
Integrative analyses of neuroimaging, clinical, and multi-omics 

data identified meaningful Alzheimer’s disease progression 

subtypes 
Qiyuan An, 

1
, Mengliang Zhang, 

2
, Xinyue Hu, 

3
, Chang Su, 

4
, Yingying Zhu, 

5 
[1] Department of Computer Science and Engineering, University of Texas at Arlington [2] Department of Health Services 

Administration and Policy, Temple University   
 
Abstract: 

 

Alzheimer’s Disease (AD) is a common neurodegenerative disorder with diverse clinical 

manifestations. To better understand differences between diverse manifestations, we 

investigate from the difference in MRI ROI volumes among subtypes to their related 

different gene pathways. In this study, we identify three subtypes of AD development 

with fast, moderate, and slow progression rates from the MRI ROI volume biomarkers in 

the ADNI cohort. We further find differentially expressed proteins in CSF fluids among 

these AD patients and related significantly different genetic pathways. A total of 159 

patients’ data are included for analysis. We identify three distinct subtypes from the 

hierarchical clustering on MRI ROI volume biomarkers. Subtype 1, characterized as fast 

progression, consists of 34 patients (21.9%). Subtype 2, as moderate progression, 

comprises 77 patients (49.6%). Subtype 3, as slow progression, consists of 44 patients 

(28.3%). These subtypes show significantly differences in cognitive test scores and 

corresponding genetic pathways. 
Keywords:  

 
 

1  Introduction 
Alzheimer’s Disease (AD) is a complex and prevalent neurodegenerative disease, whose 

etiology remains unclear to date. It’s heterogeneous in distinct clinical manifestations, 

progression trajectories, volume biomarker readouts, and genetic pathways. Due to its 

irreversible and age-related characters and lack of any cure, early diagnosis and 

intervention of AD deterioration play an significant role in designing clinical treatment 

strategies. One major challenge for AD prediction and customized clinical treatment is 

to identify the phenotypic heterogeneity within the AD population 
i
. 

Distinguishing subtypes in AD may lead to insights of different etiological mechanisms, 

better the customized treatments, and interfere the development of brain atrophy and 

dementia. The motivation of this study is to investigate into the progression patterns of 

brain region volume biomarkers among different participants in ADNI cohort, to reveal 

the underlying atrophy development patterns among different subtypes. We cluster the 

participant features and identify three subtypes with distinct AD progression patterns in 
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the ADNI cohort: subtype 1, fast symptom progression; subtype 2, moderate symptom 

progression; and subtype 3, slow symptom progression. 

 

Some previous attempts about neurodegenerative disease subtyping can be categorized 

into the following categories: using neuroimaging biomarkes’ readouts to identify 

distinct patterns of atrophy regions
ii iii

, using cognitive test scores
iv v

, and using 

proteomics data
vivii

. However, none of these works take advantage of all these features 

and derive the underlying significant genetic pathways. 

 

To this end, we propose to identify subtypes of AD via the neuroimaging biomarkers, 

find differentially expressed proteins from Cerebrospinal Fluid (CSF) proteomics data, 

and perform pathway enrichment analysis on omics data to derive significant gene 

pathways. We hope this study can provide insights to discover individually customized 

treatment for AD patients. 

 

2  Experiments 
 
 
2.1  Data Preprocessing 

We adopt the ADNI TADPOLE challenge dataset
viii

 for our experiment. The TADPOLE 

standard dataset includes the following biomarkers:  
Main cognitive tests – neuropsychological tests administered by a clinical expert:   

    • CDR Sum of Boxes  
    • ADAS 11  
    • ADAS 13  
    • MMSE  
    • RAVLT  
    • MOCA  
    • Ecog  
  

MRI ROIs (Freesurfer) - measures of brain structural integrity:   
    • Volumes  
    • Cortical thicknesses  
    • Surface areas  
  

We only adopt the MRI ROI volumes as inputs for subtyping, while using cognitive tests 

to validate the subtyping results. The number of MRI ROI volumes is 270. The TADPOLE 

dataset includes 1610 participants, which consists of 342 AD, 417 CN, and 872 MCI. Out 

of 342 AD participants, we filter out participants with less than 12 months longitudinal 

data and result in 313 participants. After that, we build each participant’s speed feature 

defined as 
������������	�������

��
�����	���
, representing the progression rates of different ROI 

volumes. Then we filter the speed feature matrix in both the participants and the ROI 

volume dimensions if the missing rate is greater than 0.7. Filtering speed features 
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results in 239 columns ROI volumes and 159 participants. In the end, we perform 

minmax normalization on the speed feature matrix. 
 
2.2  Matrix Decomposition 

We decompose the speed matrix via Truncated SVD with rank of 3 to derive 

participants’ features. The choice of Truncated SVD is for its native suitability for sparse 

matrix as our speed feature matrix has many missing values. The actual implementation 

of decomposition is via the sklearn library
ix
. 

 
2.3  Clustering 

Then we cluster decomposed participants’ features via the hierarchical clustering to 

avoid the biased/wrong prior hypothesis of number of subtypes. Our clustering results 

in 3 phenotypes (number of participants) that correspond to fast progression (34), 

moderate progression (44), and mild progression (77). We validate the subtyping results 

on cognitive test scores shown in Fig 1.  
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Figure 1. Cognitive test scores in 3 subtypes. Red: subtype 1, yellow: subtype 2, gray: 

subtype 3. 
   
 

Each strip in Fig 1 represents the longitudinal trend on one cognitive test of one subtype. 
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The solid line in the center is the mean of the cognitive test, while the light color 

between the solid line is the standard error. The clear separability of cognitive scores 

justifies the legitimacy of our method on different progression trends. 
 
2.4  Significance test on ROI volumes 

We perform the Kruskal-Wallis test among ROI volumes under different subtypes and 

below Table 1 and Fig. 2 show significant ROI volumes. The choice of Kruskal-Wallis 

rather than the ANOVA test is because distributions of ROI volumes are not normal 

distribution. 
  

FLDNAME   P-values  

Volume (Cortical Parcellation) of LeftPrecentral   0.00378  

Volume (Cortical Parcellation) of RightLateralOrbitofrontal   0.004316  

Volume (WM Parcellation) of LeftInferiorLateralVentricle   0.005641  

Volume (Cortical Parcellation) of RightPrecentral   0.008466  

Volume (Cortical Parcellation) of LeftParacentral   0.011357  

Volume (Cortical Parcellation) of LeftPrecentral   0.014085  

Volume (WM Parcellation) of LeftVessel   0.017018  

Volume (WM Parcellation) of LeftInferiorLateralVentricle   0.019348  

Volume (Cortical Parcellation) of LeftParacentral   0.020999  

Volume (WM Parcellation) of RightInferiorLateralVentricle   0.025208  

Volume (Cortical Parcellation) of LeftFrontalPole   0.026786  

Volume (Cortical Parcellation) of RightPrecentral   0.030398  

Volume (WM Parcellation) of LeftLateralVentricle   0.031343  

Volume (Cortical Parcellation) of LeftPostcentral   0.033126  

Volume (Cortical Parcellation) of RightTemporalPole   0.033798  

Volume (WM Parcellation) of LeftLateralVentricle   0.035684  

Volume (Cortical Parcellation) of RightTransverseTemporal   0.048881  

 
Table 1: Significant ROI volumes and p-values 
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Figure 2. Significant ROI biomarkers 

 
2.5  Find significant proteins from subtyping 

We use ADNI’s Biomarkers Consortium CSF Proteomics MRM dataset (CSFMRM) to find 

significantly different proteins between each subtype and normal control (CN) group. 

The intersected number of participants between 3 subtypes and the CSFMRM are 

subtype 1 has 10, subtype 2 has 13, and subtype 3 has 20 respectively. While the 

number of CN participants between the TADPOLE dataset and CSF proteomics is 86.  
  

We first build a contrast matrix between each pair of subtype and CN conditioned on 

age, gender, and year of education factors to eliminate the bias introduced by these 

factors. Then we fit a linear model for each pair of subtype and CN and find significant 

proteins by thresholding |logFC|> 0.2 and Padj < 0.05 from the empirical Bayes’s 

statistical tests. The p-value (Padj) is corrected by FDR. The actual implementation is via 

limma library in R. The resulted significant proteins are in Table 2.   
  Subtype 1   Subtype 2   Subtype 3  

 NPTXR   NPTXR   FABPH  

NPTX2   FABPH   NPTXR  

VGF   PIMT   PIMT  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.22281820doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.01.22281820


CA2D1   KLK11   GFAP  

AMD   SCG3   PCSK1  

PTPRN   CH3L1    

NPTX1   GFAP    

NRX1A   NPTX1    

NRX3A   MUC18    

NRX2A      

CCKN      

NELL2      

CAD13      

SCG2      

NRCAM      

PDYN      

PCSK1      

NEGR1      

NCAN      

FAM3C      

PLDX1      

SE6L1      

CD59      

CSTN1      

CNTN1      

PIMT      

CMGA      

FABPH      

SCG3      

MUC18      

TNR21      

NEO1      

L1CAM      

B3GN1      

BTD      

NBL1      

SPRL1      

NCAM1      

PVRL1      

CADM3      

 
Table  2: Significant proteins between subtypes and CN. 

    
2.6  Find significant pathways from proteins 

After we obtain the significant proteins between each pair of subtype and CN, we adopt 
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g:profiler
x

 to perform pathway enrichment analysis and determine statistically enriched 

gene pathways. We correct p-value of 0.05 threshold with the Benjamini-Hochberg FDR. 

The gene data sources are GO molecular function, GO cellular component, GO biological 

process, KEGG, and Reactome. Then we filter output significant pathways by limiting 

term size between 5 and 350. The resulted pathways between each subtype and CN are 

listed in Fig 3. 
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Figure 3. Genetic pathways in 3 subtypes. Red: subtype 1, yellow: subtype 2, gray: 

subtype 3. 
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