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Abstract

The use of Cox proportional hazards regression to analyze time-to-event data is ubiquitous

in biomedical research. Typically, the frequentist framework is used to draw conclusions

about whether hazards are different between patients in an experimental and a control

condition. We offer a procedure to calculate Bayes factors for simple Cox models, both for

the scenario where the full data is available and for the scenario where only summary

statistics are available. The procedure is implemented in our “baymedr” R package. The

usage of Bayes factors remedies some shortcomings of frequentist inference and has the

potential to save scarce resources.

Keywords: Bayes factor, Cox proportional hazards regression, particle swarm

optimization, survival, time-to-event data
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Bayes Factors for Two-group Comparisons in Cox Regression

The biomedical literature is filled with studies in which two conditions are compared

on some kind of outcome measure. A common example is a clinical trial in which the goal

is to determine the efficacy of a therapeutic agent over a placebo or an already existing

medication (e.g., Christensen, 2007; Friedman et al., 2010; Senn, 2008). The outcome

measure can be continuous; an example would be symptom severity. Alternatively, the

outcome measure can be dichotomous, as in studies that examine the mortality of patients

following a medical procedure (see, e.g., Dean et al., 2001; Pearse et al., 2012). Sometimes,

not only the sheer absence or presence of some event is relevant, but also the time until

that event happens, which is often called the survival or failure time (Harrell, 2015). For

instance, in order to judge the effectiveness of some form of oncological treatment, it is of

interest to know how long terminally ill cancer patients survive after receiving the

treatment, and at which time there is an increased or decreased risk of death.

Time-to-event data are typically analyzed using survival analysis (see Bradburn

et al., 2003a, 2003b; Clark et al., 2003a, 2003b; Collett, 2015; Harrell, 2015; Hosmer et al.,

2008, for excellent overviews). Usually, researchers use the frequentist statistical framework

for survival analyses. This, however, has several disadvantages: First, it is impossible to

quantify evidence in favor of the null hypothesis (e.g., Rouder et al., 2009) of equal

survival between conditions. The reason for that is that a non-significant finding can occur

due to low power or a truly absent effect; the two possibilities cannot be disentangled

(Bakan, 1966; Keysers et al., 2020; van Ravenzwaaij et al., 2019). Second, stopping data

collection based on interim results (e.g, p-value already reached threshold or p-value did

not yet reach threshold) is highly problematic because it increases the probability of having

a false positive result (Armitage et al., 1969; Rouder, 2014; Tendeiro et al., 2022).

We offer a procedure and easy-to-use implementation for hypothesis testing for

survival analysis in the Bayesian framework. Specifically, we focus on Cox proportional

hazards regression (henceforth called either Cox regression or Cox model; Cox, 1972). This
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allows directly contrasting the evidence for the null hypothesis that there is no effect with

an alternative hypothesis that operationalizes that there is some effect; it also allows

monitoring results and stopping data collection at will. Moreover, to the best of our

knowledge, so far Cox regression can only be conducted when the full data is available.

Oftentimes, however, it is relevant to reanalyze studies based on summary statistics

reported in articles (e.g., in replications and meta analyses; e.g., Field & Gillett, 2010;

Sutton & Abrams, 2001). We describe how data can be simulated based on summary

statistics and how these simulated data can be used to subsequently conduct Bayesian

hypothesis testing for Cox regression. We implemented both the process of data simulation

and the process of Bayesian hypothesis testing in a software package (the “baymedr” R

package; Linde et al., 2022) that can be used by a wide audience of researchers, as we will

illustrate.

The remainder of the article is organized as follows. First, we give an introduction

to survival analysis in general and Cox regression in particular. Second, we explain how

Bayes factors can be computed and interpreted and apply this to the special case of Cox

regression. Third, we showcase how our “baymedr” software can be used to calculate a

Bayes factor when the full data is available. Fourth, we describe our procedure for the

scenario where only summary statistics are available. Specifically, we describe how survival

data can be simulated from summary statistics, we tune parameters for the data simulation

process, and demonstrate how “baymedr” can be used to calculate a distribution of Bayes

factors for multiple simulated data sets. Fifth, we compare the performance (in terms of

bias and variance) of our approach to an approximation approach advocated by Bartoš and

Wagenmakers (2022).

Survival Analysis

The time until the event of interest occurs is often called survival time or failure

time. Typically, the survival time is only known for some participants. Reasons for that
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include the study ending before the event of interest is observed, participants withdrawing

from the study, or failure to follow up with participants (e.g., a participant might have

moved without notifying the researchers). In these cases, participants’ survival time is

censored on the right. That is, the exact survival time is not known; what is known,

however, is that the survival time exceeds the time at the last follow-up (see, e.g., Harrell,

2015; Hosmer et al., 2008; Klein & Moeschberger, 1997; Leung et al., 1997, for more

thorough treatments of censoring). For example, assume that a study is scheduled for a

time period of seven years. A participant enters the study two years after the study has

started. At the end of the study, the event of interest still has not occurred for this

participant. In that case, the observation of five years is censored, which means that it is

only known that the survival time of that participant exceeds five years. One advantage of

survival analysis is that it can handle this kind of incomplete data very well.

We denote the survival time as T . The cumulative distribution function of T gives

the probability that a participant has a survival time that is equal or less than some

particular time t:

F (t) = P (T ≤ t) . (1)

Oftentimes, the probability that a participant is still alive after a particular time t is more

interesting. This is given by the survival function:

S (t) = P (T > t) = 1 − F (t) . (2)

Lastly, it is also informative to examine time periods of increased and decreased risk of

failure. This is not immediately apparent in the survival function. The hazard function

displays the instantaneous risk that the event happens in a narrow interval around a

particular time t for participants who already survived until time t (cf. Clark et al., 2003a):

λ (t) = lim
u→0

P (t < T ≤ t + u | T > t)
u

. (3)

This is equivalent to:

λ (t) = f (t)
S (t) = −∂ log S (t)

∂t
, (4)
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with f (t) being the probability density function of T (see, Harrell, 2015, pp. 404–405, for a

derivation of this equality).

Various kinds of survival analyses exist for estimating S (t) and λ (t). These

approaches can be grouped into one of three categories: non-parametric, parametric, and

semi-parametric approaches. The non-parametric approach does not make any assumptions

about the survival and hazard functions. The most prominent non-parametric approach is

the Kaplan-Meier product-limit estimator (Kaplan & Meier, 1958), which is often

considered as a first descriptive step (Harrell, 2015). In contrast to the non-parametric

approach, the parametric approach makes some assumptions on the survival function.

Specifically, the survival function is assumed to belong to a predetermined distribution

family, whose parameters need to be estimated in a way that fits the data best. Common

distribution families for the survival function include the Exponential, Weibull, and

Gompertz distributions. Finally, the semi-parametric Cox regression (Cox, 1972) is used

most commonly across all types of survival analyses. On the one hand, it is parametric

because it assumes a multiplicative effect of the predictors on the hazard function (i.e., the

assumption of proportional hazards); on the other hand, it is non-parametric because it

does not impose any particular form on the hazard function. The focus of this paper lies

exclusively on Cox regression.

Cox Regression

In Cox regression, the data for each participant i, with i ∈ {1, . . . , n}, consists of

the observed response Yi and an event indicator δi, designating whether the event of

interest occurred (1) or not (0). In addition, each participant has a censoring time Ci.

Each participant has a survival time Ti that is known in case this observation is uncensored

(i.e., δi = 1) or only known to be greater than some value in case this observation is

censored (i.e., δi = 0). The observed response Yi is:

Yi = min (Ti, Ci) . (5)
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Data in Cox regression
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Figure 1

Example of data in Cox regression with four participants. The horizontal lines show the

individual observed responses (i.e., survival/censoring times). The solid dots indicate that

the event of interest was observed. The vertical dashed line demarcates the end of the study.

T is the survival time, C is the censoring time, Y is the observed response, and δ is the

event indicator.

Thus, the relevant information for the i-th participant is fully contained in the combination

of Yi and δi. This is visualized in Figure 1.

In the following, we will assume that we have one independent variable x that is

dichotomous, indicating membership to one of two conditions. Therefore, each participant i

has a value on the independent variable, say xi. Importantly, we will assume that xi = 0

refers to the control condition (c) and xi = 1 to the experimental condition (e). We will

refer to the combination of Y , δ, and x as the data D for a generic participant. The Cox

model (Cox, 1972) is expressed as:

λ (t | x) = λ (t) exβ, (6)

where β is the parameter we aim to estimate. λ (t | x) is the hazard function, λ (t) is the
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baseline hazard function indicating how λ (t | x) changes as a function of t, and exβ is the

relative hazard function characterizing how λ (t | x) changes as a function of x (Hosmer

et al., 2008). Assuming that xi ∈ {0, 1}, the hazard ratio is:

HR = λ (t | x = 1)
λ (t | x = 0) = λ (t) eβ

λ (t) = eβ. (7)

The estimation of β is based most often on maximum likelihood estimation.

Commonly, either the original Cox partial likelihood (Cox, 1972), Breslow’s approximation

to the true partial likelihood (Breslow, 1974), or Efron’s approximation to the true partial

likelihood (Efron, 1977) are used (see, e.g., Therneau & Grambsch, 2000, for a more

detailed discussion). It is a partial instead of a true likelihood because it does not take the

actual responses but only their rank ordering into account (Collett, 2015). We will

exclusively use Efron’s method because it usually is most accurate, can handle tied survival

times best, and is the default in several software packages; examples are the “survival” R

package (Therneau, 2021; Therneau & Grambsch, 2000) and the “rms” R package (Harrell,

2022).

Let tj represent the k (where k ≤ n) unique ordered survival times, with

j ∈ {1, . . . , k}. Then, for a generic independent variable, Efron’s approximation of the

true log partial likelihood is defined as (cf. Harrell, 2015, p. 477):

log L (β) =
k∑

j=1

 ∑
l∈Nj

xl

 β −
nj∑

b=1
log

 ∑
h∈Sj

exhβ

 − b − 1
nj

 ∑
l∈Nj

exlβ

 , (8)

where Nj is the set of indices for cases failing at tj, nj is the number of cases failing at tj,

and Sj is the set of indices for cases having an observed response of at least tj.

Once the model is estimated, a confidence interval for β or HR can be calculated.

Alternatively, null hypothesis significance testing (NHST) in the form of a Wald test (for

instance) is conducted, with the null hypothesis:

H0: β = β0 (9)

and the alternative hypothesis either being two-sided:

H1: β ̸= β0 (10)
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or one-sided:

H1: β < β0 or H1: β > β0, (11)

with β0 being the null value. Rejection of H0 is warranted when the resulting p-value is

smaller than a predefined significance level (when p < α); when p ≥ α nothing can be

concluded.

In the next section, we turn our attention to Bayes factors. We describe the

motivation and theory behind Bayes factors, how they are interpreted, and how they can

be calculated for Cox models.

The Bayes Factor

The use of NHST in biomedical research is ubiquitous (Chavalarias et al., 2016)

even though it has been criticized repeatedly (e.g., Berger & Delampady, 1987; Berger &

Sellke, 1987; Cohen, 1994; Dienes, 2011; Gigerenzer, 2004; Goodman, 1999a, 1999b, 2008;

McShane et al., 2019; van Ravenzwaaij & Ioannidis, 2017; Wagenmakers, 2007;

Wagenmakers et al., 2018; Wasserstein & Lazar, 2016). Null hypothesis Bayesian testing

(NHBT) is an alternative to NHST that has some practical advantages. For instance, in

contrast to NHST, NHBT allows quantifying the relative evidence in favor of H0 (Rouder

et al., 2009; van Ravenzwaaij et al., 2019; Wagenmakers, 2007; Wagenmakers et al., 2018).

That way, the evidence for (or against) H0 and H1 can be directly compared. This

possibility is important because it enables researchers to investigate whether a therapeutic

agent is not working. Moreover, in contrast to NHST, NHBT enables researchers to

monitor the data during data collection and stop or continue data collection as needed

(Rouder, 2014; Sanborn & Hills, 2014; Schönbrodt & Wagenmakers, 2018; Schönbrodt

et al., 2017; Tendeiro et al., 2022). This might have the implication that fewer resources

are wasted because neither too many nor too few cases are sampled (Chalmers & Glasziou,

2009). In addition, the results of NHBT are easy to interpret and are arguably more in line

with researchers’ questions compared to NHST.
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The most common vehicle of NHBT is the Bayes factor (Jeffreys, 1939, 1948, 1961;

Kass & Raftery, 1995), which quantifies the relative probabilities of the data under H0 and

H1. For example, a Bayes factor of BF10 = 1 (the subscript indicates a comparison is made

between the evidence for H1 relative to H0) indicates a perfect balance between H0 and

H1, given the choice of prior and model; the data are equally probable under both

hypotheses. In contrast, BF10 = 10 suggests that the data are 10 times more likely under

H1 compared to H0, given the choice of prior and model. Lastly, BF10 = 0.1 indicates that

the data are BF01 = 1/BF10 = 10 times more likely under H0 compared to H1, given the

choice of prior and model.

The Bayes factor follows from applying Bayes’ rule to both H1 and H0 using the

available data D, while assuming that H1 and H0 are the two only models of interest:

P (H1 | D)
P (H0 | D)︸ ︷︷ ︸
Posterior odds

= P (D | H1)
P (D | H0)︸ ︷︷ ︸

Bayes factor, BF10

× P (H1)
P (H0)︸ ︷︷ ︸
Prior odds

. (12)

The prior odds reflect one’s initial beliefs about the probabilities of H1 and H0, the Bayes

factor quantifies the relative probabilities of the data under H1 and H0, and the posterior

odds reflect the relative probabilities of H1 and H0 after having observed the data. It can

be seen in Equation 12 that the Bayes factor is independent of the prior odds. Therefore,

when people hold different beliefs about the prior odds, they obtain different posterior odds

but the Bayes factor remains the same.

The numerator of the Bayes factor in Equation 12 is calculated by integrating the

product of the prior distribution for the parameter of interest under the alternative

hypothesis and the likelihood function. In the case of Cox regression with one dichotomous

independent variable, the parameter of interest is β. Consequently, the numerator of the

Bayes factor in Equation 12 is:

P (D | H1) =
∫

β∈Ω1
f (D | β) f (β) dβ, (13)

where Ω1 is the range of β parameter values under H1. P (D | H1) is a marginal likelihood

because the β parameter is integrated out. One can think of P (D | H1) as a weighted
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average of the likelihood f (D | β), with weights given by the prior f (β) (e.g., Kruschke,

2015; Tendeiro & Kiers, 2019). If a point H0 is used, the denominator of the Bayes factor

in Equation 12 is simply the density of the likelihood evaluated at the null value β0:

P (D | H0) = f (D | β = β0) . (14)

Even though the Bayes factor is independent of the prior odds, it is sensitive to the choice

of prior for β (e.g., Gallistel, 2009; Kass & Raftery, 1995; Sinharay & Stern, 2002;

Vanpaemel, 2010).

The Bayes factor is calculated the same way for either the full data or for data

simulated based on summary statistics. The Bayes factor is:

BF10 =
∫

β∈Ω1
f (D | β) f (β) dβ

f (D | β = β0)
, (15)

where D can refer either to the full data or the simulated data. Importantly, for our

application of Cox regression, f (D | β) is equivalent to the natural exponent of Efron’s

approximation to the true log partial likelihood (see Equation 8).

A computational challenge is that some parts of Equation 8 can yield such large or

small values that they cannot easily be represented by a computer, in which case we

encounter overflow and underflow of floating-point numbers, respectively (see, e.g.,

Goldberg, 1991, for a thorough treatment of floating-point arithmetic). In general, when R

encounters overflow, it represents the number as infinity and when R encounters underflow,

the resulting value is 0. The parts of Equation 8 that are at risk of under- and overflow are∑
h∈Sj

exhβ and ∑
l∈Nj

exlβ. Specifically, these parts are at risk when β is large in magnitude.

To overcome this problem, we adapted Equation 8 by adding a well-chosen number

zj to the exponents of the problematic parts:

log L (β) =
k∑

j=1

 ∑
l∈Nj

xl

 β −

 nj∑
b=1

log
 ∑

h∈Sj

exhβ+zj

 − b − 1
nj

 ∑
l∈Nj

exlβ+zj

 − njzj

 .

(16)

To be clear, Equations 8 and 16 are equivalent for a dichotomous independent variable that

is coded with 0 and 1; they are just parameterized differently. In general, for each j, let xSj
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be a vector only containing those x-values that have indices included in the set Sj. Then,

zj is chosen such that:

zj =



−β, if
(
∃xSj

β . xSj
β > 0

)
∪

(
∀xSj

β . xSj
β < 0

)
(i.e., if any element of xSj

β is larger than 0

or all elements of xSj
β are smaller than 0)

0, otherwise.

(17)

In other words, for a dichotomous independent variable that is coded with 0 and 1,

zj = −β if xSj
contains any cases of the experimental group and β > 0 or when xSj

contains only cases of the experimental group and β < 0. zj serves the purpose of scaling

the powers in case they would result in under- or overflow. Since this scaling is done nj

times, this must be compensated by subtracting njzj at the end of Equation 16.

Still, the calculation of the Bayes factor (see Equation 15) is often not possible

because using the natural exponent of Equation 16 (which is f (D | β)) yields very small

values for certain ranges of β values, so that there is again the problem of underflow. To

overcome this obstacle, we apply another transformation (which is inspired by Cook, 2012).

First, the maximum m of the sum of the log likelihood and the log prior for β must be

found:

m = max (log [f (D | β) f (β)]) = max (log [f (D | β)] + log [f (β)]) . (18)

We achieve this by means of numerical optimization using the “Brent” method of the

“optim()” function in R (Brent, 1973). m is used as a scaling factor that avoids underflow.

Then an integral I is calculated:

I =
∫

β∈Ω1
exp (log [f (D | β)] + log [f (β)] − m) dβ. (19)

The integral is determined by means of Gaussian quadrature using the “integrate()”

function in R. Finally, the log marginal likelihood is a combination of m and I:

log [P (D | H1)] = log
[∫

β∈Ω1
f (D | β) f (β) dβ

]
= m + log [I] . (20)
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Having this, the Bayes factor can be calculated:

BF10 = exp (log [P (D | H1)] − log [P (D | H0)]) . (21)

The Need for Methods for Full Data and Summary Statistics

In the previous two sections, we learned about Cox regression with a dichotomous

independent variable and how its regression coefficient (β or HR) is estimated. Further, we

explained the mathematical details of how to calculate a Bayes factor in general and for a

Cox regression specifically.

The calculation of Bayes factors can be challenging for applied researchers who do

not have a firm background in Bayesian statistics and programming. Fortunately, multiple

software packages are available that allow calculating Bayes factors for various research

designs. Examples are the R packages “BayesFactor” (Morey & Rouder, 2018) and

“baymedr” (Linde et al., 2022), and point-and-click software like “JASP” (JASP Team,

2022). Moreover, for Bayesian parametric survival analysis, there is the “RoBSA” R

package (Bartoš, 2022). However, to the best of our knowledge, there is yet no software

implementation that allows calculating Bayes factors for Cox models. In addition to a

module for calculating Bayes factors with the full data set at hand, we also include a

module that provides a highly accurate approximation of the Bayes factor when only

summary statistics are available, for instance in the scenario where one reanalyses the

results of a published study with only quantities published in the paper available.

In the next two sections, we showcase how researchers can use our “baymedr” R

package (Linde et al., 2022) to calculate Bayes factors for Cox models. In the first section,

we focus on the situation where the full data is available. Subsequently, the second section

focuses on the situation where only summary statistics are available. In that case, data

must be simulated from the summary statistics; we explain how this is done, we tune data

simulation parameters, and examine the bias and variance of the simulated Bayes factors.

The files with code for all computations can be found online (available at
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https://osf.io/37ut2/).

Calculating a Bayes Factor from the Full Data

We applied our approach for calculating Bayes factors for Cox models to an

empirical data set. The source of the data set is a study that is reported in Beigel et al.

(2020). The goal of this double-blind, randomized, placebo-controlled trial by Beigel et al.

(2020) was to determine the effectiveness of a therapeutic agent called Remdesivir for the

treatment of the coronavirus disease 2019 (Covid-19). Participants were n = 1, 062 adults

who were admitted to hospital due to Covid-19 infection. Participants were randomly

assigned to a placebo condition (nc = 521) or a Remdesivir condition (ne = 541). The

primary outcome was the time until recovery, which was conceptualized as patients being

dismissed from the hospital or as patients remaining in hospital solely for the purpose of

infection control.

Beigel et al. (2020) conducted a Cox regression to investigate the time until recovery.

The authors used group membership (placebo vs. Remdesivir) as the independent variable

and stratified by actual disease severity (severe disease vs. mild-moderate disease). In their

supplementary material called “Protocol”, it is mentioned that a superiority alternative

hypothesis is used (i.e., a one-sided hypothesis with HR > 1) with a two-sided significance

level of α = .05. More specifically, the authors hypothesized that patients receiving

Remdesivir recover quicker than patients receiving a placebo, which corresponds to patients

receiving Remdesivir having higher hazards than patients receiving a placebo. In contrast

to our approach, the authors seem to have used Breslow’s instead of Efron’s approximation

to the true partial likelihood. The authors conclude that “[p]atients in the [R]emdesivir

group had a shorter time to recovery than patients in the placebo group” (Beigel et al.,

2020, p. 1816) and report a hazard ratio (i.e., recovery rate ratio) of HR = 1.29 together

with a confidence interval of 95% CI = [1.12, 1.49] (see Table 2 of Beigel et al., 2020).

Our reanalysis of Beigel et al. (2020) omitted the stratification by actual disease
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severity. Furthermore, we used Efron’s instead of Breslow’s approximation to the true

partial likelihood. The reason for these two deviations is that we have not implemented

them in our “baymedr” R package. The resulting HR and the corresponding confidence

interval are very close to Beigel et al. (2020): HR = 1.312, 95% CI = [1.136, 1.514].

For the reanalysis we used our “baymedr” software, which can be downloaded and

installed from GitHub using the “devtools” package (Wickham et al., 2019) and loaded by

typing the following into the R console:

devtools::install_github("maxlinde/baymedr") # Download baymedr

library("baymedr") # Attach baymedr

Using “baymedr”, we can calculate a Bayes factor for the full data in Beigel et al. (2020).

The data must have the survival time, the event indicator, and the independent variable in

that order as columns (see columns 2, 3, and 4 of Table 1). We used a truncated (because

we have a one-sided alternative hypothesis) Normal prior for β with a mean of µ = 0 and a

standard deviation of σ = 1:

act_bf <- coxph_bf( # See ?coxph_bf for details

data = act_data, # Object containing the data

null_value = 0, # H0 value

alternative = "one.sided", # H1 type (one- or two-sided)

direction = "high", # H1 direction (low or high)

prior_mean = 0, # Beta prior mean

prior_sd = 1 # Beta prior SD

)

The result is object act_bf, containing all the relevant information of the Bayes

factor analysis. Moreover, typing act_bf into the R console results in the printing of a

concise summary that includes the type of analysis, the null and alternative hypotheses,

the choice of prior, and the obtained Bayes factor:
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******************************

Cox proportional hazards analysis

---------------------------------

H0: beta == 0

H+: beta > 0

Normal prior: Mean = 0.000

SD = 1.000

BF+0 = 134.401

******************************

The obtained Bayes factor, BF+0 = 134.401, suggests that the data are 134 times

more likely to have been generated under the alternative hypothesis compared to the null

hypothesis, given the choice of prior and model. Thus, according to approximate Bayes

factor thresholds proposed by Kass and Raftery (1995), we found strong evidence for the

hypothesis that patients receiving Remdesivir recover quicker than patients receiving a

placebo.

So far, we have dealt with situations where the full data set is available. In practice,

one may be interested in revisiting published results from an existing study, without having

access to the complete data set. In what follows, we will demonstrate how our method can

give a very accurate approximation to the Bayes factor when only published summary

statistics are available.

Calculating Bayes factors from Summary Statistics

When researchers conduct their own studies, they have the full data at hand and

can use “baymedr” to calculate a Bayes factor. In other situations, however, the full data

unfortunately might not be available. For example, when conducting a reanalysis of study

findings, some researchers might not be allowed (e.g., for ethical reasons) or willing to
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share the full data. In these situations, it is paramount to be able to use summary

statistics reported in the original manuscript to calculate a Bayes factor.

When the full data is not available, an attractive alternative is to simulate data

within the constraints of summary statistics that are known. When following such an

approach, it is imperative to demonstrate that the simulated data are sufficiently

constrained by the available summary statistics. Our approach for data simulation is based

on summary statistics that are commonly reported in scientific articles. Initially, we

considered the following candidates:

• Sample sizes within each condition, nc and ne, respectively,

• Number of events within each condition, vc and ve, respectively,

• Maximum observed or maximum possible survival time, tmax,

• Kaplan-Meier (KM; Kaplan & Meier, 1958) median survival times within each

condition, with corresponding confidence intervals, KMc, CI (KMc)LB, CI (KMc)UB,

and KMe, CI (KMe)LB, CI (KMe)UB, respectively,

• Hazard ratio obtained from a Cox model (Cox, 1972), with corresponding confidence

interval, HR, CI (HR)LB, and CI (HR)UB.

The first step for simulating data is to sample nc + ne responses Y drawn from a

Uniform distribution:

Y ∼ Uniform (1, tmax) . (22)

The choice of a Uniform distribution is arbitrary. Any other probability function would be

equally suitable; even sampling nc + ne times the same value would suffice. These

generated responses are paired with an event indicator δ:

δ = [0, 1, 0, 1] , (23)
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whose elements are repeated nc − vc, vc, ne − ve, and ve times, respectively. Lastly, the

independent variable x is added:

x = [0, 1] , (24)

with the elements repeating nc and ne times, respectively. Then, Y , δ, and x form the

preliminary simulated data DS, serving as a starting point for optimization. For example,

assume that we have the following: nc = 8, ne = 9, vc = 3, ve = 4, tmax = 20. Then the

data could look as shown in Table 1.

Subsequently, summary statistics for the simulated data are calculated. Possibilities

are KMc, CI (KMc)LB, CI (KMc)UB, KMe, CI (KMe)LB, CI (KMe)UB, HR, CI (HR)LB, and

CI (HR)UB. However, only a subset of the nine possibilities must be calculated, namely

those that are also reported in the article and that will therefore be used for data

simulation.

The subsequent optimization procedure involves nc + ne parameters, which we

collectively call ξ. Thus, each case i in DS is coupled with one parameter ξi that must be

estimated. At iteration q, Yi is calculated as:

Y q
i = eξiY q−1

i . (25)

Here, ξi is restricted to range between log
[
1/Y q−1

i

]
and log

[
tmax/Y q−1

i

]
; this ensures that

the newly calculated observed response Y q
i is not lower than 1 and not higher than tmax. In

essence, the optimization procedure attempts to adjust Y in a way such that interim

summary statistics match the actual summary statistics. Let E be a vector of all known

summary statistics and O be a vector (in fact, a function of ξ and DS) with the same kinds

of summary statistics as E but calculated from the simulated data DS. To estimate ξ, we

iteratively minimize the following loss function:

ϕ (ξ, DS) = log
 |E|∑

r=1

[(
Or − Er

Er

wr

)2]
1

|E|

 , (26)

where |E| is the number of used summary statistics. w is a weight vector that we address

below. In essence, we define the loss function as the log of the mean squared deviations
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Table 1

Mock data.

Subject Y δ x

1 7 0 0

2 17 0 0

3 10 0 0

4 20 0 0

5 6 0 0

6 20 1 0

7 3 1 0

8 3 1 0

9 11 0 1

10 10 0 1

11 6 0 1

12 2 0 1

13 6 0 1

14 8 1 1

15 4 1 1

16 8 1 1

17 18 1 1

between the observed and the expected summary statistics, scaled by the expected

summary statistics (akin to the classical χ2 test statistic) and weighted by w. The scaling

is done because the different kinds of summary statistics are on different scales and the

weighting is done because different kinds of summary statistics might contribute more or

less strongly to the accuracy of the resulting Bayes factors.

Remembering that ϕ (ξ, DS) is a nc + ne-variate function and that calculating O
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involves complex formulas, it becomes clear that the loss function in Equation 26 is very

difficult to differentiate. Therefore, gradient-based optimization techniques cannot be used;

instead, we rely on a derivative-free optimization tool called Particle Swarm Optimization

(PSO; Kennedy & Eberhart, 1995; Shi & Eberhart, 1998) to minimize Equation 26. A

detailed treatment of PSO is beyond the scope of this article; we refer the interested reader

to Clerc (2006). We implemented PSO in R (R Core Team, 2022) using the “psoptim()”

function of the “pso” R package (Bendtsen, 2022), keeping almost all default settings.

Exceptions are the maximum number of PSO iterations and the allowed number of PSO

iterations, which do not result in a decrease in the loss. The choice of our defaults is based

on simulations, described below, that had the purpose of tuning these PSO parameters.

Nevertheless, all arguments in the “psoptim()” function can be set as desired by the user.

Tuning of PSO Parameters

For the tuning of some PSO parameters, we made use of three example data sets:

the Kidney (McGilchrist & Aisbett, 1991), Lung (Loprinzi et al., 1994), and Colon (Laurie

et al., 1989) data sets that are available through the “survival” R package (Therneau,

2021). The Kidney data set provides times until infection after insertion of a catheter in

kidney patients. The Lung data set describes survival times of patients with advanced lung

cancer. Lastly, the Colon data set presents recurrence and death times in patients receiving

adjuvant chemotherapy for colon cancer. Here, we chose to only examine death as an

endpoint. For all three example data sets we used sex as the independent variable, with

males being coded as 0 and females as 1. The Kidney, Lung, and Colon data sets have

sample sizes of 76, 228, and 929, respectively. For the KM median survival times and HR

we calculated the corresponding 95% confidence intervals.

Importantly, we only used these data sets for the purpose of tuning the weights of

summary statistics and the number of iterations in PSO. Therefore, no inferences from our

results should be drawn.
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Weights of Summary Statistics

The weight vector w in Equation 26 determines how influential certain summary

statistics are in the calculation of the loss function, as well as for simulating data that yield

a Bayes factor that is as close as possible to the true Bayes factor of the actual data set.

We simulated 100 data sets for each of eight different sets of weights for the three example

data sets. A Bayes factor was calculated for each simulated data set. We used a Normal

prior with a mean of µ = 0 and a standard deviation of σ = 1 for the β parameter. These

simulated Bayes factors were then compared to the Bayes factor that we calculated based

on the full data set, using the same computational procedure as illustrated in the previous

section.

Figures 2, 3, and 4 show the results, with each panel representing a different set of

weights. For all three example data sets, a weight set in which the KM median survival

times and the corresponding confidence intervals are not considered and HR is weighted

twice as much as the corresponding HR confidence interval boundaries yields Bayes factors

with the smallest variance. Moreover, there is almost no bias in the distribution of Bayes

factors for the Lung and Colon data sets. A small amount of bias was found for the Kidney

data set, which had the smallest sample size (see Figure 2). Using KM measures as well

increases the variance and bias of the resulting Bayes factors. Consequently, it seems

reasonable to ignore the KM estimates and instead only use HR and the corresponding

confidence interval. In case the HR confidence interval is not mentioned in the original

article, the results in Figures 2, 3, and 4 suggest that only using HR yields Bayes factors

that are reasonable approximations to the true Bayes factor. Due to these results, we

henceforth only consider HR and the corresponding confidence interval as potential

summary statistics. Further, using only HR and the corresponding confidence interval has

the additional advantage that the maximum possible response time tmax becomes irrelevant

when simulating data.
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BF10 across sets of weights for Kidney dataset
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Figure 2

Distribution of BF10 for the Kidney data set. Panels display BF10 for 100 simulated data

sets using different sets of weights for summary statistics. The specific weights are printed

in each panel, where KM represents KMc and KMe, CI represents CI (KMc)LB,

CI (KMc)UB, CI (KMe)LB, and CI (KMe)UB, HR represents HR, and CI represents

CI (HR)LB and CI (HR)UB. The red vertical line represents BF10 for the full Kidney data.

Maximum Number of PSO Iterations

Another parameter of interest is the required number of PSO iterations for a

satisfactory loss, bias, and variance of Bayes factors. This is especially important because

the PSO algorithm is quite time-consuming. The higher the sample size, the larger the

number of parameters in PSO and the longer the running time of PSO. To determine an

approximate minimum number of PSO iterations, we simulated 100 data sets for each of

six different maximum numbers of PSO iterations (i.e., 10, 30, 100, 300, 1, 000, and 3, 000)
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BF10 across sets of weights for Lung dataset
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Figure 3

Distribution of BF10 for the Lung data set. Panels display BF10 for 100 simulated data sets

using different sets of weights for summary statistics. The specific weights are printed in

each panel, where KM represents KMc and KMe, CI represents CI (KMc)LB, CI (KMc)UB,

CI (KMe)LB, and CI (KMe)UB, HR represents HR, and CI represents CI (HR)LB and

CI (HR)UB. The red vertical line represents BF10 for the full Lung data.

and calculated the Bayes factor. This was repeated for each of the three example data sets.

The PSO algorithm stops either when the maximum number of PSO iterations is reached

or when no reduction in loss is obtained within one fifth of the maximum number of PSO

iterations (e.g., no improvement in 200 iterations when the maximum number of PSO

iterations is 1, 000). Here as well, we used a Normal prior with a mean of µ = 0 and a

standard deviation of σ = 1 for the β parameter.

Figure 5 shows the results for the case where only HR is used as a summary statistic

and Figure 6 shows the results for the case where HR and the corresponding confidence
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BF10 across sets of weights for Colon dataset
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Figure 4

Distribution of BF10 for the Colon data set. Panels display BF10 for 100 simulated data

sets using different sets of weights for summary statistics. The specific weights are printed

in each panel, where KM represents KMc and KMe, CI represents CI (KMc)LB,

CI (KMc)UB, CI (KMe)LB, and CI (KMe)UB, HR represents HR, and CI represents

CI (HR)LB and CI (HR)UB. The red vertical line represents BF10 for the full Colon data.

interval are used as summary statistics. Figure 5 indicates that only a small number of

PSO iterations is required when only using HR because the variance of the Bayes factors

does not improve significantly when more than approximately 30 or 100 iterations are used.

In contrast, Figure 6 suggests that when using both HR and the corresponding confidence

interval the variance of the Bayes factors decreases the more PSO iterations are used. To

obtain a reasonable trade-off between the running time of PSO and the Bayes factor

variance, we recommend running between 100 and 300 iterations.
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BF10 across maximum PSO iterations using HR
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Figure 5

Distribution of BF10 applied to 100 simulated data sets using different maximum numbers

of PSO iterations for the Kidney, Lung, and Colon data sets. HR is used for data

simulation. Note that even though a maximum allowed number of PSO iterations was

defined, optimization could stop earlier in case no improvement was found within one fifth

of the maximum allowed number of iterations. Therefore, the median actual number of

PSO iterations is given in parentheses on the x-axis. The red horizontal line represents

BF10 for the actual data set.

Reanalysis of Beigel et al. (2020)

To demonstrate our proposed procedure for simulating data from summary

statistics and calculating one Bayes factor for each simulated data set, we will again

reanalyze the study reported in Beigel et al. (2020). But this time we will only use the

summary statistics reported in their article. As in the previous section, our reanalysis of
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BF10 across maximum PSO iterations using HR and its CI
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Figure 6

Distribution of BF10 applied to 100 simulated data sets using different maximum numbers

of PSO iterations for the Kidney, Lung, and Colon data sets. HR and its 95%CI are used

for data simulation. Note that even though a maximum allowed number of PSO iterations

was defined, optimization could stop earlier in case no improvement was found within one

fifth of the maximum allowed number of iterations. Therefore, the median actual number of

PSO iterations is given in parentheses on the x-axis. The red horizontal line represents

BF10 for the actual data set.

Beigel et al. (2020) omitted the stratification by actual disease severity and we used Efron’s

instead of Breslow’s approximation to the true partial likelihood. Due to these small

deviations, our results (i.e., HR = 1.312, 95% CI = [1.136, 1.514]) are slightly different

from the results reported in Beigel et al. (2020) (i.e., HR = 1.29, 95% CI = [1.12, 1.49]). In

the following, we use our calculated summary statistics as if they were the only results

provided in Beigel et al. (2020).
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Using the “baymedr” R package, we simulated 100 data sets based on the summary

statistics as follows:

sim_data <- coxph_data_sim( # See ?coxph_data_sim for details

n_data = 100, # Number of data sets to be simulated

ns_c = 521, # Sample size (control condition)

ns_e = 541, # Sample size (experimental condition)

ne_c = 352, # Number of events (control condition)

ne_e = 399, # Number of events (experimental

# condition)

cox_hr = c(1.312, 1.136, 1.514), # HR, lower bound CI, upper bound CI

cox_hr_ci_level = 0.95, # Confidence level CI

maxit = 300, # Max number of PSO iterations (for

# psoptim())

maxit.stagnate = ceiling(300 / 5), # Max number of PSO iterations without

# reduction in loss (for psoptim())

cores = 5 # Number of cores to be used

)

Execution of this code creates object sim_data, which is a list with one entry for each

simulated data set. Each entry contains the simulated full data set and additional output

related to PSO (e.g., the ξ parameter values, the achieved loss, and the number of

iterations).

Subsequently, we calculated one Bayes factor for each of the 100 simulated data

sets. We used a truncated (because we have a one-sided alternative hypothesis) Normal

prior for β with a mean of µ = 0 and a standard deviation of σ = 1:

sim_bf <- coxph_bf( # See ?coxph_bf for details

data = sim_data, # Object containing the data
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null_value = 0, # H0 value

alternative = "one.sided", # H1 type (one- or two-sided)

direction = "high", # H1 direction (low or high)

prior_mean = 0, # Beta prior mean

prior_sd = 1 # Beta prior SD

)

The result is object sim_bf that contains all relevant information of the Bayes factor

analysis. When typing the name of the object (i.e., sim_bf) into the R console, a concise

summary is provided, which is almost equivalent to the one shown in the previous section.

Since we now have multiple Bayes factors instead of only one, the output summarizes the

resulting Bayes factors with a median and the median absolute deviation that is on a

similar scale as the traditional standard deviation (Gelman et al., 2020; Hampel, 1974;

Huber, 1981):

******************************

Cox proportional hazards analysis

---------------------------------

H0: beta == 0

H+: beta > 0

Normal prior: Mean = 0.000

SD = 1.000

Median BF+0 = 136.601

MAD SD BF+0 = 0.370

******************************

A histogram of the resulting Bayes factors can be found in Figure 7. The simulated

Bayes factors range between BF+0 = 133.6 and BF+0 = 135.7, thus supporting the
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BF+0 for NIAID dataset
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Figure 7

Distribution of BF+0 applied to 100 simulated data sets for the data set described in Beigel

et al. (2020). HR and its 95%CI are used for data simulation. The red vertical line

represents BF+0 for the full data. See text for details.

conclusion of Beigel et al. (2020) that Remdesivir seems to have a beneficial effect on the

recovery of patients with Covid-19. The red vertical line represents the actual Bayes factor

that was obtained in the previous section where we used the full data of Beigel et al.

(2020). As such, we can conclude that our approximate Bayes factor based on summary

statistics is virtually unbiased (i.e., the red line is in the middle of the black histogram) and

has very low variability (i.e., the histogram occupies a very limited range on the x-axis).

In the next section, we compare our approach for calculating Bayes factors to an

approximation approach advocated by Bartoš and Wagenmakers (2022).
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Comparison with Savage-Dickey Normal Approximation

In the previous two sections, we demonstrated how Bayes factors for Cox models

can be calculated based on the full data and based on summary statistics. For a real data

set, we showed that the distribution of Bayes factors resulting from simulated data based

on summary statistics approximate the Bayes factor that is calculated based on the full

data very well. In the following, we compare our procedure for calculating Bayes factors

with an alternative procedure that tries to approximate Bayes factors.

Bartoš and Wagenmakers (2022) introduced a generic method that uses a Normal

approximation of the likelihood function to calculate a Bayes factor for various statistical

designs. If H0 is a point null hypothesis, the Bayes factor is the ratio of the ordinate of the

prior (i.e., density or height of the prior) and the ordinate of the posterior for the

parameter of interest β, evaluated at the null value β0. This ratio is called the

Savage-Dickey density ratio (e.g., Dickey & Lientz, 1970):

BF10 = f (β = β0 | H1)
f (β = β0 | D, H1)

. (27)

For this to work, only the maximum likelihood estimate and the corresponding standard

error of the underlying likelihood function of the respective statistical analysis must be

known (β̂ and SE
(
β̂

)
, respectively). If the prior for the parameter of interest is defined as

a Normal distribution with mean µ and variance σ2, a closed-form solution for the Bayes

factor is available (cf. the last equation on p. 3 of Bartoš & Wagenmakers, 2022):

BF01 =

√√√√√√σ2 + SE
(
β̂

)2

SE
(
β̂

)2 exp

−1
2


(
β̂ − β0

)2

SE
(
β̂

)2 −

(
β̂ − µ

)2

σ2 + SE
(
β̂

)2


 . (28)

Bartoš and Wagenmakers (2022) use the examples of a two-sample t-test, a parametric

survival analysis, and a meta-regression to demonstrate that their approximate Bayes

factors are accurate and can be applied to a wide range of statistical models.

We investigated whether the method by Bartoš and Wagenmakers (2022) also yields

accurate Bayes factors for semi-parametric Cox models and how they compare to the Bayes

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2022. ; https://doi.org/10.1101/2022.11.02.22281762doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.02.22281762
http://creativecommons.org/licenses/by-nd/4.0/


BAYES FACTORS IN COX REGRESSION 31

factors resulting from our method. This is important because the method by Bartoš and

Wagenmakers (2022) provides a closed-form solution for calculating Bayes factors from β̂

and SE
(
β̂

)
directly. In other words, there is no need for simulating data from summary

statistics, which makes their method time-efficient. As such, if both methods were to

provide equally accurate Bayes factors, the method by Bartoš and Wagenmakers (2022)

would be preferable. We took the three example data sets mentioned before and calculated

one Bayes factor through our method and one Bayes factor through the method by Bartoš

and Wagenmakers (2022), to mimic the situation where full data sets are available.

Moreover, we simulated 100 data sets for each example data set using the corresponding

summary statistics of the three data sets and calculated one Bayes factor for each

simulated data set using our method.

The results are shown in Figure 8, where the red vertical line represents the Bayes

factor for the full data set, which is calculated using our method, the blue vertical line

represents the Bayes factor resulting from the Savage-Dickey Normal approximation

method advocated in Bartoš and Wagenmakers (2022), and the histogram shows Bayes

factors from our method when using summary statistics. The Bayes factors resulting from

the method by Bartoš and Wagenmakers (2022) are qualitatively similar to the true Bayes

factors and can be used when a rough approximation is acceptable. However, when precise

estimates are desirable, our method is preferable, both in the scenario where the full data

set is available and in the scenario where only summary statistics are available. For the

user it is a trade-off between accuracy and computation time. As shown in Figure 8, our

Bayes factors are much more accurate. However, in the case where summary statistics

must be used, our approach has a computation time that is orders of magnitude higher

than the approach by Bartoš and Wagenmakers (2022).
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BF10 with Bartos et al's method and our method
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Figure 8

Distribution of BF10 applied to 100 simulated data sets for the Kidney, Lung, and Colon

data sets using our approach. HR and its 95%CI are used for data simulation. The red

vertical line represents BF10 for the full data set using our approach. The blue vertical line

represents BF10 for the approximation by Bartoš and Wagenmakers (2022).

Discussion

The analysis of time-to-event data is commonly applied in biomedical research and

provides important insights into the effectiveness of therapies. Most often, Cox regression

(Cox, 1972) is used to analyze these kinds of data and NHST is then applied in order to

make inferences. As an alternative to NHST, we presented a procedure to calculate Bayes

factors for simple Cox models and offered the R package “baymedr” (Linde et al., 2022) as

an easy-to-use implementation. “baymedr” can be used to calculate a Bayes factor for full

data and to simulate multiple Bayes factors based on summary statistics as reported in

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2022. ; https://doi.org/10.1101/2022.11.02.22281762doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.02.22281762
http://creativecommons.org/licenses/by-nd/4.0/


BAYES FACTORS IN COX REGRESSION 33

articles.

Our procedure for calculating Bayes factors for Cox models is oriented towards

analysis strategies that seem prevalent in the biomedical literature: the semi-parametric

Cox regression comparing a treatment to a control (or different treatment) condition. The

use of Bayes factors specifically allows the important contrast between evidence that an

effect is present and evidence than an effect is absent.

At the same time, many features and functionalities are still missing. For example,

it would be desirable to also make the Cox partial likelihood (Cox, 1972) and Breslow’s

approximation to the true partial likelihood (Breslow, 1974) available. Moreover, the

procedure implemented in “baymedr” should allow researchers to calculate Bayes factors

for more complex Cox models. This includes, for instance, allowing for more than one

independent variable, whether it be discrete or continuous, and allowing for stratification.

Such an extension to more than one independent variable is not straightforward, as it will

not be possible to calculate the Bayes factor through Gaussian quadrature. Instead, one of

many more time-consuming approaches would have to be employed. For instance, the

posterior distribution could be estimated through MCMC sampling (e.g., Betancourt, 2018;

Brooks et al., 2011; Gilks et al., 1995; van Ravenzwaaij et al., 2018); the posterior samples

could then be used to estimate the marginal likelihood through bridge sampling (e.g.,

Gronau et al., 2017).

Conclusion

Cox proportional hazards regression is commonly used to analyze time-to-event data

in biomedical research. Typically, the frequentist framework is used to make inferences. We

provided a procedure for calculating Bayes factors for simple Cox models that can be

applied both to the full data set and to summary statistics. The latter could be considered

especially important because it allows reanalyzing multiple existing studies to make

judgments and decisions about the effectiveness of therapies. We offered “baymedr” (Linde
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et al., 2022), an R package that is aimed at all researchers desiring to calculate a Bayes

factor for their Cox regression.
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