
 1 

Unsupervised clustering of SARS-CoV-2 positive hospitalized patients identifies six 

endophenotypes of COVID-19 and points to FGFR and SHC4-signaling in acute respiratory 

distress syndrome 

 

William Ma1,*, Antoine Soulé1,*, Katelyn Liu2, Catherine Allard3, Karine Tremblay4, †, Simon 

Rousseau2, †, and Amin Emad1, 5, † 

 

* These authors contributed equally. 
 
1 Department of Electrical and Computer Engineering, McGill University, Montréal, QC, Canada 
 
2 The Meakins-Christie Laboratories at the Research Institute of the McGill University Heath 
Centre Research Institute, & Department of Medicine, Faculty of Medicine, McGill University, 
Montréal, QC, Canada 
 
3  Statistical department, Centre de recherche du Centre hospitalier universitaire de Sherbrooke 
(CRCHUS), Sherbrooke, Canada. 
 

4 Pharmacology-physiology Department, Faculty of Medicine and Health Sciences, Université de 
Sherbrooke, Saguenay, QC, Canada; Centre intégré universitaire de santé et de services sociaux 
du Saguenay-Lac-Saint-Jean, Saguenay, QC, Canada; CRCHUS, Sherbrooke, Canada. 
 
5 Mila, Quebec AI Institute, Montréal, QC, Canada 
 
† Corresponding Authors: 
Amin Emad,  
755 McConnell Engineering Building, 3480 University Street, Montreal H3A 0E9, Canada  
Email: amin.emad@mcgill.ca  
 
Simon Rousseau,  
RI-MUHC, E M3.2244, 1001 Décarie, Montréal H4A 3J1, Canada,  
Email: simon.rousseau@mcgill.ca 
 
Karine Tremblay, 
Pavillon des Augustines, local AUG-5-01A, 225 St-Vallier street, Chicoutimi G7H 7P2, Canada  
Email: karine.tremblay@usherbrooke.ca

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2022. ; https://doi.org/10.1101/2022.11.02.22281834doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.11.02.22281834
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 1 

Defining the molecular mechanisms of novel emerging diseases like COVID-19 is crucial to identify 2 

treatable traits to improve patient care. To circumvent a priori bias and the lack of in-depth 3 

knowledge of a new disease, we opted for an unsupervised approach, using the detailed 4 

circulating proteome, as measured by 4985 aptamers (SOMAmers), of 731 SARS-CoV-2 PCR-5 

positive hospitalized participants to Biobanque québécoise de la COVID-19 (BQC19). The 6 

consensus clustering identified six endophenotypes (EPs) present in this cohort, with varying 7 

degrees of disease severity. One endophenotype, EP6, was associated with a greater proportion 8 

of ICU admission, mechanical ventilation, acute respiratory distress syndrome (ARDS) and death. 9 

Clinical features of this endophenotype, showed increased levels of C-reactive protein, D-dimers, 10 

elevated neutrophils, and depleted lymphocytes. Moreover, metabolomic analysis supported a 11 

role for immunothrombosis in severe COVID-19 ARDS.  Furthermore, the approach enabled the 12 

identification of Fibroblast Growth Factor Receptor (FGFR) and SH2-containing transforming 13 

protein 4 (SHC4) signaling as features of the molecular pathways associated with severe COVID-14 

19. Finally, this information was sufficient to train an accurate predictive model solely based on 15 

clinical laboratory measurements, suggesting the use of blood markers as surrogates for 16 

generalizing these EPs to new patients and automating identification of high-risk groups in the 17 

clinic.  18 
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Introduction 19 

The coronavirus disease 2019 (COVID-19) is a new human disease caused by the coronavirus 20 

SARS-CoV-2 infection that has been assessed pandemic by the World Health Organization in 21 

March 2020. As SARS-CoV-2 infection spread, a breath of outcomes of the infection became 22 

apparent, from asymptomatic individuals to severely ill and dying, from complete recovery to 23 

long-lasting symptoms1,2. The emergence of novel diseases such as COVID-19 presents the 24 

medical and scientific community with numerous challenges. Among them, defining the 25 

molecular mechanisms of disease related to specific outcomes is important to identify treatable 26 

traits and improve the performance of healthcare systems facing the challenges brought by the 27 

pandemic.  28 

 29 

Successfully reaching this precision medicine goal requires a more granular definition of the 30 

pathology. A symptom-based method to discover molecular mechanisms of the disease may 31 

result in a challenge emerging from the fact that the same higher-level phenomenon, such as 32 

COVID-19 severity, can be produced by several different molecular mechanisms, a phenomenon 33 

termed the «many-one» limitation3. Recent advances in computing strategies, such as machine 34 

learning, has enabled the development of methods that help overcome this limitation by starting 35 

from molecular profiles instead of symptoms to define endophenotypes, i.e. subgroups of 36 

individuals who are inapparent to traditional methods but share a common set of molecular 37 

factors that can lead to treatable traits4. Establishing successful treatment strategies requires a 38 

tailored approach to the underlying molecular mechanisms that can help predict and alter 39 

disease trajectories5. Endophenotypes can become apparent using extensive molecular 40 
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phenotyping combined with machine learning algorithms6-8. Current investigations of 41 

endophenotypes in COVID-19 have mainly relied on supervised approaches using fixed outcomes 42 

(such as disease severity) and integrating clinical variables at the onset9. We hypothesize that 43 

using an unsupervised approach exploiting a rich molecular dataset can provide novel 44 

mechanistic insights into the pathobiology of severe COVID-19 that can help physicians improve 45 

diagnosis and prognosis. 46 

 47 

Therefore, this study aims to  identify endophenotypes linked to diverse clinical trajectories of 48 

COVID-19 using the extensive molecular phenotyping of a cohort of 731 SARS-CoV-2 positive 49 

hospitalized patients from the Biobanque québécoise de la COVID-19 (BQC19, 50 

www.quebeccovidbiobank.ca)10, a prospective observational cohort of SARS-CoV-2 positive and 51 

negative participants recruited in the province of Québec, Canada,  to improve our understanding 52 

of COVID-19 pathobiology and our capacity to alter disease outcomes.  53 

 54 

In this manuscript, we report the identification of six endophenotypes in hospitalized SARS-CoV-55 

2 positive participants to BQC19, associated with different clinical trajectories. The molecular 56 

information underpinning these endophenotypes were used to increase our understanding of 57 

pathobiology and predict the likelihood of patients admitted to the hospital to belong to each 58 

endophenotype using clinical blood workups.  59 

 60 

 61 

  62 
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Results 63 

Unsupervised clustering of SARS-CoV-2-positive hospitalized BQC19 participants reveal 64 

endophenotypes associated with varying disease severity 65 

In this study, we aimed to identify endophenotypes of COVID-19 based on the circulating 66 

proteome of patients in our cohort of SARS-CoV-2 positive hospitalized participants to BQC19 (n 67 

= 1,362, Table 1), using an unsupervised approach. Figure S1 shows the distribution of the time 68 

of hospital admission of the patients and the corresponding waves as defined by National 69 

Institute of Public Health of Quebec (https://www.inspq.qc.ca/covid-19). For this purpose, we 70 

performed consensus agglomerative clustering of the subset of patients (n = 731, Table S1) for 71 

whom data corresponding to circulating proteome measured by a multiplex SOMAmer affinity 72 

array (Somalogic, ~5,000 aptamers)11 was available in BQC19. The remaining samples were kept 73 

aside for follow-up analysis. First, the optimal number of clusters (k = 6) was identified using two 74 

criteria, Akaike's Information Criteria (AIC) and Bayesian Information Criteria (BIC) (Figure 1A); 75 

then, consensus agglomerative clustering (Euclidean distance and Ward linkage)12,13 using 76 

bootstrap subsampling was performed to obtain six robust clusters (see Methods for details) 77 

(Figure 1, Figures S2 and S3).  78 

 79 

The clinical and pathological characteristics of patients in each endophenotype is provided in 80 

Table S1. To characterize the identified endophenotypes (EPs) with respect to disease severity, 81 

we performed two-sided Fisher’s exact test to assess their enrichment (or depletion) in “severe” 82 

or “dead” outcome. EP6 was significantly enriched in the severe/dead outcomes (Benjamini-83 

Hochberg false discovery rate (FDR) = 1.72E-18) with these outcomes observed in 66.1% of EP6 84 
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patients. Meanwhile, EP1 was significantly depleted in severe/dead outcomes (FDR = 8.23E-11) 85 

(Figure 2A, Table S1) with these outcomes only observed in 11.6% of EP1 patients. In addition, 86 

EP6 was enriched in participants 1) receiving oxygen therapy (FDR = 6.24E-12), 2) receiving 87 

ventilatory support (FDR = 6.63E-12), and 3) being admitted to intensive care unit (ICU) (FDR= 88 

1.26E-22) (Figure 2A, Table S1). Kaplan Meier analysis14 also confirmed that the identified EPs 89 

have a distinct temporal pattern of admission to ICU (multivariate logrank test P = 5.06E-36), with 90 

EP1 (EP6) having the highest (lowest) chance of not being admitted to ICU (or die prior to that) 91 

in a 40-day span since their admission to the hospital (Figure 2B). A similar pattern can be 92 

observed when patients that died before admission to ICU were excluded (Figure S4, multivariate 93 

logrank test P = 6.55E-36). A two-sided Mann-Whitney U (MWU) test showed that patients in EP5 94 

were generally older than other EPs (FDR = 6.94E-5), while EP3 included younger patients (FDR = 95 

1.82E-4). However, EP6 (which had the most severe patients) did not show enrichment in older 96 

patients or individuals with high BMI (two-sided MWU FDR>0.05) (Figure 2C, Table S1).  97 

 98 

These analyses revealed that the unsupervised approach was able to identify endophenotypes 99 

with distinct disease characteristics and outcomes using the circulating proteome of the patients. 100 

We identified EP6 as a group of participants with an increase in many measures of COVID-19 101 

disease severity.  102 

 103 

EP6 is enriched with BQC19’s participants having acute respiratory distress syndromes 104 

In accordance with increase disease severity, EP6 was also enriched in COVID-19 medical 105 

complications (two-sided Fisher’s exact test): acute respiratory distress syndrome (ARDS) (FDR = 106 
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1.43E-10), acute kidney injury (FDR = 6.37E-7), bacterial pneumonia (FDR=2.13E-6), liver 107 

dysfunction (FDR = 9.32E-3), and hyperglycemia (FDR = 1.56E-2) (Figure 3, Table S2). The 108 

frequency of ARDS was just below 8% in EP1 compared to greater than 44% in EP6, making this 109 

complication a key feature of this cluster (Figure 3, Table S2). 110 

 111 

EP6 is enriched in blood metabolites associated with severe COVID-19. 112 

To further characterize each EP and gain insight into mechanisms of disease, metabolomic 113 

profiling of plasma samples was done in parallel to the SOMAmer analysis. The results yielded 114 

data on 1,435 metabolites, of which 576 were found significantly altered in EP6 (two-sided MWU 115 

FDR < 0.01). Moreover, the metabolomic characterization of the plasma samples supported the 116 

distinction in blood composition at the levels of metabolomic sub-pathways and individual 117 

metabolites between the different EPs (Figure 4 and S3).  118 

 119 

Pathway enrichment analysis identifies FGFR-signaling in severe COVID-19 acute respiratory 120 

distress syndrome 121 

To gain insight into the molecular mechanisms underlying the severity in EP6, we performed 122 

pathway enrichment analysis using the Knowledge Engine for Genomics (KnowEnG)6 for the 123 

aptamers associated with EP6. Since aptamers were used to identify the EPs, it is expected that 124 

many of them would be significantly associated with the EPs. As a result, we selected a very strict 125 

threshold of FDR < 10E-20 (two-sided MWU test) to identify top aptamers associated with EP6 126 

(Table S4). We then used the gene set characterization pipeline of KnowEnG with Reactome 15 127 

pathway collection. This analysis showed that while EP6 is characterized by pathways associated 128 
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with Interleukins and Cytokine Signaling in Immune system, multiple instances linked it with 129 

Fibroblast Growth Factor Receptor (FGFR) signaling, identifying this pathway as a potential driver 130 

of severe pathology that was not present in other EPs (Tables 2 and S4). 131 

 132 

SHC4 genotype and protein expression levels are associated with higher odds of belonging to 133 

EP6 134 

To further improve our understanding of the molecular mechanisms underlying EP6, we 135 

leveraged an additional dataset of Genome Wide association Study (GWAS) corresponding to 136 

these patients. We identified 25 single nucleotide variations (SNVs) distributed in 13 annotated 137 

genes, that were below a p-value threshold of 1E-4 differentiating EP6 versus the rest (Table 3). 138 

We then investigated each of the SNVs to which we could assign a gene and an aptamer, to assess 139 

whether their protein product in circulation was differentially regulated by the genotype (Table 140 

4). We discovered two genes, SHC4 (encoding SHC adaptor protein 4) and CACNA2D3 (encoding 141 

calcium voltage-gated channel auxiliary subunit alpha2 delta3) for which there was a significant 142 

association between genotype and protein expression levels (p-values < 0.05). While CACNA2D3 143 

may have mild impact on EP6 membership (odd ratio = 0.61, Table 4), SHC4 was one of the top-144 

enriched aptamers (position 32 out of 4,985), with odds ratio of 11.98 and 2.00 for the protein 145 

product and SNV, respectively of belonging to EP6 for the alternative allele. Therefore, the GWAS 146 

analysis revealed that the signaling adaptor protein SHC4 may play an important mechanistic role 147 

in contributing to severe disease pathology. 148 

 149 

A predictive model based on blood markers predicts EPs in a separate validation cohort 150 
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To further characterize each EP, we assessed the clinical laboratory results obtained from blood 151 

draws and compared them between the groups. We focused on 21 markers that were measured 152 

in at least 50% of the patients used for consensus clustering (Figure 5A and Table S5) and used 153 

the summary value reported in the BQC19 database corresponding to the most extreme 154 

measurement among multiple blood draws (Table S5 provides this information for each blood 155 

marker). Figure 5A shows the elevation and depletion of these markers in the identified EPs. EP6 156 

is characterized by abnormal values in markers of inflammation (lymphopenia, total white blood 157 

cells count, neutrophilia, C-reactive protein (CRP)), liver damage (alanine aminotransferase (ALT), 158 

albumin, lactate deshydrogenase (LDH)), blood clotting disorder (D-dimers, low hemoglobin, 159 

International Normalized Ratio (INR) and hyperglycemia (glucose).  160 

 161 

To identify relationships that may shed light on factors influencing clinical laboratory results 162 

defining EP6, we also performed Spearman’s rank correlation analyses between each blood test 163 

values and metabolites (Table S5).  164 

 165 

Since EPs and particularly EP6, which we identified as the EP with worst outcome, showed a clear 166 

and distinct clinical laboratory result signature compared to other EPs, we sought to develop a 167 

predictive model based on these signatures. Due to the large number of missing values for these 168 

markers in our cohort, we developed a nearest-centroid classifier that is capable of dealing with 169 

missing values and can predict EPs based on blood markers (see Methods for details). To test the 170 

ability of this model on prediction of EPs on an independent yet similar dataset, we used data 171 

corresponding to 631 SARS-CoV-2 positive hospitalized BQC19’s participants that did not have 172 
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circulating proteome data and hence were not used to identify the endophenotypes. The clinical 173 

and pathological characteristics of patients in each predicted endophenotype (PEP) is provided 174 

in Figure 5B-5E and Table S6. 175 

 176 

Our predictive model identified 116 of these patients to belong to EP6. Fisher’s exact test showed 177 

a significant enrichment of the predicted EP6 (PEP6) in severity/dead (FDR = 1.77E-22), while 178 

PEP1 and PEP2 were significantly depleted in these outcomes (FDR = 1.61E-4 and FDR = 1.30E-8, 179 

respectively), as shown in Figure 5B and Table S6. Similar to EP6, PEP6 was also significantly 180 

enriched in participants 1) receiving oxygen therapy (FDR = 2.38E-8), 2) receiving ventilatory 181 

support (FDR = 4.40E-8), and 3) being admitted to ICU (FDR = 1.23E-24) (Table S6). Kaplan Meier 182 

analysis also confirmed that these PEPs have a distinct temporal pattern of admission to ICU 183 

(multivariate logrank test P = 1.05E-34), with PEP6 having the lowest chance of not being 184 

admitted to ICU (or die prior to that) in a 40-day span since their admission to the hospital (Figure 185 

5E).  186 

 187 

These results suggest that our predictive model can use these 21 blood markers to generalize the 188 

definition of endophenotypes to patients for whom the proteome data is unavailable. 189 

 190 

Discussion 191 

The results presented herein came from a large cohort of deeply phenotyped SARS-CoV-2 192 

positive hospitalized participants, combined with unsupervised clustering that provided both 193 

expected and novel findings into the molecular mechanisms regulating COVID-19 outcomes.   194 
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They led to the identification of an endophenotype (EP6) associated with worst clinical outcome 195 

of COVID-19 (enriched in acute respiratory distress syndrome) reflected by a greater proportion 196 

of ICU admission, mechanical ventilation, and severe/death outcomes (Figure 1). Clinical features 197 

of this endophenotype were consistent with published literature with increased levels of CRP, D-198 

dimers, elevated neutrophils, and depleted lymphocytes (Figure 5A, Table S5). Our approach 199 

enabled the identification of interleukins, FGFR and SHC4 signaling as cardinal features of the 200 

molecular pathways associated with severe COVID-19. Importantly, this information was 201 

sufficient to train an accurate predictive model that could in the future support clinical care.  202 

 203 

The approach: unsupervised clustering capacity at identifying clinically meaningful 204 

subpopulations 205 

Our unsupervised clustering approach in conjunction with a rich molecular dataset enabled us to 206 

identify endophenotypes that could not be captured using traditional methods classifying the 207 

population in two bins solely based on severity. This is in part because of the «many-one» 208 

limitation: the same higher-level phenomenon (COVID-19 severity) can be produced by several 209 

different molecular mechanisms. Determining endophenotypes using an unsupervised method 210 

provides a higher granularity and increases the chance to identify distinct molecular mechanisms 211 

and pathways resulting in similar COVID-19 severity. Accordingly, we identified two 212 

endophenotypes with more favorable outcomes (EP1 and EP2), three endophenotypes with 213 

intermediate outcomes in terms of severity (EP3, EP4 and EP5) and one endophenotype which 214 

led to worst outcomes compared to all others (EP6).  215 

 216 
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The identification of endophenotypes was done systematically using robust consensus clustering 217 

of aptamer expression levels in which the optimum number of clusters was determined 218 

congruently using two well-established measures: AIC and BIC. The consensus clustering using 219 

bootstrap sampling (1000 times) ensured identification of robust clusters that are not sensitive 220 

to exclusion of some of the samples (20% randomly selected and excluded at each cycle). 221 

Moreover, identifying the best number of clusters using AIC/BIC (both of which agreed with each 222 

other) allowed us to reveal the patterns of the EPs directly from the data, instead of imposing a 223 

pattern onto it through human supervision. This is an important strength of the study that 224 

enabled us to identify distinct molecular patterns of patients that could have remained 225 

undetected using other traditional approaches.  226 

 227 

Moreover, to improve the translational applicability of EPs, we developed a predictive model 228 

based only on laboratory measured blood markers to generalize the definition of these 229 

endophenotypes to unseen samples without measured aptamer expression levels. 230 

Characteristics of EPs predicted solely based on their blood markers were consistent with the 231 

original EPs, suggesting the use of blood markers as surrogates for generalizing these EPs to new 232 

patients and automating identification of high-risk groups in the clinic.  233 

 234 

COVID-19 molecular pathology 235 

The datasets used in this study carry rich molecular information on mechanisms of disease. SARS-236 

CoV-2 infection has been shown to be associated with altered kynurenin levels associated with 237 

increase IL-6 and kidney injury16. Interestingly, we also observed Kynurenin to be enriched in EP6 238 
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but depleted in EP1, supporting the association of increase kynurenin with COVID-19 severity and 239 

the enrichment in acute kidney injury complication.  240 

 241 

Spermidine/spermine N(1)-acetyltransferase (SSAT) contributes to polyamine synthesis. In 242 

addition, its extracellular metabolite, N1,N12-diacetylspermine, is one of the top 15 metabolites 243 

enriched in EP6 (Figure 4A), is positively correlated with Urea and creatinine, and is negatively 244 

correlated with lymphocyte numbers (Table S5). Deletion of SSAT in mice is protective against 245 

LPS-induced kidney injury17.  SSAT activity is associated with white blood cell count in Acute 246 

Myeloid Leukemia and Chronic Myeloid Leukemia patients18. This suggest that the tryptophan 247 

and polyamine metabolisms are associated with acute kidney injury in COVID-19 and identifies 248 

potential pathways of disease progression.  249 

 250 

COVID-19 ARDS 251 

EP6 is characterized by its enrichment in ARDS (44% vs 8% in EP1, Figure 3). Low levels of 252 

Sphingosine 1-phosphate (S1P) are associated with ARDS and were shown to be associated with 253 

greater ICU admission and decrease survival in COVID-1919. Accordingly, we found that S1P levels 254 

are depleted in EP6 while they are enriched in EP1 (Figure 4A). Interestingly, the aptamers 255 

detecting neutral ceramidase, an enzyme converting ceramides into sphingosine, is enriched in 256 

EP1 (although changes in protein abundance as detected by aptamers may not necessarily reflect 257 

changes in enzymatic activity). Accordingly, dihydroceramides and ceramides are depleted in 258 

cluster EP1. Conversely, dihydroceramides and ceramides are significantly enriched in EP6, 259 

suggesting that there is a shunting of the pathway away from sphingosine towards more pro-260 
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inflammatory ceramides in EP6 associated with metabolic disorders20. Moreover, one of the top 261 

aptamers found enriched in EP6, is the enzyme Serine palmitoyltransferase 2 (SPTLC2) (Table 262 

S4)21,22￼. These results suggest a counterbalance between ceramides and sphingosine, where 263 

the former is associated with poorer outcomes during critical illness, whereas higher levels of the 264 

latter has more favorable outcomes in ARDS.  265 

 266 

Metabolomic profile of EP6 supports a role for immuno-thrombosis-mediated organ damage in 267 

COVID-19 268 

To obtain a more comprehensive understanding of the alteration in metabolic profiles in EP6, we 269 

investigated which metabolic subpathways were significantly enriched in EP6 (Figure 4, Table S3). 270 

The two top pathways (FDR < 1E-2) are “Methionine, Cysteine, SAM and Taurine Metabolism” 271 

and “phosphatidinylethanolamine (PE)”. Interestingly, these two pathways are known to 272 

interact23, with PE methylation a major consumer of S-Adenosylmethionine (SAM) leading to the 273 

synthesis of S-Adenosylhomocysteine (SAH) and cystathionine24, which itself has been found 274 

upstream of 2-hydroxybutyrate and 2-aminobutyrate in a model of hepatoxicity25. SAH, 275 

cysthathionine, 2-hydroxybutyrate and 2-aminobutyrate are significantly enriched in EP6. 276 

Congruently, EP6 is enriched (FDR < 1E-2) in liver dysfunction (Figure 3, Table S2), with markers 277 

of liver dysfunction all significantly altered in clinical blood works: ALT, albumin, bilirubin and LDH 278 

(Figure 5A, Table S5).  279 

 280 

PEs become exposed at the surface of cell membranes upon exposure to stress, inflammation, 281 

and cell death26,27. In a Syrian hamster model, infection with SARS-CoV-2 had markedly increased 282 
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PE expression in the animals that were fed a high salt, high fat diet, demonstrating the interaction 283 

between infection and metabolic disorder with the abundance of circulating PE28. Phospholipids-284 

containing microparticles from platelet activation contribute to Tissue Factor activation and pro-285 

thrombinase activity29. Platelets-derived microparticles have a much greater procoagulant 286 

activity than activated platelets30. Exposure of glycerophospholipids in conjunction with 287 

phosphatidinylserine (PS) enhances factor X activation and increases pro-thrombinase 288 

activities31,32. Interestingly, red blood cells exposed to paclitaxel, PS were exposed to the surface 289 

by protein kinase C (PKC) zeta activation of scramblase33. The aptamer detecting PKC zeta is one 290 

of the top aptamers associated with EP6 (Table S4). PKC zeta can be activated by testosterone, 291 

Dehydroepiandrosterone(DHEA)34 and dexamethasone35,  signals of relevance to EP6. The 292 

membranes of azurophilic granules, which contains Cathepsin G representing the most enriched 293 

aptamer in EP6, are enriched in PE relative to PC36. Accordingly, EP6 in addition to significantly 294 

enhanced PE abundance, showed decrease platelets count, increased D-Dimers, INR and 295 

activated partial thromboplastin time (APTT) (Figure 5A, Table S5), hallmarks of Disseminated 296 

Intravascular Coagulation (DIC), a serious and often lethal complication of sepsis37. Liver lesions 297 

are frequently observed in DIC38, where liver damage can cause DIC, or exacerbate its 298 

manifestation due to its function in clearing activated products of the coagulation cascade. Taken 299 

together, the metabolomic profile of EP6 supports pro-coagulation activity in circulation that can 300 

be linked to organ damage. 301 

 302 

Many early reports suggested a role for immunothrombosis involving neutrophil-mediated 303 

release of NETs contributing to endothelial dysfunction as a mechanism of microthrombosis in 304 
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COVID-19 associated ARDS39-41. These findings have been supported by several studies carried 305 

out in humans42-50. All of these studies were performed with 7 to 77 participants. Our study 306 

supports these findings in two important ways: 1) we used a much greater sample size (n = 731) 307 

and, 2) the identification of molecular factors associated with immuno-thrombosis emerged from 308 

an unsupervised analysis of deep phenotyping of the participant population. The strength of the 309 

extensive characterization performed in this study has enabled the finer definition of molecular 310 

mechanisms of disease by providing associations between the circulating proteome, 311 

metabolome and clinical laboratories results.  312 

 313 

FGFR and SHC4 intracellular signaling in COVID-19 ARDS  314 

Two of the outstanding novel molecular factors identified by our study associated with COVID-315 

19 ARDS are FGFR and SHC4. Circulating levels of the pro-angiogenic FGF-2 has been associated 316 

with COVID-19 severity and creatine levels in a study of 208 SARS-CoV-2 positive participants51. 317 

It is noteworthy that the use of Nintedanib, an inhibitor of FGFR, Vascular Endothelial Growth 318 

Factor Receptor (VEGFR) and Platelet-Derived Growth Factor Receptor (PDGF-R) approved for 319 

use in interstitial lung disease, improved pulmonary inflammation and helped wean off 320 

mechanical ventilation of three middle-aged obese COVID-19 patients where lung function 321 

restoration has been challenging52. While the adaptor protein SHC4 has not been experimentally 322 

demonstrated to modulate FGFR signaling, a 12-gene biomarker signature associated with 323 

melanoma contains FGFR2, FGFR3 and SHC453. In view of the limited knowledge of this 324 

understudied member of the SHC family, it is attractive to speculate that it may act downstream 325 

of FGFR or other associated growth factor receptors linked to angiogenesis, favoring 326 
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immunothrombosis associated with COVID-19 ARDS. Additional experimentation is required to 327 

establish a sound scientific basis for these hypotheses. Moreover, the identity of the cells 328 

expressing SHC4, leading to its presence in the circulation is not known, also the focus of ongoing 329 

investigations. Taken together, our identification of FGFR and SHC4 signaling pathways 330 

distinguishing EP6 from other endophenotypes, supports further investigation of antagonists of 331 

those pathways to treat severe lung manifestations of COVID-19 and their potential use as 332 

biomarkers of severe disease activity. 333 

 334 

Limitations and considerations 335 

The data presented in this study come from individuals participating to BQC19, a prospective 336 

observational cohort built to study COVID-19 in Québec (Canada) with its specific population 337 

profile as reported previously10. While the number of participants was sufficient to establish the 338 

endophenotypes using the extensive proteomic profile available in BQC19, it was insufficient for 339 

traditional genome-wide association study (GWAS) to identify relations between SNVs and the 340 

identified endophenotypes54. Instead, we exploited the top SNVs that distinguished EP6 from 341 

other EPs in a pQTL analysis. Because these results show a potential genetic functional causality, 342 

it gives us the confidence that these associations are likely not due to random chance; however, 343 

the robustness of this approach needs to be further tested in other studies. A chronological bias 344 

may also be present, as most of the participants used for endophenotyping in this study were 345 

recruited during the first two waves of the pandemic (Figure S1), prior to widespread vaccination 346 

in Québec and prior to the appearance of the Omicron variant and sub-variants. Therefore, some 347 

of the features of the identified endophenotypes may change over the course of the pandemic. 348 
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It will be essential to continue to assess the molecular profiles longitudinally to better understand 349 

the dynamic nature of host-pathogen interactions. It will also be interesting to compare the 350 

profiles of COVID-19 ARDS to other viral-induced ARDS, to identify commonalities as well as 351 

distinguishing features.  352 

 353 

In this study, we used circulating proteome as determined by aptamers to identify 354 

endophenotypes, a task for which it is well suited as it can capture a dynamic landscape. 355 

However, several important considerations need to be mentioned. First, raw (unnormalized) 356 

expression values of the same aptamer can be used to compare different samples, but these 357 

values cannot be used to compare different aptamers against each other in the same sample, 358 

since they only show the relative abundance of expression and not absolute expression. As such, 359 

one needs to first normalize these values across samples (one aptamer at a time) and then 360 

subject them to follow-up analysis such as clustering, an approach that we adopted in this study. 361 

Second, since information only shows relative abundance, focusing on an individual aptamer and 362 

analyzing it will require additional measurements to establish absolute abundance. Moreover, if 363 

one wants to analyze aptamers individually (instead of the collective approach that we used in 364 

this study), they need to consider the effect of complexes and non-specific binding that may 365 

result in noisy data. As such, we suggest that the aptamer expression data be used collectively 366 

and after proper normalization, which enabled us to identify various EPs and important molecular 367 

mechanisms discussed in this study.  368 

 369 
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In this work, we developed a predictive model based on blood markers that enables us to 370 

generalize the definition of EPs to scenarios where data on circulating proteome is not available. 371 

This significantly increases the applicability of this approach and may enable automating 372 

identification of high-risk individuals in the clinic. However, time and follow-up studies are 373 

required to move this predictive model and the definitions of EPs from research to clinic and 374 

develop it as an acceptable clinical practice. Nonetheless, our approach can be used to study 375 

COVID-19 in different cohorts and identify characteristics that can guide the treatment of the 376 

disease.  377 

 378 

Future directions 379 

There is enormous amount of data within this study and BQC19 that can and should be exploited 380 

by the scientific and medical community to improve our understating of COVID-19 and novel 381 

emerging acute respiratory illnesses. Analyzing in more details the molecular profiles of the other 382 

EPs, in particular EP3-5, which lead to similar outcomes from distinct molecular pathways should 383 

further yield important insights into mechanisms of the disease. For example, EP5 is enriched in 384 

males and cardiovascular disease complications, while EP4 is enriched in female (like EP1) but 385 

with different distinct clinical trajectories pointing to sex-dependent and independent molecular 386 

mechanisms of disease. 387 

 388 

Conclusion 389 

The major strength of this study is its starting point: unsupervised analysis of a large and deeply 390 

phenotyped cohort. We showed that this approach can address both fundamental scientific 391 
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questions pertaining to mechanisms of disease and help the medical community improve patient 392 

outcomes through early identification of patient that may follow a severe clinical course during 393 

COVID-19.  394 

 395 

Methods: 396 

Datasets and preprocessing 397 

The Biobanque québécoise de la COVID-19 (BQC19; www.quebeccovidbiobank.ca) is aimed at 398 

coordinating the collection of patients’ data and samples for COVID-19 related research. Data 399 

and samples were collected from ten sites across the province of Québec (Canada)10. BQC19 400 

organizes the collected data, including clinical information and multi-omics experimental data, 401 

before making it available in successive releases. For this study, we used release #5 of the clinical 402 

data published in December 2021, the circulating proteome determined using SOMAmers54 and 403 

Metabolomics data55. BQC19 GWAS imputation data was generated by Tomoko Nakanishi at 404 

Brent Richards lab, Jewish General Hospital and McGill University. Detailed codes used for 405 

generating the data can be found in: https://github.com/richardslab/BQC19_genotype_pipeline 406 

 407 

Our main corpus of analysis consisted of n = 1,362 hospitalized and SARS-CoV-2 positive patients 408 

(based on qRT-PCR) of BQC19. This included n = 731 patients for which both clinical and 409 

proteomic data were available as well as n = 631 patients for which proteomic data was not 410 

available, but their clinical data contained measurements for more than half (at least 11 out of 411 

21) of the blood markers that we used as a validation set for the predictive model developed in 412 

this study.  413 
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 414 

We also obtained data (n = 731) corresponding to the circulating proteome measured between 415 

April 2, 2020 and April 20, 2021 by a multiplex SOMAmer affinity array (Somalogic, 4,985 416 

aptamers) from BQC19 (release #3 Sep. 2021, associated patients’ data updated in release #5 417 

Dec. 2021). When measurements of the same patients but at different time points were 418 

available, we used the one corresponding to the first time point. SomaScan is a biotechnological 419 

protocol commercialized by the Somalogic company. It relies on a set of artificial aptamers linked 420 

to a fluorophore and each designed to bind a single protein. Once added to the sample, the 421 

activity of each aptamer is measured through fluorescence and used to approximate the 422 

expression level of the targeted protein. SomaScan protocol comprises several levels of 423 

calibration and normalization to correct technical biases11. Log2 and Z-score normalization were 424 

performed on each aptamer separately in addition to the manufacturer’s provided normalized 425 

data (hybridization control normalization, intraplate median signal normalization, and median 426 

signal normalization). Since the data was analyzed by Somalogic in two separate batches, we 427 

applied the z-score transformation separately to each batch, to reduce batch effects. These 428 

additional transformations ensure that the measured values of different aptamers are 429 

comparable and can be used in cluster analysis.  430 

 431 

We obtained metabolomic data (1,435 metabolites) from BQC19. We used the batch-normalized, 432 

missing values imputed and log-transformed version of the data. 433 

 434 

Analyses of the GWAS dataset 435 
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For the GWAS analyses, annotation of SNVs were done using the biomaRt package56 from R57 and 436 

all analyses were done using R version 4.1.3. Quality control steps were derived in majority from 437 

a 2017 QC tutorial article58. At the beginning, we had 867,450 markers and 2,429 samples. We 438 

import Plink format data into R using the “read_plink” function from genio package59 from R. We 439 

removed 103,592 non ACGT bi-allelic markers. We calculated the predicted sex by looking at the 440 

rate of homozygote markers on chromosome 23. We removed 3,588 markers with call rates < 441 

98%, 448,932 monomorphic markers and markers with MAF <0.05, and 28,092 markers with 442 

Hardy Weinberg equilibrium < 1E-6 (calculated by the “HWE.exact” function from the genetics 443 

package60 from R. For the EP6 cluster group analyses, we removed in addition 1,747 samples that 444 

were not in the cluster analysis, 8 samples with a sex discrepancy (based on predicted sex 445 

calculated earlier and reported sex), and 3 samples with a heterozygosity rate > 3 standard 446 

deviations. We finally removed a pair of samples who had approximately the same genome 447 

probably due to an error of manipulation. We couldn’t know which one was the right sample, so 448 

we removed both of them. We also had 2 pairs of individuals who had a pi-hat of ~0.5 (meaning 449 

first degree relatives), we decided to keep one sample per pair, the one with the higher call rate. 450 

All other pairs of individuals had a pi-hat < 0.21 that is judge acceptable considering our 451 

population. Pi-hat were calculated with the “snpgdsIBDMoM” function from SNPRelate 452 

package61 from R. At the end of quality controls, 283,246 markers on 655 samples have been 453 

used to perform association analyses.  454 

 455 

To perform the principal component analyses (PCA), we took a subsample of independent 456 

markers (pruning) with a maximum sliding window of 500,000 base pairs and a linkage 457 
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disequilibrium (LD) threshold of 0.2 using the “snpgdsLDpruning” function from the SNPRelate 458 

package from R. We ran the PCA with the “snpgdsPCA” function from SNPRelate package from 459 

R. The first 2 principal components (PCs) were considered significant.  460 

 461 

For the GWAS analyses of the 283,246 remaining markers between EP6 cluster compared to all 462 

others, we modeled a logistic regression with the dichotomous variable indicating if the 463 

participants belong to the EP6 cluster as the outcome variable. We used the additive model for 464 

markers as an independent variable and we adjusted the models with the first two PCs. Odds 465 

ratio and p-values were calculated on each model. QQ-plots have been performed as quality 466 

control of the models; p-values were plotted using “qqplot.pvalues” function from gaston 467 

package62 from R (data not shown). We compared the aptamers’ normalized level of expression 468 

(based on normalization described earlier) between the three groups of genotypes for each 469 

studied genes by performing standard ANOVA analyses followed by Tukey post hoc tests 470 

(referred to in this study as pQTL analysis). Since aptamers tested are limited compared to the 471 

SNVs, we have fixed significance p-values threshold below 1E-4 to report more SNVs instead of 472 

the more common 1E-5 suggestive threshold. Finally, to identify if the cluster EP6 may be 473 

explained by the aptamers and the SNVs, we performed multiple logistic regression analyses 474 

models include aptamers expression values, SNV genotypes (additive model) and the two 475 

principal components. OR are reported with 95% confidence intervals. 476 

 477 

Consensus agglomerative clustering 478 
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Patients were clustered using agglomerative clustering, with Euclidean distance and Ward’s 479 

linkage12,13. To identify number of clusters k, we used the elbow method based on the Akaike 480 

Information Criterion (AIC) and Bayesian Information Criterion (BIC). More specifically, we 481 

calculated the AIC and BIC for clustering using k = 2, 3, …, 20 and used the Kneedle algorithm63 to 482 

identify the value of k corresponding to the “elbow”, where increasing the value of k does not 483 

provide much better modeling of the data. Kneedle identified k = 6 as the number of clusters 484 

based on both AIC and BIC (Figure 1A).  485 

 486 

Given the number of clusters in the data, we then used consensus clustering with sub-sampling 487 

to obtain robust endophenotypes. We randomly sampled 80% of the patients 1000 times. Each 488 

time, we used agglomerative clustering above with k = 6 to identify clusters. Given these 1000 489 

clusterings, we calculated the frequency of two patients appearing in the same cluster, when 490 

both were present in the randomly formed dataset. We then performed one final agglomerative 491 

clustering of these frequency scores to identify the six endophenotypes (Figure S2A and Figure 492 

1B). The distribution of Rand-Index, showing the concordance between each one of the 1000 493 

clusterings and the final consensus clustering is provided in Figure S2B (mean Rand-Index = 494 

0.823), reflecting a high degree of consistency.  495 

 496 

Metabolomic pathway characterization of EP6 497 

The 1435 metabolites measured were organized into 122 sub-pathways in the original dataset 498 

(denoted as “SUB_PATHWAYS”). We first identified metabolites whose values were significantly 499 

higher or lower in EP6 compared to other EPs (two-sided MWU test, FDR<0.01). Then, we used 500 
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these metabolites to perform pathway enrichment analysis (one-sided Fisher’s exact test) based 501 

on 122 pathways. The resulting p-values (Table S3) were then corrected for multiple tests using 502 

Benjamini-Hochberg FDR. 503 

 504 

Nearest-centroid predictor based on blood markers 505 

In order to predict endophenotypes from blood tests, we developed a missing-value resilient 506 

nearest-centroid classifier. We used the set of patients that were used to form the original EPs 507 

(n = 731) as the training set and the set of patients that did not have proteome data as the 508 

validation set (n = 631). First, we z-score normalized each blood marker across all the patients in 509 

the training set, one marker at a time. We then formed a blood marker signature (a vector of 510 

length 21) for each EP. Each element of an EP’s signature corresponds to the mean of the 511 

corresponding marker across all patients of that EP.  512 

 513 

To predict the EP label of each patient in the test set, we first z-score normalized their blood 514 

marker measurements using the mean and standard deviation of the blood markers calculated 515 

from the training set. Then, we calculated the cosine distance between each test patient’s blood 516 

marker profile and the centroids (excluding missing values) and identified the nearest EP as the 517 

predicted EP (PEP) label of the patient.   518 

 519 
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Figures 534 

 535 

Figure 1: Unsupervised consensus clustering of SARS-CoV-2 positive patients.  536 
A) The elbow points (circles in red) of Akaike's Information Criteria (AIC) and Bayesian 537 
Information Criteria (BIC) curves versus number of clusters consistently corresponded to k=6 as 538 
the optimal number of clusters. B) The heatmap shows the expression of aptamers (rows) in each 539 
sample (columns). The dendogram shows the identified endophenotypes. C)  Characterization of 540 
samples based on sex at birth, highest world health organization (WHO) severity level achieved, 541 
intensive care unit (ICU) admission, ventilatory support, and oxygen therapy. For the last three 542 
rows, a sample colored “black” reflects a label of “yes”.  543 

Figure 1 a): AIC and BIC by number of clusters on single hierarchical clustering using all samples; 
elbow point chosen using kneedle shown in red. b): clusters based on SOMAmers. The heatmap 
shows the expression of proteins (rows) in each sample (columns) by normalized SOMAmer RFUs. 
Sample dendrogram colors are chosen to match those of Kaplan-Meier plots in Fig. 2a). 
c): Characterization of samples based on age, body mass index, sex at birth, highest WHO severity 
level achieved, ICU admission, ventilatory support, and oxygen therapy; missing values are shown 
in white.

A)
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B)A B
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 544 

Figure 2: Characterization of endophenotypes (EPs).  545 
A) Enrichment or depletion of each EP in clinical variables (one cluster versus rest). Two-sided 546 
Fisher’s exact tests are used to calculate the p-values, which are corrected for multiple tests using 547 
Benjamini-Hochberg false discovery rate (FDR). Gradients of blue show depletion, while gradients 548 
of red show enrichment. FDR values above 0.05 are depicted as white. B) The number of patients 549 
in each EP and the colors used to represent them in panels C, D, and E. C) Kaplan-Meier analysis 550 
of the time between patients' admission to the hospital and their admission to intensive care unit 551 
(ICU) (or death if earlier) for each EP (Delta). D) Distribution of age in each EP. E) Distribution of 552 
BMI in each EP. F) COVID-19 severity in each EP.  553 

Figure 2: Characterization of endophenotypes. Panel A: Kaplan-Meier analysis of the delay between patients' admission to the 

hospital (T0) and their admission to ICU (or death if earlier, E) for each endophenotype (multivariate logrank P = 5.06 E-36). 

Panel B and C: boxplots displays of the age at arrival (B) and BMI (C) of patients for each endophenotype. Panel D: Stacked 

barplots displays of COVID19 severity of patients for each endophenotype.
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 554 
Figure 3: Frequency and significance of complications in different EPs.  555 
The value in each cell shows the percentage of patients of that EP (column) that suffered from 556 
the complication (row). The colors represent two-sided Fisher’s exact test false discovery rate 557 
(FDR, corrected for multiple tests). Red represents enrichment, while blue represents depletion. 558 
FDR values below 0.05 are shown as white.  559 
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 560 
Figure 4: Metabolite characteristics of endophenotypes (EPs).  561 
A) The heatmap shows the over-expression (red) and under-expression (blue) of metabolites in 562 
different EPs (two-sided Mann–Whitney U test). Row names show metabolites followed by the 563 
sub-pathway to which they belong in parentheses. Only top 15 metabolites (based on false 564 
discovery rate for EP6) for which a definite name and sub-pathway was available are shown. Full 565 
list is provided in Table S3. B) The heatmap shows the enrichment (one-sided Fisher’s exact test) 566 
of EPs in different metabolite sub-pathways. See Table S3 for the full list.  567 

B

A
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 568 

Figure 5: Differential expression patterns of blood markers in the identified endophenotypes 569 
(EPs) and characterization of predicted endophenotypes (PEPs) based on the predictive model.  570 
A) Heatmaps of false discovery rates (FDR) values for two-sided one-vs-rest Mann–Whitney U 571 
tests for 21 blood markers for each EP. Abbreviations used: WBC = white blood cells, LDH = lactate 572 
deshydrogenase, ALT = alanine aminotransferase, APTT = activated partial thromboplastin time, 573 
INR = International Normalized Ratio.  FDR values below 0.05 are shown as white. B) World health 574 
organization COVID-19 severity assessed in each PEP. C) Distribution of age in each PEP. D) 575 
Distribution of BMI in each PEP. E) Kaplan-Meier analysis of the time between patients' admission 576 
to the hospital and their admission to ICU (or death if earlier) for each PEP (Delta). The colormap 577 

Figure X2: A- Heatmaps of two-sided ‘one-vs-rest’ Mann-Whitney U tests 
for continuous clinical/phenotypic variables (excluding unknown 
values) against endophenotype clusters, with white indicating p<=0.05, 
red/blue indicating higher/lower mean values in cluster than rest. B-
Barplot of patients' severity grouped by predicted endophenotype (PEP). 
C,D- Boxplots of patients' age (B) and BMI (C) grouped by PEP. E-
Kaplan-Meier analysis of patients grouped by PEP with admission to 
hospital as T=0 and admission to ICU as even (or death if earlier)
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in panel E shows the number of patients in each PEP group and the colors used to represent them 578 
in panels C, D, and E. PEPs were predicted based on blood markers and were not used to originally 579 
identify the EPs.   580 
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Tables 581 

Table 1: Clinical and pathological characteristics of the BQC19’s participants used in this study.  582 

 
 

Cohort  
(n = 1,362) 

No. (%) 

Age in years 

<45 17.5 
45-65 33.6 
>65 48.7 

Unknown 0.3 

Body mass 
index in kg/m2  

<20 3.8 
20-25 13.0 
25-35 27.8 
>35 7.4 

Unknow 47.9 

Sex at birth Female 44.8 
Male 55.2 

Severity 

Dead 4.4 
Severe 21.8 

Moderate 51.0 
Mild 11.8 

Unknown 10.9 

Oxygen 
therapy 

Yes 48.2 
No 21.0 

Unknown 30.8 

Ventilatory 
support 

Yes 47.6 
No 14.0 

Unknown 38.5 
Admission to 
intensive care 

unit 

Yes 17.5 
No 33.6 

Unknown 48.7 
  583 
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Table 2: Reactome pathways associated with EP6, based on expression of aptamers. KnowEnG 584 
analytical platform was used. The p-values were calculated using a one-sided Fisher’s exact test 585 
and were corrected for multiple tests using Benjamini-Hochberg method. Only signaling 586 
pathways with FDR<5E-4 are shown in this table (see Table S4 for the full list).  587 
 588 

Pathway FDR 

Signaling by Interleukins 2.75E-12 
Cytokine Signaling in Immune system 6.25E-10 
Immune System 2.28E-06 
Signaling by FGFR 4.75E-06 
Constitutive Signaling by Aberrant PI3K in Cancer 2.94E-05 
FGFR2 ligand binding and activation 5.77E-05 
Extracellular matrix organization 1.85E-04 
FGFR3 ligand binding and activation 1.85E-04 
FGFR3c ligand binding and activation 1.85E-04 
FGFRL1 modulation of FGFR1 signaling 1.85E-04 
TNFs bind their physiological receptors 2.58E-04 
PI3K/AKT Signaling in Cancer 3.28E-04 
PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 4.14E-04 
Interleukin-4 and 13 signaling 4.91E-04 

 589 
  590 
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Table 3: SNVs differentiating EP6 against all other endophenotype clusters. 591 

SNV ID Position Gene Symbol SNV 1 MAF HWE OR 2 p-value 

rs1394671 chr5:7348567 - G > A 0.240 0.095 2.28 2.41E-06 
rs12186698 chr5:168880668 SLIT3 T > C 0.087 0.247 2.93 3.72E-06 
rs11625406 chr14:50049474 - C > A 0.438 0.137 0.47 1.03E-05 
rs11862889 chr16:83828886  - T > C 0.104 0.446 2.62 1.07E-05 
rs2995918 chr4:37905775 TBC1D1 C > T 0.494 0.776 0.49 1.20E-05 
rs16897810 chr5:68415296 - G > A 0.093 0.001 2.67 1.43E-05 
rs2376263 chr17:35436659 SLFN13 G > A 0.261 0.073 2.01 2.48E-05 
rs4790712 chr17:1614620 SLC43A2 G > A 0.441 0.003 1.97 2.50E-05 
rs2294566 chr20:41472939 CHD6 C > A 0.239 0.265 2.04 2.78E-05 
rs7164451 chr15:48921859 SHC4 G > A 0.386 0.053 1.89 3.01E-05 
rs57664621 chr8:22808443 PEBP4 G > C 0.174 0.016 2.16 3.07E-05 
rs28482919 chr3:14903094 FGD5 T > C 0.187 0.053 0.32 3.20E-05 
rs6559283 chr9:89712560 - T > C 0.375 <0.001 1.96 3.27E-05 
rs657075 chr5:132094425 - A > G 0.104 0.328 2.49 4.28E-05 
rs56235109 chr15:62424001 TLN2 A > G 0.235 0.366 0.38 4.67E-05 
rs7620057 chr3:179473377 GNB4 T > C 0.099 1.000 2.51 4.67E-05 
rs10466868 chr12:131455375 - T > G 0.108 0.401 2.51 5.94E-05 
rs2236798 chr1:18735127 PAX7 A > G 0.054 0.114 2.90 6.11E-05 
rs3774814 chr4:5464702 STK32B C > G 0.205 <0.001 0.36 6.75E-05 
rs4497815 chr19:22903215 - G > A 0.216 0.205 2.07 7.52E-05 
rs6765694 chr3:54601810 CACNA2D3 G > A 0.404 0.833 0.51 7.66E-05 
rs2797773 chr6:37559045  - C > T 0.422 0.000 0.53 8.06E-05 
rs17014760 chr4:129419725  - A > A 0.316 0.000 1.89 9.33E-05 
rs10948260 chr6:45835559  - G > A  0.366 0.189 1.81 9.52E-05 
rs12035677 chr1:232391209  - A > G 0.063 0.000 3.02 9.95E-05 

Abbreviations used: SNV = Single nucleotide variation, HWE = Hardy Weinberg Equilibrium, MAF 592 
= Minor allele frequency, OR = Odd ratio.  593 
 594 
1 SNV are described following GWAS annotations: refence allele > alternative allele (e.g., G > A).   595 
2 Logistic regression analyses using additive model adjusted for the 2 principal components. 596 

597 
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Table 4: Association between genotypes and aptamer expression levels 598 

SNV 
Gene 
Symbol  

Nearest 
gene 

Aptamers normalized expression 1  Multiple logistic regression analyses 3 

HMref HTZ HMalt p-val 2  Aptamers SNV 
 OR p-val OR p-val 

rs6765694 CACNA2D3 - -0.09 
(±0.89) 

0.01 
(±1.10) 

0.24 * 
(±0.99) 0.011  0.61 

(0.46-0.79) 2.5E-4 0.52 
(0.37-0.74) 2.4E-4 

rs10948260 - CLIC5 0.02 
(±0.92) 

0.02 
(±1.09) 

-0.02 
(±0.97) 

0.796  0.68 
(0.55-0.83) 

1.7E-4 1.83 
(1.35-2.48) 

8.8E-5 

rs657075 - IL3 
-0.01 
(±1.01) 

0.05 
(±0.99) 

0.32 
(±0.46) 0.328  

1.37 
(1.14-11.64) 8.2E-4 

2.49 
(1.60-3.88) 5.2E-5 

rs7164451 SHC4 - -0.07 
(±0.90) 

0.01 
(±1.05) 

0.23 * 
(±1.16)  0.017  11.98 

(7.61-18.87) 
8.4E-
27 

2.00 
(1.30-3.09) 1.8E-3 

rs12186698 SLIT3 - 0.00 
(±1.02) 

0.07 
(±1.06) 

0.15 
(±0.89) 

0.509  0.82 
(0.64-1.06) 

0.135 2.99 
(1.89-4.73) 

2.7E-6 

rs56235109 TLN2 - 
-0.03 
(±0.98) 

0.06 
(±1.03) 

0.04 
(±1.27) 0.353  

0.58 
(0.45-0.75) 2.7E-5 

0.38 
(0.23-0.60) 4.7E-5 

Abbreviations used: SNV = Single nucleotide variation, HMref = Homozygotes for the reference 599 
allele, HMalt = Homozygotes for the alternative allele, HTZ = Heterozygotes, OR = Odd ratio.  600 
 601 
1 Aptamers’ normalized levels of expression are reported as mean (± standard deviation). 602 
Normalization steps for aptamer expressions are described in Methods.  603 
2 p-value, standard ANOVA analyses followed by Tukey post hoc analyses. Asterisks (*) identify 604 
difference between HMref and HMalt genotypes.  605 
3 Multiple logistic regression analyses models include aptamers expression values, SNV 606 
genotypes (additive model) and the two principal components. OR are reported with 95% 607 
confidence intervals in parentheses.  608 
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