying the best number of clusters using AIC/BIC (both of which agreed with each other) 218 

allowed us to reveal the patterns of the EPs directly from the data instead of imposing a pattern 219 

onto it through human supervision. This is an important strength of the study that enabled us to 220 

identify distinct molecular patterns of patients that could have remained undetected using other 221 

traditional approaches.  222 

 223 

Additionally, to improve the translational applicability of the EPs, we developed a prognostic 224 

model based only on measurements of conventional clinical laboratory blood markers to test the 225 
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generalizability of these endophenotypes to samples without measured aptamer data. 226 

Characteristics of EPs predicted solely based on their blood markers were consistent with the 227 

original EPs, suggesting that clinical blood markers could be used as surrogates for assignment of 228 

these EPs to new patients and potentially automating identification of high-risk groups in the 229 

clinic. This approach takes into account the effect of multiple blood variables simultaneously and 230 

incorporates the full distribution of each variable. This is in contrast to the clinical laboratory 231 

results that are automatically flagged as within or outside normal range, one variable at a time, 232 

therefore increasing the clinical applicability of our model by leveraging a wider spectrum of 233 

information to prognosticate patient outcomes.  234 

 235 

Limitations and considerations 236 

The data presented in this study comes from individuals participating in the BQC19, a prospective 237 

observational cohort built to study COVID-19 in Québec (Canada) with its specific population 238 

profile as reported previously (6). A chronological bias may also be present, as most of the 239 

participants used for endophenotyping in this study were recruited during the first two waves of 240 

the pandemic (Figure S1), prior to widespread vaccination in Québec and the appearance of the 241 

Omicron variant and sub-variants. Therefore, some of the features of the identified 242 

endophenotypes may change over the course of the pandemic. It will be essential to continue 243 

longitudinal assessments of the molecular profiles to better understand the dynamic nature of 244 

host-pathogen interactions. It will also be interesting to compare the profiles of COVID-19 ARDS 245 

to other viral-induced ARDS, to identify common as well as distinguishing features of these 246 

conditions.  247 
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 248 

Conclusion 249 

Respiratory infections represent an important challenge for respirologists and critical care 250 

physicians due to the heterogeneity of outcomes. Developing better ways to prognosticate poor 251 

outcomes is crucial in improving patients’ care and survival. In this manuscript, we proposed a 252 

novel experimental approach that leverages detailed proteomic information but relies on 253 

routinely available information in the clinic for prognostication to favor translation that may find 254 

applications in many other diseases beyond COVID-19. 255 

 256 

Methods: 257 

Datasets and preprocessing 258 

The Biobanque Québécoise de la COVID-19 (BQC19; www.quebeccovidbiobank.ca) is aimed at 259 

coordinating the collection of patients’ data and samples for COVID-19 related research. Data 260 

and samples were collected from ten sites across the province of Québec (Canada) (6). BQC19 261 

organizes the collected data, including clinical information and multi-omics experimental data, 262 

before making it available in successive releases. For this study, we used the circulating proteome 263 

determined using SOMAmers. Our main corpus of analysis consisted of n = 1,634 hospitalized 264 

and SARS-CoV-2 positive patients (based on qRT-PCR) of BQC19. This included n = 731 patients 265 

(Figure S1) for which both clinical and proteomic data was available as well as n = 903 patients 266 

(Figure S6) for whom proteomic data was not available but whose clinical data contained 267 

measurements for more than half (at least 11 out of 21) of the blood markers that we used as a 268 

validation set for the prognostic model developed in this study.  269 
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 270 

We also obtained data (n = 731) corresponding to the circulating proteome measured between 271 

April 2, 2020 and April 20, 2021 by a multiplex SOMAmer affinity array (SomaLogic, 4,985 272 

aptamers) from BQC19. When measurements of the same patients but at different time points 273 

were available, we used the one corresponding to the first time point. SomaScan is a 274 

biotechnological protocol commercialized by the SomaLogic company (7). It relies on a set of 275 

artificial aptamers linked to a fluorophore and each designed to bind a single protein. Once added 276 

to the sample, the activity of each aptamer is measured through fluorescence and used to 277 

approximate the expression level of the targeted protein. SomaScan protocol comprises several 278 

levels of calibration and normalization to correct technical biases. Log2 and Z-score normalization 279 

were performed on each aptamer separately in addition to the manufacturer’s provided 280 

normalized data (hybridization control normalization, intraplate median signal normalization, 281 

and median signal normalization). Since the data was analyzed by SomaLogic in two separate 282 

batches, we applied the z-score transformation separately to each batch, to reduce batch effects. 283 

These additional transformations ensure that the measured values of different aptamers are 284 

comparable and can be used in cluster analysis.  285 

 286 

Consensus agglomerative clustering 287 

Patients were clustered using agglomerative clustering with Euclidean distance and Ward’s 288 

linkage (8, 9). To identify number of clusters k, we used the elbow method based on the AIC and 289 

BIC . More specifically, we calculated the AIC and BIC for clustering using k = 2, 3, …, 20 and used 290 

the Kneedle algorithm (20) to identify the value of k corresponding to the “elbow”, where 291 
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increasing the value of k does not provide much better modeling of the data. Kneedle identified 292 

k = 6 as the number of clusters based on both AIC and BIC (Figure 1A).  293 

 294 

Given the number of clusters in the data, we then used consensus clustering with sub-sampling 295 

to obtain robust endophenotypes. We randomly sampled 80% of the patients 1000 times. Each 296 

time, we used the agglomerative clustering above with k = 6 to identify clusters. Given these 1000 297 

clusterings, we calculated the frequency of two patients appearing in the same cluster, when 298 

both were present in the randomly formed dataset. We then performed one final agglomerative 299 

clustering of these frequency scores to identify the six endophenotypes (Figure S2A and Figure 300 

1B).  301 

 302 

Nearest-centroid predictor based on blood markers 303 

In order to predict endophenotypes from blood tests, we developed a missing-value resilient 304 

nearest-centroid classifier. We used the dataset of patients that were used to form the original 305 

EPs (n = 731) as the training set and the dataset of patients that did not have proteome data as 306 

the validation set (n = 903). First, we z-score normalized each of the 43 markers across all the 307 

patients in the training set, one marker at a time. We then formed a marker signature (a vector 308 

of length 43) for each EP. Each element of an EP’s signature corresponds to the mean of the 309 

corresponding marker across all patients of that EP.  310 

 311 

To predict the EP label of each patient in the test set, we first z-score normalized their blood 312 

marker measurements using the mean and standard deviation of the markers calculated from 313 
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the training set. Then, we calculated the cosine distance between each test patient’s blood 314 

marker profile and the centroids (excluding missing values) and identified the nearest EP as the 315 

predicted EP (PEP) label of the patient.   316 

 317 

Statistics 318 

Several non-parametric tests, including Mann–Whitney U test, Fisher’s exact test, and 319 

Spearman’s rank correlation, were used in this study. Benjamini–Hochberg false discovery rate 320 

(FDR) was used to adjust the p-values for multiple tests. 321 

 322 

Study approval 323 

The study was approved by the Institutional Ethics Review Board of the “Centre intégré 324 

universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean” (CIUSSS-SLSJ) affiliated 325 

to the Université de Sherbrooke [protocol #2021-369, 2021-014 CMDO – COVID19].   326 
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Figures 342 

 343 
Figure 1: Unsupervised consensus clustering of SARS-CoV-2 positive patients.  344 
A) The elbow points (circles in red) of Akaike's Information Criteria (AIC) and Bayesian 345 
Information Criteria (BIC) curves versus number of clusters consistently corresponded to k=6 as 346 
the optimal number of clusters. B) The heatmap shows the expression of aptamers (rows) in each 347 
sample (columns). The dendrogram shows the identified endophenotypes. C) Characterization of 348 
samples based on sex at birth, highest world health organization (WHO) severity level achieved, 349 
intensive care unit (ICU) admission, ventilatory support, and oxygen therapy. For the last three 350 
rows, a sample colored “black” reflects a label of “yes”.  351 
 352 

Figure 1 a): AIC and BIC by number of clusters on single hierarchical clustering using all samples; 
elbow point chosen using kneedle shown in red. b): clusters based on SOMAmers. The heatmap 
shows the expression of proteins (rows) in each sample (columns) by normalized SOMAmer RFUs. 
Sample dendrogram colors are chosen to match those of Kaplan-Meier plots in Fig. 2a). 
c): Characterization of samples based on age, body mass index, sex at birth, highest WHO severity 
level achieved, ICU admission, ventilatory support, and oxygen therapy; missing values are shown 
in white.

A)

C)

B)A B

C
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 353 
Figure 2: Characterization of endophenotypes (EPs).  354 
A) Enrichment or depletion of each EP in clinical variables (one cluster versus rest). Two-sided 355 
Fisher’s exact tests are used to calculate the p-values, which are corrected for multiple tests using 356 
Benjamini–Hochberg false discovery rate (FDR). Gradients of blue show depletion, while 357 
gradients of red show enrichment. FDR values above 0.05 are depicted as white. B) The number 358 
of patients in each EP and the colors used to represent them in panels C, D, and E. C) Kaplan–359 
Meier analysis of the time between patients' admission to the hospital and their admission to 360 
intensive care unit (ICU) (or death if earlier) for each EP (Delta). D) Distribution of age in each EP. 361 
E) Distribution of BMI in each EP. F) COVID-19 severity in each EP.  362 

Figure 2: Characterization of endophenotypes. Panel A: Kaplan-Meier analysis of the delay between patients' admission to the 

hospital (T0) and their admission to ICU (or death if earlier, E) for each endophenotype (multivariate logrank P = 5.00 E-30). 

Panel B and C: boxplots displays of the age at arrival (B) and BMI (C) of patients for each endophenotype. Panel D: Stacked 

barplots displays of COVID19 severity of patients for each endophenotype.

Sex at Birth (Female)

Ventilatory Support (Yes)

Oxygen Therapy (Yes)

Admission to ICU (Yes)

Severity (Severe/Dead)

B

A

D E F

FDR

Log-rank p-value = 5.00E-30
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 363 
Figure 3: Frequency and significance of complications in different EPs.  364 
The value in each cell shows the percentage of patients of that EP (column) that suffered from 365 
the complication (row). The colors represent two-sided Fisher’s exact test false discovery rate 366 
(FDR, corrected for multiple tests). Red represents enrichment, while blue represents depletion. 367 
FDR values below 0.05 are shown as white.  368 
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Figure 4: Patterns of blood markers and Roche diagnostic markers in the endophenotypes (EPs). 370 
Heatmaps show the false discovery rate (FDR) values for two-sided one-vs-rest Mann–Whitney 371 
U tests for 21 blood markers (most extreme value during hospitalization) (A) and 22 Roche 372 
diagnostic markers (B) for each EP. FDR values below 0.05 are shown as white. The numerical 373 
values show the median value of the maker in each EP. Abbreviations used: WBC = white blood 374 
cells, LDH = lactate dehydrogenase, ALT = alanine aminotransferase, aPTT = activated partial 375 
thromboplastin time, INR = International Normalized Ratio.  376 
 377 
 378 

 379 
 380 

 381 
Figure 5: Characterization of predicted endophenotypes (PEPs) based on the prognostic model 382 
using 21 blood markers and 22 Roche diagnostic markers. A) The number of patients in each PEP 383 
and the colors used to represent them in panels B, C, D, and E. C) Kaplan–Meier analysis of the 384 
time between patients' admission to the hospital and their admission to intensive care unit (ICU) 385 
(or death if earlier) for each PEP (Delta). D) Distribution of age in each PEP. E) Distribution of BMI 386 
in each PEP. F) World health organization COVID-19 severity in each PEP.  387 

Log-rank p-value= 1.56E-21

Figure 5: Characterization of predicted endophenotypes (PEPs) using 43 blood variables. 
Panel A: Kaplan-Meier analysis of the delay between patients' admission to the hospital 
(T0) and their admission to ICU or death (Event) for each PEP. Panel B and C: boxplots 
displays of the age at arrival (B) and BMI (C) of patients for each PEP. Panel D: 
Stacked barplots displays of COVID19 severity of patients for each PEP.

A B

C D E
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Tables 388 

Table 1: Clinical and pathological characteristics of the BQC19’s participants used in to identify 389 
endophenotypes (EPs) in this study.  390 
 391 

 
Cohort 
(n=731) 
No. (%) 

EP1 
(n=189) 
No. (%) 

EP2 
(n=130) 
No. (%) 

EP3 
(n=160) 
No. (%) 

EP4 
(n=75) 
No. (%) 

EP5 
(n=59) 
No. (%) 

EP6 
(n=118) 
No. (%) 

Age (years) 

<45 17.0 18.0 21.5 21.2 16.0 6.8 10.2 

45-65 34.9 31.7 34.6 43.1 36.0 18.6 36.4 

>65 48.2 50.3 43.8 35.6 48.0 74.6 53.4 

Unknown 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Body mass 
index in 
kg/m2 

<20 2.2 2.6 3.8 0.6 0.0 5.1 1.7 

20-25 11.8 11.6 14.6 12.5 4.0 18.6 9.3 

25-35 27.2 33.9 26.9 18.8 21.3 28.8 31.4 

>35 7.0 5.8 3.1 6.9 10.7 10.2 9.3 

Unknown 51.8 46.0 51.5 61.3 64.0 37.3 48.3 

Sex at birth 
Female 43.8 52.4 50.0 34.4 54.7 39.0 31.4 

Male 56.2 47.6 50.0 65.6 45.3 61.0 68.6 

Severity 

Deceased 3.1 0.5 1.5 3.1 0.0 5.1 10.2 

Severe 31.5 12.7 19.2 33.8 37.3 39.0 64.4 

Moderate 51.2 65.1 56.9 47.5 58.7 52.5 22.0 

Mild 11.5 19.6 17.7 13.1 1.3 1.7 0.8 

Unknown 2.7 2.1 4.6 2.5 2.7 1.7 2.5 

Oxygen 
therapy 

Yes 66.6 45.0 48.5 68.1 92.0 78.0 97.5 

No 22.8 45.0 38.5 11.2 5.3 13.6 1.7 

Unknown 10.5 10.1 13.1 20.6 2.7 8.5 0.8 

Ventilatory 
support 

Yes 65.1 43.4 47.7 68.1 86.7 74.6 96.6 

No 11.4 11.6 16.9 16.2 4.0 13.6 1.7 

Unknown 23.5 45.0 35.4 15.6 9.3 11.9 1.7 

Admission to 
intensive 
care unit 

Yes 32.0 12.2 20.0 30.6 30.7 37.3 77.1 

No 65.8 84.7 77.7 66.2 68.0 62.7 22.0 

Unknown 2.2 3.2 2.3 3.1 1.3 0.0 0.8 

 392 

393 
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Table 2: Summary of the characteristics of each endophenotype.  394 
In this table, High (Low), denoted as H (L) implies that the average value of the variable in the 395 
corresponding EP was significantly higher (lower) than the other EPs (considered together), while 396 
N (Nondescript) implies that it was not significantly different. 397 
 398 

Endophenotype Age Sex at 
birth BMI  Blood markers 

EP1 H F N  High lymphocyte, 
Low neutrophil 

EP2 N N L  High albumin, 
Low white blood cells 

EP3 L M N  High platelet, 
Low creatinine 

EP4 N N N  High lactate 

EP5 H N N  High creatinine, 
Low haemoglobin 

EP6 N M N  High white blood cells, 
Low lymphocyte 

Abbreviations used: H = High, L = Low, N = Nondescript, F = Female, M = Male 399 
  400 
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