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Abstract 1 

Defining the molecular mechanisms of novel diseases such as COVID-19 is crucial to identify 2 

treatable traits to improve patient care. To circumvent a priori bias and the lack of in-depth 3 

knowledge of this new disease, we opted for an unsupervised stratification approach, followed 4 

by detailed multi-modal characterization using proteome, metabolomic, genomic, and clinical 5 

features. Using the detailed circulating proteome, as measured by 4985 aptamers (SOMAmers), 6 

robust consensus clustering identified six endophenotypes (EPs) present among 731 SARS-CoV-2 7 

PCR-positive hospitalized participants to Biobanque québécoise de la COVID-19 (BQC19), with 8 

varying degrees of disease severity and times to intensive care unit (ICU) admission. In particular, 9 

one endophenotype, EP6, was associated with a greater proportion of ICU admission, mechanical 10 

ventilation, acute respiratory distress syndrome (ARDS) and death. Clinical features of this 11 

endophenotype showed increased levels of C-reactive protein, D-dimers, elevated neutrophils, 12 

and depleted lymphocytes. Moreover, metabolomic analysis supported a role for immuno-13 

thrombosis in severe COVID-19 ARDS. Furthermore, Fibroblast Growth Factor Receptor (FGFR) 14 

and SH2-containing transforming protein 4 (SHC4) signaling were identified as molecular features 15 

associated with severe COVID-19. Importantly, a predictive model was developed and validated 16 

on an additional set of 631 SARS-CoV-2 PCR-positive patients to enable prediction of these 17 

endophenotypes, which reflect patients’ likelihood of admission to ICU, solely based on clinical 18 

laboratory measurements. This suggests the use of blood markers as surrogates for generalizing 19 

these EPs to new patients and automating identification of high-risk groups in the clinic.  20 
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Introduction 21 

The coronavirus disease 2019 (COVID-19) is a new human disease caused by the coronavirus 22 

SARS-CoV-2 infection that has been assessed pandemic by the World Health Organization in 23 

March 2020. As SARS-CoV-2 infection spread, a breath of outcomes of the infection became 24 

apparent, from asymptomatic individuals to severely ill and dying, from complete recovery to 25 

long-lasting symptoms (Marshall et al., 2020; Rubin, 2020). The emergence of novel diseases such 26 

as COVID-19 presents the medical and scientific community with numerous challenges. Among 27 

them, defining the molecular mechanisms of disease related to specific outcomes is important 28 

to identify treatable traits and improve the performance of healthcare systems facing the 29 

challenges brought by the pandemic.  30 

 31 

Successfully reaching this precision medicine goal requires a more granular definition of the 32 

pathology. A symptom-based method to discover molecular mechanisms of the disease may 33 

result in a challenge emerging from the fact that the same higher-level phenomenon, such as 34 

COVID-19 severity, can be produced by several different molecular mechanisms, a phenomenon 35 

termed the «many-one» limitation (Hull, 1974). Recent advances in computing strategies, such 36 

as machine learning, has enabled the development of methods that help overcome this limitation 37 

by starting from molecular profiles instead of symptoms to define endophenotypes, i.e. 38 

subgroups of individuals who are inapparent to traditional methods but share a common set of 39 

molecular factors that can lead to treatable traits (Berrettini, 2005). Establishing successful 40 

treatment strategies requires a tailored approach to the underlying molecular mechanisms that 41 

can help predict and alter disease trajectories (Russell and Baillie, 2017). Endophenotypes can 42 
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become apparent using extensive molecular phenotyping combined with machine learning 43 

algorithms (Blatti III et al., 2020; Emad et al., 2020; Te Pas et al., 2017). Current investigations of 44 

endophenotypes in COVID-19 have mainly relied on supervised approaches using fixed outcomes 45 

(such as disease severity) and integrating clinical variables at the onset (Al-Hadrawi et al., 2022). 46 

We hypothesize that using an unsupervised approach exploiting a rich molecular dataset can 47 

provide novel mechanistic insights into the pathobiology of severe COVID-19 that can help 48 

physicians improve diagnosis and prognosis. 49 

 50 

Therefore, this study aims to  identify endophenotypes linked to diverse clinical trajectories of 51 

COVID-19 using the extensive molecular phenotyping of a cohort of 731 SARS-CoV-2 positive 52 

hospitalized patients from the Biobanque québécoise de la COVID-19 (BQC19, 53 

www.quebeccovidbiobank.ca) (Tremblay et al., 2021), a prospective observational cohort of 54 

SARS-CoV-2 positive and negative participants recruited in the province of Québec, Canada,  to 55 

improve our understanding of COVID-19 pathobiology and our capacity to alter disease 56 

outcomes.  57 

 58 

In this manuscript, we report the identification of six endophenotypes in hospitalized SARS-CoV-59 

2 positive participants to BQC19, associated with different clinical trajectories. The molecular 60 

information underpinning these endophenotypes was used to increase our understanding of 61 

pathobiology and predict the likelihood of patients admitted to the hospital to be admitted to 62 

the ICU using clinical blood workups.  63 

  64 
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Results 65 

Unsupervised clustering of SARS-CoV-2-positive hospitalized BQC19 participants reveal 66 

endophenotypes associated with varying disease severity 67 

In this study, we aimed to identify endophenotypes of COVID-19 based on the circulating 68 

proteome of patients in our cohort of SARS-CoV-2 positive hospitalized participants to BQC19 (n 69 

= 1,362, Table 1), using an unsupervised approach. Figure S1 shows the distribution of the time 70 

of hospital admission of the patients and the corresponding waves as defined by National 71 

Institute of Public Health of Quebec (https://www.inspq.qc.ca/covid-19). For this purpose, we 72 

performed consensus agglomerative clustering of the subset of patients (n = 731, Table S1) for 73 

whom data corresponding to circulating proteome measured by a multiplex SOMAmer affinity 74 

array (Somalogic, ~5,000 aptamers) (Gold et al., 2010) was available in BQC19. The remaining 75 

samples were kept aside for follow-up analysis. First, the optimal number of clusters (k = 6) was 76 

identified using two criteria, Akaike's Information Criteria (AIC) and Bayesian Information Criteria 77 

(BIC) (Figure 1A); then, consensus agglomerative clustering (Euclidean distance and Ward 78 

linkage) (Murtagh and Legendre, 2014; Ward Jr, 1963) using bootstrap subsampling was 79 

performed to obtain six robust clusters (see Methods for details) (Figure 1, Figures S2 and S3).  80 

 81 

The clinical and pathological characteristics of patients in each endophenotype is provided in 82 

Table S1. To characterize the identified endophenotypes (EPs) with respect to disease severity, 83 

we performed two-sided Fisher’s exact test to assess their enrichment (or depletion) in “severe” 84 

or “dead” outcome. EP6 was significantly enriched in the severe/dead outcomes (Benjamini-85 

Hochberg false discovery rate (FDR) = 1.72E-18) with these outcomes observed in 66.1% of EP6 86 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.02.22281834doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.02.22281834
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

patients. Meanwhile, EP1 was significantly depleted in severe/dead outcomes (FDR = 8.23E-11) 87 

(Figure 2A, Table S1) with these outcomes only observed in 11.6% of EP1 patients. In addition, 88 

EP6 was enriched in participants 1) receiving oxygen therapy (FDR = 6.24E-12), 2) receiving 89 

ventilatory support (FDR = 6.63E-12), and 3) being admitted to intensive care unit (ICU) (FDR= 90 

1.26E-22) (Figure 2A, Table S1). Kaplan Meier analysis (Kaplan and Meier, 1958) also confirmed 91 

that the identified EPs have a distinct temporal pattern of admission to ICU (multivariate logrank 92 

test P = 5.06E-36), with EP1 (EP6) having the highest (lowest) chance of not being admitted to 93 

ICU (or die prior to that) in a 40-day span since their admission to the hospital (Figure 2B). A 94 

similar pattern can be observed when patients that died before admission to ICU were excluded 95 

(Figure S4, multivariate logrank test P = 6.55E-36). A two-sided Mann-Whitney U (MWU) test 96 

showed that patients in EP5 were generally older than other EPs (FDR = 6.94E-5), while EP3 97 

included younger patients (FDR = 1.82E-4). However, EP6 (which had the most severe patients) 98 

did not show enrichment in older patients or individuals with high BMI (two-sided MWU 99 

FDR>0.05) (Figure 2C, Table S1).  100 

 101 

These analyses revealed that the unsupervised approach was able to identify endophenotypes 102 

with distinct disease characteristics and outcomes using the circulating proteome of the patients. 103 

We identified EP6 as a group of participants with an increase in many measures of COVID-19 104 

disease severity.  105 

 106 

EP6 is enriched with BQC19’s participants having acute respiratory distress syndromes 107 
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In accordance with increase disease severity, EP6 was also enriched in COVID-19 medical 108 

complications (two-sided Fisher’s exact test): acute respiratory distress syndrome (ARDS) (FDR = 109 

1.43E-10), acute kidney injury (FDR = 6.37E-7), bacterial pneumonia (FDR=2.13E-6), liver 110 

dysfunction (FDR = 9.32E-3), and hyperglycemia (FDR = 1.56E-2) (Figure 3, Table S2). The 111 

frequency of ARDS was just below 8% in EP1 compared to greater than 44% in EP6, making this 112 

complication a key feature of this cluster (Figure 3, Table S2). 113 

 114 

EP6 is enriched in blood metabolites associated with severe COVID-19. 115 

To further characterize each EP and gain insight into mechanisms of disease, metabolomic 116 

profiling of plasma samples was done in parallel to the SOMAmer analysis. The results yielded 117 

data on 1,435 metabolites, of which 576 were found significantly altered in EP6 (two-sided MWU 118 

FDR < 0.01). Moreover, the metabolomic characterization of the plasma samples supported the 119 

distinction in blood composition at the levels of metabolomic sub-pathways and individual 120 

metabolites between the different EPs (Figure 4 and S3).  121 

 122 

Pathway enrichment analysis identifies FGFR-signaling in severe COVID-19 acute respiratory 123 

distress syndrome 124 

To gain insight into the molecular mechanisms underlying the severity in EP6, we performed 125 

pathway enrichment analysis using the Knowledge Engine for Genomics (KnowEnG) (Blatti III et 126 

al., 2020) for the aptamers associated with EP6. Since aptamers were used to identify the EPs, it 127 

is expected that many of them would be significantly associated with the EPs. As a result, we 128 

selected a very strict threshold of FDR < 1E-20 (two-sided MWU test) to identify top aptamers 129 
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associated with EP6 (Table S4). We then used the gene set characterization pipeline of KnowEnG 130 

with Reactome (Gillespie et al., 2021) pathway collection. This analysis showed that while EP6 is 131 

characterized by pathways associated with Interleukins and Cytokine Signaling in Immune 132 

system, multiple instances linked it with Fibroblast Growth Factor Receptor (FGFR) signaling, 133 

identifying this pathway as a potential driver of severe pathology that was not present in other 134 

EPs (Tables 2 and S4). 135 

 136 

SHC4 genotype and protein expression levels are associated with higher odds of belonging to 137 

EP6 138 

To further improve our understanding of the molecular mechanisms underlying EP6, we 139 

leveraged an additional dataset of Genome Wide association Study (GWAS) corresponding to 140 

these patients. We identified 25 single nucleotide variations (SNVs) distributed in 13 annotated 141 

genes, that were below a p-value threshold of 1E-4 differentiating EP6 versus the rest (Table 3). 142 

We then investigated each of the SNVs to which we could assign a gene and an aptamer, to assess 143 

whether their protein product in circulation was differentially regulated by the genotype (Table 144 

4). We discovered two genes, SHC4 (encoding SHC adaptor protein 4) and CACNA2D3 (encoding 145 

calcium voltage-gated channel auxiliary subunit alpha2 delta3) for which there was a significant 146 

association between genotype and protein expression levels (p-values < 0.05). While CACNA2D3 147 

may have mild impact on EP6 membership (odd ratio = 0.61, Table 4), SHC4 was one of the top-148 

enriched aptamers (position 32 out of 4,985), with odds ratio of 11.98 and 2.00 for the protein 149 

product and SNV, respectively of belonging to EP6 for the alternative allele. Therefore, the GWAS 150 

analysis revealed that the signaling adaptor protein SHC4 may play an important mechanistic role 151 
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in contributing to severe disease pathology. To gain further insight into the potential role of SHC4, 152 

we investigated the metabolites associated with SHC4 in EP6. The only significantly correlated 153 

metabolite was 6-oxopiperidine-2-carboxylate (Spearman’s rank correlation = 0.40, FDR = 0.012), 154 

where the p-values were corrected for the number of metabolites using Benjamini-Hochberg 155 

FDR.  156 

 157 

A predictive model based on blood markers predicts EPs in a separate validation cohort 158 

To further characterize each EP, we assessed the clinical laboratory results obtained from blood 159 

draws and compared them between the groups. We focused on 21 markers that were measured 160 

in at least 50% of the patients used for consensus clustering (Figure 5A and Table S5) and used 161 

the summary value reported in the BQC19 database corresponding to the most extreme 162 

measurement among multiple blood draws (Table S5 provides this information for each blood 163 

marker). Figure 5A shows the elevation and depletion of these markers in the identified EPs. EP6 164 

is characterized by abnormal values in markers of inflammation (lymphopenia, total white blood 165 

cells count, neutrophilia, C-reactive protein (CRP)), liver damage (alanine aminotransferase (ALT), 166 

albumin, lactate deshydrogenase (LDH)), blood clotting disorder (D-dimers, low hemoglobin, 167 

International Normalized Ratio (INR) and hyperglycemia (glucose).  168 

 169 

To identify relationships that may shed light on factors influencing clinical laboratory results 170 

defining EP6, we also performed Spearman’s rank correlation analyses between each blood test 171 

values and metabolites (Table S5).  172 

 173 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.02.22281834doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.02.22281834
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

Since EPs and particularly EP6, which we identified as the EP with worst outcome, showed a clear 174 

and distinct clinical laboratory result signature compared to other EPs, we sought to develop a 175 

predictive model based on these signatures. Due to the presence of missing values for these 176 

markers in our cohort, we developed a nearest-centroid classifier that is capable of dealing with 177 

missing values and can predict EPs based on blood markers (see Methods for details). To test the 178 

ability of this model on prediction of EPs on an independent yet similar dataset, we used data 179 

corresponding to 631 SARS-CoV-2 positive hospitalized BQC19’s participants that did not have 180 

circulating proteome data and hence were not used to identify the endophenotypes. The clinical 181 

and pathological characteristics of patients in each predicted endophenotype (PEP) is provided 182 

in Figure 5B-5E and Table S6. 183 

 184 

Our predictive model identified 116 of these patients to belong to EP6. Fisher’s exact test showed 185 

a significant enrichment of the predicted EP6 (PEP6) in severity/dead (FDR = 1.77E-22), while 186 

PEP1 and PEP2 were significantly depleted in these outcomes (FDR = 1.61E-4 and FDR = 1.30E-8, 187 

respectively), as shown in Figure 5B and Table S6. Similar to EP6, PEP6 was also significantly 188 

enriched in participants 1) receiving oxygen therapy (FDR = 2.38E-8), 2) receiving ventilatory 189 

support (FDR = 4.40E-8), and 3) being admitted to ICU (FDR = 1.23E-24) (Table S6). Kaplan Meier 190 

analysis also confirmed that these PEPs have a distinct temporal pattern of admission to ICU 191 

(multivariate logrank test P = 1.05E-34), with PEP6 having the lowest chance of not being 192 

admitted to ICU (or die prior to that) in a 40-day span since their admission to the hospital (Figure 193 

5E).  194 

 195 
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These results suggest that our predictive model can use these 21 blood markers to generalize the 196 

definition of endophenotypes to patients for whom the proteome data is unavailable. 197 

 198 

Discussion 199 

The results presented herein came from the unsupervised clustering of the circulating proteome 200 

from a large cohort of deeply-phenotyped SARS-CoV-2 positive hospitalized participants, that 201 

provided both expected and novel findings into the molecular mechanisms regulating COVID-19.   202 

They led to the identification of six endophenotypes with different clinical trajectories and 203 

distinguishing characteristics summarized in Table 5. One endophenotype, (EP6) was associated 204 

with worst clinical outcome of COVID-19 (enriched in acute respiratory distress syndrome) 205 

reflected by a greater proportion of ICU admission, mechanical ventilation, and severe/death 206 

outcomes (Figure 1). Clinical features of this endophenotype were consistent with published 207 

literature with increased levels of CRP, D-dimers, elevated neutrophils, and depleted 208 

lymphocytes (Figure 5A, Table S5). Our approach enabled the identification of interleukins, FGFR 209 

and SHC4 signaling as cardinal features of the molecular pathways associated with severe COVID-210 

19. Importantly, this information was sufficient to train an accurate predictive model that could 211 

in the near future support clinical care, since it only requires data from routine clinical laboratory 212 

results for prognosis. 213 

 214 

The approach: unsupervised clustering capacity at identifying clinically meaningful 215 

subpopulations 216 
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Our unsupervised clustering approach in conjunction with a rich molecular dataset enabled us to 217 

identify endophenotypes that could not be captured using traditional methods classifying the 218 

population in two bins solely based on severity. This is in part because of the «many-one» 219 

limitation: the same higher-level phenomenon (COVID-19 severity) can be produced by several 220 

different molecular mechanisms. Determining endophenotypes using an unsupervised method 221 

provides a higher granularity and increases the chance to identify distinct molecular mechanisms 222 

and pathways resulting in similar COVID-19 severity. Accordingly, we identified two 223 

endophenotypes with more favorable outcomes (EP1 and EP2), three endophenotypes with 224 

intermediate outcomes in terms of severity (EP3, EP4 and EP5) and one endophenotype which 225 

led to worst outcomes compared to all others (EP6).  226 

 227 

The identification of endophenotypes was done systematically using robust consensus clustering 228 

of aptamer expression levels in which the optimum number of clusters was determined 229 

congruently using two well-established measures: AIC and BIC. The consensus clustering using 230 

bootstrap sampling (1000 times) ensured identification of robust clusters that are not sensitive 231 

to exclusion of some of the samples (20% randomly selected and excluded at each cycle). 232 

Moreover, identifying the best number of clusters using AIC/BIC (both of which agreed with each 233 

other) allowed us to reveal the patterns of the EPs directly from the data, instead of imposing a 234 

pattern onto it through human supervision. This is an important strength of the study that 235 

enabled us to identify distinct molecular patterns of patients that could have remained 236 

undetected using other traditional approaches.  237 

 238 
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Moreover, to improve the translational applicability of EPs, we developed a predictive model 239 

based only on laboratory measured blood markers to generalize the definition of these 240 

endophenotypes to unseen samples without measured aptamer expression levels. 241 

Characteristics of EPs predicted solely based on their blood markers were consistent with the 242 

original EPs, suggesting the use of blood markers as surrogates for generalizing these EPs to new 243 

patients and automating identification of high-risk groups in the clinic. This approach takes into 244 

account the effect of multiple blood variables simultaneously and incorporates the full 245 

distribution of each variable. This is in contrast to the clinical laboratory results that are 246 

automatically flagged as within or outside normal range, one variable at a time, therefore 247 

increasing the clinical applicability of our model by leveraging a wider spectrum of information 248 

to prognose patient outcome. 249 

 250 

COVID-19 molecular pathology 251 

The datasets used in this study carry rich molecular information on mechanisms of disease for 252 

COVID-19. EP6 is characterized by its enrichment in ARDS (44% vs 8% in EP1, Figure 3), acute 253 

kidney injury (45%) and liver dysfunction (19%) (Table S2). Low levels of Sphingosine 1-phosphate 254 

(S1P) are associated with ARDS and were shown to be associated with greater ICU admission and 255 

decrease survival in COVID-19 (Marfia et al., 2021). Accordingly, we found that S1P levels are 256 

depleted in EP6 while they are enriched in EP1 (Figure 4A). Interestingly, the aptamers detecting 257 

neutral ceramidase, an enzyme converting ceramides into sphingosine, is enriched in EP1 258 

(although changes in protein abundance as detected by aptamers may not necessarily reflect 259 

changes in enzymatic activity). Accordingly, dihydroceramides and ceramides are depleted in 260 
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cluster EP1. Conversely, dihydroceramides and ceramides are significantly enriched in EP6, 261 

suggesting that there is a shunting of the pathway away from sphingosine towards more pro-262 

inflammatory ceramides in EP6 associated with metabolic disorders (Lachkar et al., 2021). 263 

Moreover, one of the top aptamers found enriched in EP6, is the enzyme Serine 264 

palmitoyltransferase 2 (SPTLC2) (Table S4) (Han et al., 2009; Lone et al., 2020). These results 265 

suggest a counterbalance between ceramides and sphingosine, where the former is associated 266 

with poorer outcomes during critical illness, whereas higher levels of the latter is associated with 267 

more favorable outcomes in ARDS.  268 

 269 

Metabolomic profile of EP6 supports a role for immuno-thrombosis-mediated organ damage in 270 

COVID-19 271 

To obtain a more comprehensive understanding of the alteration in metabolic profiles in EP6, we 272 

investigated which metabolic sub-pathways were significantly enriched in EP6 (Figure 4, Table 273 

S3). The two top pathways (FDR < 1E-2) are “Methionine, Cysteine, SAM and Taurine 274 

Metabolism” and “phosphatidinylethanolamine (PE)”. Interestingly, these two pathways are 275 

known to interact (Blachier et al., 2020), with PE methylation a major consumer of S-276 

Adenosylmethionine (SAM) leading to the synthesis of S-Adenosylhomocysteine (SAH) and 277 

cystathionine (Ye et al., 2017), which itself has been found upstream of 2-hydroxybutyrate and 278 

2-aminobutyrate in a model of hepatoxicity (Parman et al., 2011). SAH, cysthathionine, 2-279 

hydroxybutyrate and 2-aminobutyrate are significantly enriched in EP6. Congruently, EP6 is 280 

enriched (FDR < 1E-2) in liver dysfunction (Figure 3, Table S2), with markers of liver dysfunction 281 
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all significantly altered in clinical blood works: ALT, albumin, bilirubin and LDH (Figure 5A, Table 282 

S5).  283 

 284 

PEs become exposed at the surface of cell membranes upon exposure to stress, inflammation, 285 

and cell death (Ran et al., 2002; Stafford and Thorpe, 2011). In a Syrian hamster model, infection 286 

with SARS-CoV-2 had markedly increased PE expression in the animals that were fed a high salt, 287 

high fat diet, demonstrating the interaction between infection and metabolic disorder with the 288 

abundance of circulating PE (Port et al., 2021). Phospholipids-containing microparticles from 289 

platelet activation contribute to Tissue Factor activation and pro-thrombinase activity (Ataga, 290 

2009). Platelets-derived microparticles have a much greater procoagulant activity than activated 291 

platelets (Sinauridze et al., 2007). Exposure of glycerophospholipids in conjunction with 292 

phosphatidinylserine (PS) enhances factor X activation and increases pro-thrombinase activities 293 

(Majumder et al., 2011; Tavoosi et al., 2011). Interestingly, red blood cells exposed to paclitaxel, 294 

PS were exposed to the surface by protein kinase C (PKC) zeta activation of scramblase (Kim et 295 

al., 2018). The aptamer detecting PKC zeta is one of the top aptamers associated with EP6 (Table 296 

S4). PKC zeta can be activated by testosterone, Dehydroepiandrosterone(DHEA) (Sato et al., 297 

2008) and dexamethasone (Kajita et al., 2001),  signals of relevance to EP6. The membranes of 298 

azurophilic granules, which contains Cathepsin G representing the most enriched aptamer in EP6, 299 

are enriched in PE relative to PC (MacDonald and Sprecher, 1989). Accordingly, EP6 in addition 300 

to significantly enhanced PE abundance, showed decrease platelets count, increased D-Dimers, 301 

INR and activated partial thromboplastin time (aPTT) (Figure 5A, Table S5), hallmarks of 302 

Disseminated Intravascular Coagulation (DIC), a serious and often lethal complication of sepsis 303 
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(Papageorgiou et al., 2018). Liver lesions are frequently observed in DIC (Esaki et al., 1984), where 304 

liver damage can cause DIC, or exacerbate its manifestation due to its function in clearing 305 

activated products of the coagulation cascade. Taken together, the metabolomic profile of EP6 306 

supports pro-coagulation activity in circulation that can be linked to organ damage. 307 

 308 

Many early reports suggested a role for immunothrombosis involving neutrophil-mediated 309 

release of NETs contributing to endothelial dysfunction as a mechanism of microthrombosis in 310 

COVID-19 associated ARDS (Barnes et al., 2020; Bonaventura et al., 2021; Ding et al., 2021). These 311 

findings have been supported by several studies carried out in humans (Blasco et al., 2021; 312 

Desilles et al., 2022; Englert et al., 2021; Leppkes et al., 2020; Middleton et al., 2020; Obermayer 313 

et al., 2021; Ouwendijk et al., 2021; Petito et al., 2021; Skendros et al., 2020). All of these studies 314 

were performed with 7 to 77 participants. Our study supports these findings in two important 315 

ways: 1) we used a much greater sample size (n = 731) and, 2) the identification of molecular 316 

factors associated with immuno-thrombosis emerged from an unsupervised analysis of deep 317 

phenotyping of the participant population. The strength of the extensive characterization 318 

performed in this study has enabled the finer definition of molecular mechanisms of disease by 319 

providing associations between the circulating proteome, metabolome and clinical laboratories 320 

results.  321 

 322 

Tryptophan and polyamine metabolisms in COVID-19 acute kidney injury 323 

SARS-CoV-2 infection has been shown to be associated with altered kynurenin levels associated 324 

with increased IL-6 and kidney injury (Thomas et al., 2020). Interestingly, we also observed 325 
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Kynurenin to be enriched in EP6 but depleted in EP1, supporting the association of increased 326 

kynurenin with COVID-19 severity and the enrichment in acute kidney injury complication.  327 

Spermidine/spermine N(1)-acetyltransferase (SSAT) contributes to polyamine synthesis. In 328 

addition, its extracellular metabolite, N1,N12-diacetylspermine, is one of the top 15 metabolites 329 

enriched in EP6 (Figure 4A), is positively correlated with Urea and creatinine, and is negatively 330 

correlated with lymphocyte numbers (Table S5). Deletion of SSAT in mice is protective against 331 

LPS-induced kidney injury (Zahedi et al., 2010).  SSAT activity is associated with white blood cell 332 

count in Acute Myeloid Leukemia and Chronic Myeloid Leukemia patients (Pirnes-Karhu et al., 333 

2014). This suggests that the tryptophan and polyamine metabolisms are associated with acute 334 

kidney injury in COVID-19 and identifies potential pathways of disease progression.  335 

 336 

Novel molecular markers of COVID-19 pathology: FGFR and SHC4  337 

Two of the outstanding novel molecular factors associated with COVID-19 ARDS identified by our 338 

study are FGFR and SHC4. Circulating levels of the pro-angiogenic FGF-2 has been associated with 339 

COVID-19 severity and creatine levels in a study of 208 SARS-CoV-2 positive participants (Smadja 340 

et al., 2021). It is noteworthy that the use of Nintedanib, an inhibitor of FGFR, Vascular 341 

Endothelial Growth Factor Receptor (VEGFR) and Platelet-Derived Growth Factor Receptor 342 

(PDGF-R) approved for use in interstitial lung disease, improved pulmonary inflammation and 343 

helped wean off mechanical ventilation of three middle-aged obese COVID-19 patients where 344 

lung function restoration has been challenging (Bussolari et al., 2021). While the adaptor protein 345 

SHC4 has not been experimentally demonstrated to modulate FGFR signaling, a 12-gene 346 

biomarker signature associated with melanoma contains FGFR2, FGFR3 and SHC4 (Liu et al., 347 
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2013). It is attractive to speculate that SHC4 may act downstream of FGFR or other associated 348 

growth factor receptors, favoring immuno-thrombosis associated with COVID-19 ARDS. In view 349 

of the limited knowledge of this understudied member of the SHC family, we looked at the 350 

metabolites correlated with SHC4 to gain insights into its possible functions. Interestingly, 6-351 

oxopiperidine-2-carboxylate (the only significantly correlated metabolite to SHC4 in EP6) was 352 

found to be negatively associated with glomerular filtration rate in a GWAS study of kidney 353 

disease and hypertension in African-Americans (Luo et al., 2021). Acute kidney injury is a frequent 354 

complication of acute liver failure (Agarwal et al., 2013) and liver dysfunction is associated with 355 

abnormal coagulation (Williams et al., 1993). The overall molecular information coming from the 356 

multi-modal analysis of EP6 points to a triad between liver function, kidney function and 357 

hemostasis that becomes dysfunctional following ARDS-associated immuno-thrombosis. 358 

Whether the presence of SHC4 in circulation is a marker of dysfunction of this triad, or an active 359 

actor immuno-thrombosis remains to be determined. Moreover, the identity of the cells 360 

expressing SHC4, leading to its presence in the circulation is not known. Taken together, our 361 

identification of FGFR and SHC4 signaling pathways distinguishing EP6 from other 362 

endophenotypes, supports further investigation of antagonists of those pathways to treat severe 363 

manifestations of COVID-19 and their potential use as biomarkers of severe disease activity. 364 

 365 

Limitations and considerations 366 

The data presented in this study come from individuals participating to BQC19, a prospective 367 

observational cohort built to study COVID-19 in Québec (Canada) with its specific population 368 

profile as reported previously (Tremblay et al., 2021). While the number of participants was 369 
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sufficient to establish the endophenotypes using the extensive proteomic profile available in 370 

BQC19, it was insufficient for traditional genome-wide association study (GWAS) to identify 371 

relations between SNVs and the identified endophenotypes (Zhou et al., 2021). Instead, we 372 

exploited the top SNVs that distinguished EP6 from other EPs in a pQTL analysis. Because these 373 

results show a potential genetic functional causality, it gives us the confidence that these 374 

associations are likely not due to random chance; however, the robustness of this approach 375 

needs to be further tested in other studies. A chronological bias may also be present, as most of 376 

the participants used for endophenotyping in this study were recruited during the first two waves 377 

of the pandemic (Figure S1), prior to widespread vaccination in Québec and prior to the 378 

appearance of the Omicron variant and sub-variants. Therefore, some of the features of the 379 

identified endophenotypes may change over the course of the pandemic. It will be essential to 380 

continue to assess the molecular profiles longitudinally to better understand the dynamic nature 381 

of host-pathogen interactions. It will also be interesting to compare the profiles of COVID-19 382 

ARDS to other viral-induced ARDS, to identify commonalities as well as distinguishing features.  383 

 384 

In this study, we used circulating proteome as determined by aptamers to identify 385 

endophenotypes, a task for which it is well suited as it can capture a dynamic landscape. 386 

However, several important considerations need to be mentioned. First, raw (unnormalized) 387 

expression values of the same aptamer can be used to compare different samples, but these 388 

values cannot be used to compare different aptamers against each other in the same sample, 389 

since they only show the relative abundance of expression and not absolute expression. As such, 390 

one needs to first normalize these values across samples (one aptamer at a time) and then 391 
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subject them to follow-up analysis such as clustering, an approach that we adopted in this study. 392 

Second, since information only shows relative abundance, focusing on an individual aptamer and 393 

analyzing it will require additional measurements to establish absolute abundance. Moreover, if 394 

one wants to analyze aptamers individually (instead of the collective approach that we used in 395 

this study), they need to consider the effect of complexes and non-specific binding that may 396 

result in noisy data. As such, we suggest that the aptamer expression data be used collectively 397 

and after proper normalization, which enabled us to identify various EPs and important molecular 398 

mechanisms discussed in this study.  399 

 400 

In this work, we developed a predictive model based on blood markers that enables us to 401 

generalize the definition of EPs to scenarios where data on circulating proteome is not available. 402 

This significantly increases the applicability of this approach and may enable automating 403 

identification of high-risk individuals in the clinic. However, time and follow-up studies are 404 

required to move this predictive model and the definitions of EPs from research to clinic and 405 

develop it as an acceptable clinical practice. Nonetheless, our approach can be used to study 406 

COVID-19 in different cohorts and identify characteristics that can guide the treatment of the 407 

disease.  408 

 409 

Future directions 410 

There is enormous amount of data within this study and BQC19 that can and should be exploited 411 

by the scientific and medical community to improve our understating of COVID-19 and novel 412 

emerging acute respiratory illnesses. Analyzing in more details the molecular profiles of the other 413 
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EPs, in particular EP3-5, which led to similar outcomes from distinct molecular pathways (Table 414 

5) should further yield important insights into mechanisms of the disease. For example, EP5 is 415 

enriched in males and cardiovascular disease complications, while EP4 is enriched in female (like 416 

EP1) but with different distinct clinical trajectories pointing to sex-dependent and independent 417 

molecular mechanisms of disease. 418 

 419 

Conclusion 420 

The major strength of this study is its starting point: unsupervised analysis of a large and deeply 421 

phenotyped cohort. We showed that this approach can address both fundamental scientific 422 

questions pertaining to mechanisms of disease and help the medical community improve patient 423 

outcomes through early identification of patient that may follow a severe clinical course during 424 

COVID-19.  425 

 426 

Methods: 427 

Datasets and preprocessing 428 

The Biobanque québécoise de la COVID-19 (BQC19; www.quebeccovidbiobank.ca) is aimed at 429 

coordinating the collection of patients’ data and samples for COVID-19 related research. Data 430 

and samples were collected from ten sites across the province of Québec (Canada) (Tremblay et 431 

al., 2021). BQC19 organizes the collected data, including clinical information and multi-omics 432 

experimental data, before making it available in successive releases. For this study, we used 433 

release #5 of the clinical data published in December 2021, the circulating proteome determined 434 

using SOMAmers (Zhou et al., 2021) and Metabolomics data (Ford et al., 2020). BQC19 GWAS 435 
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imputation data was generated by Tomoko Nakanishi at Brent Richards lab, Jewish General 436 

Hospital and McGill University. Detailed codes used for generating the data can be found in: 437 

https://github.com/richardslab/BQC19_genotype_pipeline 438 

 439 

Our main corpus of analysis consisted of n = 1,362 hospitalized and SARS-CoV-2 positive patients 440 

(based on qRT-PCR) of BQC19. This included n = 731 patients for which both clinical and 441 

proteomic data were available as well as n = 631 patients for which proteomic data was not 442 

available, but their clinical data contained measurements for more than half (at least 11 out of 443 

21) of the blood markers that we used as a validation set for the predictive model developed in 444 

this study.  445 

 446 

We also obtained data (n = 731) corresponding to the circulating proteome measured between 447 

April 2, 2020 and April 20, 2021 by a multiplex SOMAmer affinity array (Somalogic, 4,985 448 

aptamers) from BQC19 (release #3 Sep. 2021, associated patients’ data updated in release #5 449 

Dec. 2021). When measurements of the same patients but at different time points were 450 

available, we used the one corresponding to the first time point. SomaScan is a biotechnological 451 

protocol commercialized by the Somalogic company. It relies on a set of artificial aptamers linked 452 

to a fluorophore and each designed to bind a single protein. Once added to the sample, the 453 

activity of each aptamer is measured through fluorescence and used to approximate the 454 

expression level of the targeted protein. SomaScan protocol comprises several levels of 455 

calibration and normalization to correct technical biases (Gold et al., 2010). Log2 and Z-score 456 

normalization were performed on each aptamer separately in addition to the manufacturer’s 457 
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provided normalized data (hybridization control normalization, intraplate median signal 458 

normalization, and median signal normalization). Since the data was analyzed by Somalogic in 459 

two separate batches, we applied the z-score transformation separately to each batch, to reduce 460 

batch effects. These additional transformations ensure that the measured values of different 461 

aptamers are comparable and can be used in cluster analysis.  462 

 463 

We obtained metabolomic data (1,435 metabolites) from BQC19. We used the batch-normalized, 464 

missing values imputed and log-transformed version of the data. 465 

 466 

Analyses of the GWAS dataset 467 

For the GWAS analyses, annotation of SNVs were done using the biomaRt package (Durinck et 468 

al., 2009) from R (R Core Team, 2022) and all analyses were done using R version 4.1.3. Quality 469 

control steps were derived in majority from a 2017 QC tutorial article (Marees et al., 2018). At 470 

the beginning, we had 867,450 markers and 2,429 samples. We import Plink format data into R 471 

using the “read_plink” function from genio package (Ochoa, 2022) from R. We removed 103,592 472 

non ACGT bi-allelic markers. We calculated the predicted sex by looking at the rate of 473 

homozygote markers on chromosome 23. We removed 3,588 markers with call rates < 98%, 474 

448,932 monomorphic markers and markers with MAF <0.05, and 28,092 markers with Hardy 475 

Weinberg equilibrium < 1E-6 (calculated by the “HWE.exact” function from the genetics package 476 

(Warnes et al., 2021) from R. For the EP6 cluster group analyses, we removed in addition 1,747 477 

samples that were not in the cluster analysis, 8 samples with a sex discrepancy (based on 478 

predicted sex calculated earlier and reported sex), and 3 samples with a heterozygosity rate > 3 479 
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standard deviations. We finally removed a pair of samples who had approximately the same 480 

genome probably due to an error of manipulation. We couldn’t know which one was the right 481 

sample, so we removed both of them. We also had 2 pairs of individuals who had a pi-hat of ~0.5 482 

(meaning first degree relatives), we decided to keep one sample per pair, the one with the higher 483 

call rate. All other pairs of individuals had a pi-hat < 0.21 that is judge acceptable considering our 484 

population. Pi-hat were calculated with the “snpgdsIBDMoM” function from SNPRelate package 485 

(Zheng et al., 2012) from R. At the end of quality controls, 283,246 markers on 655 samples have 486 

been used to perform association analyses.  487 

 488 

To perform the principal component analyses (PCA), we took a subsample of independent 489 

markers (pruning) with a maximum sliding window of 500,000 base pairs and a linkage 490 

disequilibrium (LD) threshold of 0.2 using the “snpgdsLDpruning” function from the SNPRelate 491 

package from R. We ran the PCA with the “snpgdsPCA” function from SNPRelate package from 492 

R. The first 2 principal components (PCs) were considered significant.  493 

 494 

For the GWAS analyses of the 283,246 remaining markers between EP6 cluster compared to all 495 

others, we modeled a logistic regression with the dichotomous variable indicating if the 496 

participants belong to the EP6 cluster as the outcome variable. We used the additive model for 497 

markers as an independent variable and we adjusted the models with the first two PCs. Odds 498 

ratio and p-values were calculated on each model. QQ-plots have been performed as quality 499 

control of the models; p-values were plotted using “qqplot.pvalues” function from gaston 500 

package (Perdry and Dandine-Roulland, 2020) from R (data not shown). We compared the 501 
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aptamers’ normalized level of expression (based on normalization described earlier) between the 502 

three groups of genotypes for each studied genes by performing standard ANOVA analyses 503 

followed by Tukey post hoc tests (referred to in this study as pQTL analysis). Since aptamers 504 

tested are limited compared to the SNVs, we have fixed significance p-values threshold below 505 

1E-4 to report more SNVs instead of the more common 1E-5 suggestive threshold. Finally, to 506 

identify if the cluster EP6 may be explained by the aptamers and the SNVs, we performed 507 

multiple logistic regression analyses models include aptamers expression values, SNV genotypes 508 

(additive model) and the two principal components. OR are reported with 95% confidence 509 

intervals. 510 

 511 

Consensus agglomerative clustering 512 

Patients were clustered using agglomerative clustering, with Euclidean distance and Ward’s 513 

linkage (Murtagh and Legendre, 2014; Ward Jr, 1963). To identify number of clusters k, we used 514 

the elbow method based on the Akaike Information Criterion (AIC) and Bayesian Information 515 

Criterion (BIC). More specifically, we calculated the AIC and BIC for clustering using k = 2, 3, …, 20 516 

and used the Kneedle algorithm (Satopaa et al., 2011) to identify the value of k corresponding to 517 

the “elbow”, where increasing the value of k does not provide much better modeling of the data. 518 

Kneedle identified k = 6 as the number of clusters based on both AIC and BIC (Figure 1A).  519 

 520 

Given the number of clusters in the data, we then used consensus clustering with sub-sampling 521 

to obtain robust endophenotypes. We randomly sampled 80% of the patients 1000 times. Each 522 

time, we used agglomerative clustering above with k = 6 to identify clusters. Given these 1000 523 
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clusterings, we calculated the frequency of two patients appearing in the same cluster, when 524 

both were present in the randomly formed dataset. We then performed one final agglomerative 525 

clustering of these frequency scores to identify the six endophenotypes (Figure S2A and Figure 526 

1B). The distribution of Rand-Index, showing the concordance between each one of the 1000 527 

clusterings and the final consensus clustering is provided in Figure S2B (mean Rand-Index = 528 

0.823), reflecting a high degree of consistency.  529 

 530 

Metabolomic pathway characterization of EP6 531 

The 1435 metabolites measured were organized into 122 sub-pathways in the original dataset 532 

(denoted as “SUB_PATHWAYS”). We first identified metabolites whose values were significantly 533 

higher or lower in EP6 compared to other EPs (two-sided MWU test, FDR<0.01). Then, we used 534 

these metabolites to perform pathway enrichment analysis (one-sided Fisher’s exact test) based 535 

on 122 pathways. The resulting p-values (Table S3) were then corrected for multiple tests using 536 

Benjamini-Hochberg FDR. 537 

 538 

Nearest-centroid predictor based on blood markers 539 

In order to predict endophenotypes from blood tests, we developed a missing-value resilient 540 

nearest-centroid classifier. We used the set of patients that were used to form the original EPs 541 

(n = 731) as the training set and the set of patients that did not have proteome data as the 542 

validation set (n = 631). First, we z-score normalized each blood marker across all the patients in 543 

the training set, one marker at a time. We then formed a blood marker signature (a vector of 544 
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length 21) for each EP. Each element of an EP’s signature corresponds to the mean of the 545 

corresponding marker across all patients of that EP.  546 

 547 

To predict the EP label of each patient in the test set, we first z-score normalized their blood 548 

marker measurements using the mean and standard deviation of the blood markers calculated 549 

from the training set. Then, we calculated the cosine distance between each test patient’s blood 550 

marker profile and the centroids (excluding missing values) and identified the nearest EP as the 551 

predicted EP (PEP) label of the patient.   552 
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Figures 568 

 569 

Figure 1: Unsupervised consensus clustering of SARS-CoV-2 positive patients.  570 
A) The elbow points (circles in red) of Akaike's Information Criteria (AIC) and Bayesian 571 
Information Criteria (BIC) curves versus number of clusters consistently corresponded to k=6 as 572 
the optimal number of clusters. B) The heatmap shows the expression of aptamers (rows) in each 573 
sample (columns). The dendogram shows the identified endophenotypes. C)  Characterization of 574 
samples based on sex at birth, highest world health organization (WHO) severity level achieved, 575 
intensive care unit (ICU) admission, ventilatory support, and oxygen therapy. For the last three 576 
rows, a sample colored “black” reflects a label of “yes”.  577 

Figure 1 a): AIC and BIC by number of clusters on single hierarchical clustering using all samples; 
elbow point chosen using kneedle shown in red. b): clusters based on SOMAmers. The heatmap 
shows the expression of proteins (rows) in each sample (columns) by normalized SOMAmer RFUs. 
Sample dendrogram colors are chosen to match those of Kaplan-Meier plots in Fig. 2a). 
c): Characterization of samples based on age, body mass index, sex at birth, highest WHO severity 
level achieved, ICU admission, ventilatory support, and oxygen therapy; missing values are shown 
in white.

A)

C)

B)A B
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 578 

Figure 2: Characterization of endophenotypes (EPs).  579 
A) Enrichment or depletion of each EP in clinical variables (one cluster versus rest). Two-sided 580 
Fisher’s exact tests are used to calculate the p-values, which are corrected for multiple tests using 581 
Benjamini-Hochberg false discovery rate (FDR). Gradients of blue show depletion, while gradients 582 
of red show enrichment. FDR values above 0.05 are depicted as white. B) The number of patients 583 
in each EP and the colors used to represent them in panels C, D, and E. C) Kaplan-Meier analysis 584 
of the time between patients' admission to the hospital and their admission to intensive care unit 585 
(ICU) (or death if earlier) for each EP (Delta). D) Distribution of age in each EP. E) Distribution of 586 
BMI in each EP. F) COVID-19 severity in each EP.  587 

Figure 2: Characterization of endophenotypes. Panel A: Kaplan-Meier analysis of the delay between patients' admission to the 

hospital (T0) and their admission to ICU (or death if earlier, E) for each endophenotype (multivariate logrank P = 5.06 E-36). 

Panel B and C: boxplots displays of the age at arrival (B) and BMI (C) of patients for each endophenotype. Panel D: Stacked 

barplots displays of COVID19 severity of patients for each endophenotype.

Sex at Birth (Female)

Ventilatory Support (Yes)

Oxygen Therapy (Yes)

Admission to ICU (Yes)

Severity (Severe/Dead)

B

A

D E F

FDR

Log-rank p-value = 5.06E-36
C
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 588 
Figure 3: Frequency and significance of complications in different EPs.  589 
The value in each cell shows the percentage of patients of that EP (column) that suffered from 590 
the complication (row). The colors represent two-sided Fisher’s exact test false discovery rate 591 
(FDR, corrected for multiple tests). Red represents enrichment, while blue represents depletion. 592 
FDR values below 0.05 are shown as white.  593 
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 594 
Figure 4: Metabolite characteristics of endophenotypes (EPs).  595 
A) The heatmap shows the over-expression (red) and under-expression (blue) of metabolites in 596 
different EPs (two-sided Mann–Whitney U test). Row names show metabolites followed by the 597 
sub-pathway to which they belong in parentheses. Only top 15 metabolites (based on false 598 
discovery rate for EP6) for which a definite name and sub-pathway was available are shown. Full 599 
list is provided in Table S3. B) The heatmap shows the enrichment (one-sided Fisher’s exact test) 600 
of EPs in different metabolite sub-pathways. See Table S3 for the full list.  601 

B

A
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 602 

Figure 5: Differential expression patterns of blood markers in the identified endophenotypes 603 
(EPs) and characterization of predicted endophenotypes (PEPs) based on the predictive model.  604 
A) Heatmaps of false discovery rates (FDR) values for two-sided one-vs-rest Mann–Whitney U 605 
tests for 21 blood markers for each EP. Abbreviations used: WBC = white blood cells, LDH = lactate 606 
deshydrogenase, ALT = alanine aminotransferase, aPTT = activated partial thromboplastin time, 607 
INR = International Normalized Ratio.  FDR values below 0.05 are shown as white. B) World health 608 
organization COVID-19 severity assessed in each PEP. C) Distribution of age in each PEP. D) 609 
Distribution of BMI in each PEP. E) Kaplan-Meier analysis of the time between patients' admission 610 
to the hospital and their admission to ICU (or death if earlier) for each PEP (Delta). The colormap 611 

Figure X2: A- Heatmaps of two-sided ‘one-vs-rest’ Mann-Whitney U tests 
for continuous clinical/phenotypic variables (excluding unknown 
values) against endophenotype clusters, with white indicating p<=0.05, 
red/blue indicating higher/lower mean values in cluster than rest. B-
Barplot of patients' severity grouped by predicted endophenotype (PEP). 
C,D- Boxplots of patients' age (B) and BMI (C) grouped by PEP. E-
Kaplan-Meier analysis of patients grouped by PEP with admission to 
hospital as T=0 and admission to ICU as even (or death if earlier)
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in panel E shows the number of patients in each PEP group and the colors used to represent them 612 
in panels C, D, and E. PEPs were predicted based on blood markers and were not used to originally 613 
identify the EPs.   614 
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Tables 615 

Table 1: Clinical and pathological characteristics of the BQC19’s participants used in this study.  616 

 
 

Cohort  
(n = 1,362) 

No. (%) 

Age in years 

<45 17.5 
45-65 33.6 
>65 48.7 

Unknown 0.3 

Body mass 
index in kg/m2  

<20 3.8 
20-25 13.0 
25-35 27.8 
>35 7.4 

Unknow 47.9 

Sex at birth Female 44.8 
Male 55.2 

Severity 

Dead 4.4 
Severe 21.8 

Moderate 51.0 
Mild 11.8 

Unknown 10.9 

Oxygen 
therapy 

Yes 48.2 
No 21.0 

Unknown 30.8 

Ventilatory 
support 

Yes 47.6 
No 14.0 

Unknown 38.5 
Admission to 
intensive care 

unit 

Yes 17.5 
No 33.6 

Unknown 48.7 
  617 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.02.22281834doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.02.22281834
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

Table 2: Reactome pathways associated with EP6, based on expression of aptamers. KnowEnG 618 
analytical platform was used. The p-values were calculated using a one-sided Fisher’s exact test 619 
and were corrected for multiple tests using Benjamini-Hochberg method. Only signaling 620 
pathways with FDR<5E-4 are shown in this table (see Table S4 for the full list).  621 
 622 

Pathway FDR 

Signaling by Interleukins 2.75E-12 
Cytokine Signaling in Immune system 6.25E-10 
Immune System 2.28E-06 
Signaling by FGFR 4.75E-06 
Constitutive Signaling by Aberrant PI3K in Cancer 2.94E-05 
FGFR2 ligand binding and activation 5.77E-05 
Extracellular matrix organization 1.85E-04 
FGFR3 ligand binding and activation 1.85E-04 
FGFR3c ligand binding and activation 1.85E-04 
FGFRL1 modulation of FGFR1 signaling 1.85E-04 
TNFs bind their physiological receptors 2.58E-04 
PI3K/AKT Signaling in Cancer 3.28E-04 
PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 4.14E-04 
Interleukin-4 and 13 signaling 4.91E-04 

 623 
  624 
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Table 3: SNVs differentiating EP6 against all other endophenotype clusters. 625 

SNV ID Position Gene Symbol SNV 1 MAF HWE OR 2 p-value 

rs1394671 chr5:7348567 - G > A 0.240 0.095 2.28 2.41E-06 
rs12186698 chr5:168880668 SLIT3 T > C 0.087 0.247 2.93 3.72E-06 
rs11625406 chr14:50049474 - C > A 0.438 0.137 0.47 1.03E-05 
rs11862889 chr16:83828886  - T > C 0.104 0.446 2.62 1.07E-05 
rs2995918 chr4:37905775 TBC1D1 C > T 0.494 0.776 0.49 1.20E-05 
rs16897810 chr5:68415296 - G > A 0.093 0.001 2.67 1.43E-05 
rs2376263 chr17:35436659 SLFN13 G > A 0.261 0.073 2.01 2.48E-05 
rs4790712 chr17:1614620 SLC43A2 G > A 0.441 0.003 1.97 2.50E-05 
rs2294566 chr20:41472939 CHD6 C > A 0.239 0.265 2.04 2.78E-05 
rs7164451 chr15:48921859 SHC4 G > A 0.386 0.053 1.89 3.01E-05 
rs57664621 chr8:22808443 PEBP4 G > C 0.174 0.016 2.16 3.07E-05 
rs28482919 chr3:14903094 FGD5 T > C 0.187 0.053 0.32 3.20E-05 
rs6559283 chr9:89712560 - T > C 0.375 <0.001 1.96 3.27E-05 
rs657075 chr5:132094425 - A > G 0.104 0.328 2.49 4.28E-05 
rs56235109 chr15:62424001 TLN2 A > G 0.235 0.366 0.38 4.67E-05 
rs7620057 chr3:179473377 GNB4 T > C 0.099 1.000 2.51 4.67E-05 
rs10466868 chr12:131455375 - T > G 0.108 0.401 2.51 5.94E-05 
rs2236798 chr1:18735127 PAX7 A > G 0.054 0.114 2.90 6.11E-05 
rs3774814 chr4:5464702 STK32B C > G 0.205 <0.001 0.36 6.75E-05 
rs4497815 chr19:22903215 - G > A 0.216 0.205 2.07 7.52E-05 
rs6765694 chr3:54601810 CACNA2D3 G > A 0.404 0.833 0.51 7.66E-05 
rs2797773 chr6:37559045  - C > T 0.422 0.000 0.53 8.06E-05 
rs17014760 chr4:129419725  - A > A 0.316 0.000 1.89 9.33E-05 
rs10948260 chr6:45835559  - G > A  0.366 0.189 1.81 9.52E-05 
rs12035677 chr1:232391209  - A > G 0.063 0.000 3.02 9.95E-05 

Abbreviations used: SNV = Single nucleotide variation, HWE = Hardy Weinberg Equilibrium, MAF 626 
= Minor allele frequency, OR = Odd ratio.  627 
 628 
1 SNV are described following GWAS annotations: refence allele > alternative allele (e.g., G > A).   629 
2 Logistic regression analyses using additive model adjusted for the 2 principal components. 630 

631 
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Table 4: Association between genotypes and aptamer expression levels 632 

SNV 
Gene 
Symbol  

Nearest 
gene 

Aptamers normalized expression 1  Multiple logistic regression analyses 3 

HMref HTZ HMalt p-val 2  Aptamers SNV 
 OR p-val OR p-val 

rs6765694 CACNA2D3 - -0.09 
(±0.89) 

0.01 
(±1.10) 

0.24 * 
(±0.99) 0.011  0.61 

(0.46-0.79) 2.5E-4 0.52 
(0.37-0.74) 2.4E-4 

rs10948260 - CLIC5 0.02 
(±0.92) 

0.02 
(±1.09) 

-0.02 
(±0.97) 

0.796  0.68 
(0.55-0.83) 

1.7E-4 1.83 
(1.35-2.48) 

8.8E-5 

rs657075 - IL3 
-0.01 
(±1.01) 

0.05 
(±0.99) 

0.32 
(±0.46) 0.328  

1.37 
(1.14-11.64) 8.2E-4 

2.49 
(1.60-3.88) 5.2E-5 

rs7164451 SHC4 - -0.07 
(±0.90) 

0.01 
(±1.05) 

0.23 * 
(±1.16)  0.017  11.98 

(7.61-18.87) 
8.4E-
27 

2.00 
(1.30-3.09) 1.8E-3 

rs12186698 SLIT3 - 0.00 
(±1.02) 

0.07 
(±1.06) 

0.15 
(±0.89) 

0.509  0.82 
(0.64-1.06) 

0.135 2.99 
(1.89-4.73) 

2.7E-6 

rs56235109 TLN2 - 
-0.03 
(±0.98) 

0.06 
(±1.03) 

0.04 
(±1.27) 0.353  

0.58 
(0.45-0.75) 2.7E-5 

0.38 
(0.23-0.60) 4.7E-5 

Abbreviations used: SNV = Single nucleotide variation, HMref = Homozygotes for the reference 633 
allele, HMalt = Homozygotes for the alternative allele, HTZ = Heterozygotes, OR = Odd ratio.  634 
 635 
1 Aptamers’ normalized levels of expression are reported as mean (± standard deviation). 636 
Normalization steps for aptamer expressions are described in Methods.  637 
2 p-value, standard ANOVA analyses followed by Tukey post hoc analyses. Asterisks (*) identify 638 
difference between HMref and HMalt genotypes.  639 
3 Multiple logistic regression analyses models include aptamers expression values, SNV 640 
genotypes (additive model) and the two principal components. OR are reported with 95% 641 
confidence intervals in parentheses. 642 
 643 
  644 
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Table 5: Summary of the characteristics of each endophenotype.  645 
In this table, High (Low), denoted as H (L) implies that the average value of the variable in the 646 
corresponding EP was significantly higher (lower) than the other EPs (considered together), while 647 
N (Nondescript) implies that it was not significantly different. The table is formed based on results 648 
described in Tables S1, S3 and S5. 649 

Endophenotype Age Sex at 
birth BMI Metabolic sub-pathways Blood markers 

EP1 H F N Leucine, Isoleucine and Valine 
Metabolism 

High lymphocyte, 
Low neutrophil 

EP2 N N L N High albumin, 
Low white blood cells 

EP3 L M N Phospholipid Metabolism High platelet, 
Low creatinine 

EP4 N N N Ascorbate and Aldarate Metabolism High lactate 
deshydrogenase 

EP5 H N N Benzoate Metabolism High creatinine, 
Low haemoglobin 

EP6 N M N Methionine, Cysteine, SAM and Taurine 
Metabolism 

High white blood cells, 
Low lymphocyte 

Abbreviations used: H = High, L = Low, N = Nondescript, F = Female, M = Male 650 
  651 
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