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Abstract 36 

Although the development of COVID-19 vaccines has been a remarkable success, 37 

the heterogeneous individual antibody generation and decline over time are unknown 38 

and still hard to predict. In this study, blood samples were collected from 163 39 

participants who next received two doses of an inactivated COVID-19 vaccine 40 

(CoronaVac®) at a 28-day interval. Using TMT-based proteomics, we identified 1715 41 

serum and 7342 peripheral blood mononuclear cells (PBMCs) proteins. We proposed 42 

two sets of potential biomarkers (seven from serum, five from PBMCs) using 43 

machine learning, and predicted the individual seropositivity 57 days after vaccination 44 

(AUC = 0.87). Based on the four PBMC’s potential biomarkers, we predicted the 45 

antibody persistence until 180 days after vaccination (AUC = 0.79). Our data 46 

highlighted characteristic hematological host responses, including altered lymphocyte 47 

migration regulation, neutrophil degranulation, and humoral immune response. This 48 

study proposed potential blood-derived protein biomarkers for predicting 49 

heterogeneous antibody generation and decline after COVID-19 vaccination, 50 

shedding light on immunization mechanisms and individual booster shot planning. 51 

Running head: Longitudinal proteomic profiling of COVID-19 vaccination  52 

Keywords 53 

COVID-19, vaccination, proteomics, neutralizing antibodies (NAbs), machine learning 54 

Abbreviations 55 

AGC (automatic gain control), AUC (area under curve), B-H (Benjamini-Hochberg), 56 

COVID-19 (coronavirus disease 2019), CV (coefficients of variance), DEPs 57 

(differentially expressed), ECM (extracellular matrix),  FDR (false discovery rate), 58 

GMT (Geometric Mean Titers), GSVA (gene-set variation analysis), IFN (interferon), 59 

MALFD (metabolic associated fatty liver disease), PBMCs (peripheral blood 60 

mononuclear cells), SARS-Cov-2 (severe acute respiratory syndrome coronavirus 2), 61 

SHAP (SHapley Additive exPlanations), T2DM (Type 2 diabetes mellitus) 62 

Highlights 63 

1. Longitudinal proteomics of PBMC and serum from individuals vaccinated with 64 

CoronaVac®. 65 

2. Machine learning models predict neutralizing antibody generation and decline 66 

after COVID-19 vaccination. 67 

3. The adaptive and the innate immune responses are stronger in the seropositive 68 

groups (especially in the early seropositive group). 69 

4. Vaccine-induced immunity involves in lymphocyte migration regulation, 70 

neutrophil degranulation, and humoral immune response. 71 
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Introduction 72 

The global public health crisis and the social disruption caused by the coronavirus 73 

disease 2019 (COVID-19) pandemic have prompted the emergency use of speedily 74 

developed vaccines. As of October 2022, over 12 billion doses had been 75 

administered globally (WHO, 2022-10-25), although the vaccination distribution is 76 

significantly unbalanced (van der Graaf et al., 2022). Previous studies have reported 77 

that NAbs responses elicited by an inactivated vaccine (CoronaVac®) and an mRNA 78 

vaccine (BNT162b2) persisted for 6-8 months after full-schedule vaccination and 79 

declined to varying degrees (Falsey et al., 2021; Zeng et al., 2021). Therefore, 80 

multiple vaccine boosters and prolonged intervals between vaccine doses are 81 

needed to maintain the immunity against SARS-CoV-2 (Zhao et al., 2022), and could 82 

induce a robust humoral immune response (Ai et al., 2022). Several studies reported 83 

the dynamics of NAbs generation and the molecules dysregulation occurring after 84 

vaccinations (Liu et al., 2021; Wang et al., 2022). In a BMJ meta-analysis has shown 85 

that seroconversion rates and antibody titers after COVID-19 vaccines are 86 

significantly lower in immunocompromised patients than immunocompetent 87 

individuals (Lee et al., 2022), including immune-mediated inflammatory disorders, 88 

solid cancers, organ transplant recipients and hematological cancers. While to the 89 

best of our knowledge based on literature search, no study has systematically 90 

reported heterogeneous hematological host responses to vaccination in both PBMCs 91 

and serum. There is currently no known biomarker for predicting the effectiveness of 92 

vaccines. 93 

In this study, we investigated the host response to Sinovac-CoronaVac®. Specifically, 94 

we analyzed the proteome of the peripheral blood mononuclear cells (PBMCs) and 95 

the sera of a vaccination recipients at different time points. We developed a method 96 

to predict the host responses to vaccination. Specifically, we predicted who cannot 97 

generate antibodies and whose NAbs tend to disappear earlier than six months after 98 

the vaccination. This information would help plan targeted boosters and decide the 99 

types and intervals of the vaccinations. 100 

 101 

Results 102 

Clinical and proteomics profiling before inactivated SARS-CoV-2 vaccination 103 

Between January and February 2021, a total of 163 vaccination recipients were 104 

recruited in the discovery (N = 137) and the test (N = 26) cohorts (Figures 1A and 105 

1B). The average age was 39.8 years in the discovery cohort and 41.6 years in the 106 

test cohort. Besides, most indexes of biochemical and hematology were not 107 

significantly different between the two cohorts. More details are shown in Tables 1-2, 108 

Table S1, and Figure S1. All the participants received the first dose of CoronaVac® at 109 

day 0 (D0) and the second after 28 days (D28). The qualitative detection of SARS-110 

CoV-2 NAbs and spike-specific IgG was done at D0, D28, day 57 (D57), and day 180 111 

(D180). By D28, 19.6% of all participants (N = 32) were NAb seropositive (Group 2, 112 

the early seropositive group). By D57, the percentage of seropositive participants 113 
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reached 88.3% (N = 144; Group 1+2, which included Group 1, the late seropositive 114 

group). The remaining 11.7% (N = 19) still had seronegative results (Group 0, the 115 

seronegative group). Within Group 1+2, 33.1% (N = 42) were still positive at D180 116 

(Group 4, the persistently seropositive group), while the remaining ones became 117 

seronegative (Group 3) (Figure 1A). Besides, 10% of participants in Group 0 were 118 

IgG seropositive on day 28, which rising to 100% by day 57 and decreasing to 83% 119 

by day 180. However, 30% of participants in Group 1+2 were IgG seropositive on day 120 

28, which rising to 100% by day 57 and decreasing to 88% by day 180 (Figure 1C).  121 

According to multivariable logistic regression analysis, we found that NAb titers at 122 

D28 were positively associated with seropositivity of neutralizing antibodies at D57 123 

after adjusting age, sex, BMI and diastolic blood pressure. Then, we also identified 124 

that NAb titers at D28 and D57 could as independent predictors for seropositive of 125 

D180 after adjusting covariates (Figure S1). Blood samples were collected from all 126 

participants before their first vaccine dose, then at D28 and D57. Serum and PBMCs 127 

were extracted from all blood samples for proteomic profiling. 128 

TMT-based analysis involved 528 samples, including pooled controls for aligning 129 

data from different batches to evaluate quantitative accuracy, and technical replicates 130 

for evaluating the reproducibility of the assay or technique. These samples were 131 

distributed into 33 batches from three time points: D0, D28, and D57. We quantified 132 

7342 PBMC proteins and 1715 serum proteins (Table S2; Figures 1A and S2A). The 133 

median coefficients of variance (CV) for the pooled samples were 15.35% and 134 

19.32% for the PBMC and the serum data, respectively (Figure S2B). The Pearson 135 

correlation coefficients of the technical replicates were 98.09% and 96.82% for 136 

PBMC and serum, respectively (Figure S2C). These results showed the robustness 137 

of our data and its relatively high consistency and reproducibility. 138 

Machine learning model for predicting the antibody generation 139 

We next developed a set of models for predicting the seropositivity of individuals 57 140 

days after their first vaccination dose and 28 days after their second one (at D57) 141 

based on the proteomics and clinical indicators collected prior to both doses (at D0). 142 

Machine learning models were developed using XGBoost (Chen and Guestrin, 143 

2016)(Figure 2A). Proteins or clinical indicators with a significant difference (p-value 144 

< 0.05) between the two classes and with |log2(fold change)| > 0.25 in the discovery 145 

dataset were included in our final feature set. Then, some sparse proteins (NA rate > 146 

50%) were also removed. We optimized the models’ parameters in the discovery 147 

dataset (Cohort 1), and generated a model based on the five PBMC proteins and 148 

another based on the seven serum proteins. Using the test cohort (Cohort 2), the 149 

PBMC model achieved an Areas Under the Curve (AUC) score of 0.84, while the 150 

serum one of 0.82 (Figure 2A). Next, we developed an ensemble model combining 151 

these two models, which led to better performance (AUC = 0.87) (Figure 2A). 152 

Five PBMC proteins (UNC45A, IGHM, FADD, NCK2, and DCPS) and seven serum 153 

proteins (SERPINA10, SOD3, LTA4H, SPP2, NAGLU, APLP2, and CHRDL2) were 154 

selected for our machine learning models. Most of the above PBMC biomarkers are 155 

expressed in immune cells, including B cells, macrophages, natural killer (NK) cells, 156 
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and dendritic cells (HPA; Karlsson et al., 2021). They are thus associated with both 157 

innate and adaptive immunity (Figures 2B, 2D). In particular, UNC45A acts as a co-158 

chaperone for HSP90 promoting progesterone receptor function in the cell, and is 159 

required for the NK cell cytotoxicity via lytic granule secretion's control (Iizuka et al., 160 

2015). IGHM is the constant region of immunoglobulin heavy chains and mediates 161 

the effector phase of humoral immunity, which eliminates the bound antigens. FADD 162 

is an adaptor molecule that interacts with various cell surface receptors, mediates 163 

cell apoptotic signals, and is essential in early T cell development (Kabra et al., 164 

2001). The seven serum biomarkers are associated with immunity and metabolism 165 

(Figures 2C and 2E): SERPINA10 and SPP2 are secreted proteins associated with 166 

coagulation and metabolism; LTA4H is enriched in Kupffer cells, monocytes, and 167 

neutrophils; NAGLU is mainly expressed in most immune cells; SOD3 and CHRDL2 168 

can interact with the extracellular matrix (ECM) organization (HPA; Karlsson et al., 169 

2021). 170 

Based on our three models, only two participants from the test cohort (Nos. 209 and 171 

233) were mispredicted. Possibly, their predictions were affected by their drug 172 

treatments. Specifically, participant No. 209 was incorrectly predicted to be 173 

seronegative. This may be due to the long-term treatment with simvastatin and 174 

rosuvastatin against hyperlipidemia, which have been suggested to enhance the 175 

immune response (Guerra-De-Blas et al., 2019; Karmaus et al., 2019). Participant 176 

No. 233, whose atherosclerosis was treated with bisoprolol fumarate before 177 

vaccination, was predicted to be seropositive despite being seronegative at D57. 178 

Despite these two mispredictions, our results showed that PBMC and serum 179 

proteomics could well predict the individual host responses after vaccination. 180 

In addition, predicting those being negative at D28 and then converting (Group 1) or 181 

never converting (Group 0) could allow for the earlier switch to another vaccine. 182 

Similarly, we developed a set of models based on proteins at D0 and achieved an 183 

AUC score of 0.843 (PBMC model), 0.847 (serum model) and 0.853 (ensemble 184 

model combining these two models) to predict the individual host responses after 185 

vaccination (Figures S3A-C).  186 

Increased innate and adaptive immunity in the seropositive group 187 

We next explored the differences between the seropositive and the seronegative 188 

groups using the PBMC data. Thirty-eight proteins were differentially expressed 189 

(DEPs) within the PBMC proteome between the two groups at three time points 190 

(Benjamini-Hochberg (B-H) adjusted p-value < 0.05, |log2(fold change)| > 0.25) 191 

(Table S3, Figures 3A and 3B). In particular, 33 proteins were dysregulated at D0 or 192 

D28. This result suggests that the immune system of the two groups was different at 193 

baseline (D0) and was most strongly activated during the early stage after 194 

vaccination.  195 

A gene-set variation analysis (GSVA) was then used to identify the most significantly 196 

enriched pathways in the seropositive and the seronegative groups. The resulting 197 

pathways (B-H adjusted p-value < 0.05, |log2(fold change)| > 0.25) were mainly 198 

involved in the immune system. They included the IFNγ, IFNa and IFNb signaling, 199 

RNA and DNA modulation, and metabolic pathways. Most of these pathways were 200 

upregulated in the seropositive group (Figure 3C). 201 
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The DEPs among the three immune response groups – Group 0, Group 1, and 202 

Group 2 (Figure 1A) – were primarily involved in RNA metabolism, cellular 203 

processes, and cytoskeleton regulation-related pathways (Figures S4A-D). 204 

Therefore, the dysregulation of these proteins may have contributed to elevated 205 

immunity. This agrees with the functional analysis between the seropositive and the 206 

seronegative groups. Over 80% of DEPs observed between Group 1 and Group 0 207 

were also detected in the comparison between seropositive (Group 1+2) and 208 

seronegative (Group 0) groups (Figures S3D, S3E and Table S3). 209 

We next analyzed the immune cells composition of the PBMCs in our experiment 210 

using the deconvolution algorithm of CIBERSORT (Newman et al., 2015). The 211 

seropositive group showed an increase in memory B cells and a reduction of naïve B 212 

cells (Figure 3D). In addition, CD8+ T cells and activated memory CD4+ T cells were 213 

significantly higher in the seropositive group than in the seronegative one at D0. The 214 

adaptive immune responses were thus significantly enhanced at the baseline in the 215 

seropositive group (Figure 3E). At D57, the memory B cells and the CD8+ T cells 216 

showed an upward trend over time and were significantly higher in the seropositive 217 

group. This result is consistent with the reported host responses to SARS-CoV-2 218 

infection and vaccination (Chen et al., 2021; Sette and Crotty, 2021). Furthermore, 219 

some innate immune cells, such as monocytes, activated NK cells, and activated 220 

dendritic cells, also increased over time in the seropositive group (Figure 3E). 221 

Moreover, the early seropositive group showed increased memory B cells, activated 222 

NK cells, M1 and M2 macrophages (Figures S4F-G). These results show that the 223 

proportion of SARS-CoV-2-specific memory lymphocytes may increase after 224 

vaccination with CoronaVac®. 225 

The interaction between metabolism and immunity is linked with 226 

seroconversion 227 

We next investigated the differences between the seropositive and the seronegative 228 

groups using the serum data. A total of 13 DEPs were found at D0 and D28, and two 229 

at D57 (B-H adjusted p-value < 0.05, |log2(fold change)| > 0.25) (Table S3, Figures 230 

4A-B). In line with our findings from the PBMC data, more DEPs were identified at D0 231 

and D28 than at D57. All the DEPs were upregulated in the seropositive group 232 

except TTR. Misfolding and aggregation of TTR, causing amyloid thyroxine protein 233 

amyloidosis, has been reported associated with a higher risk of COVID-19 morbidity 234 

and mortality (Brannagan et al., 2021). This finding is consistent with our results, as 235 

TTR was downregulated in the seropositive group. Many of our serum DEPs are 236 

secreted proteins and include components of the immunoglobulin family: IGKV1-8, 237 

IGKV1-16, and IGHV3-15 (Schroeder and Cavacini, 2010). 238 

Further functional analyses were performed on the DEPs between the seropositive 239 

and the seronegative groups, and among the three immune response groups. The 240 

significantly enriched functions were neutrophil degranulation, acute phase response 241 

signaling, and hemostasis (Figures 4B-C, S5A-B, Table S4). It has been shown that 242 

the enriched apolipoprotein family could induce the activation of leukocytes, 243 

especially the degranulation of neutrophils (Botham and Wheeler-Jones, 2013). Our 244 

analyses showed that 15 out of the 17 proteins involved in plasma lipoprotein 245 
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remodeling and six out of the eight proteins involved in neutrophil degranulation were 246 

upregulated in the seropositive groups (Figure 4C). This finding suggests that the 247 

interaction of metabolism and immunity is closely linked with seroconversion. 248 

Predicting individual antibody persistence to guide booster shot planning 249 

To predict whether the antibodies produced after the CoronaVac® vaccination could 250 

last for at least 180 days, we generated machine learning models based on the 251 

proteomics data and the clinical indicators collected prior to vaccination. In this 252 

analysis, we excluded participants from Group 0 (the seronegative ones) and those 253 

without clinical indicators on D180. Then the remaining two cohorts (Table 2) were 254 

the discovery cohort (Cohort 3, N = 107) and the test cohort (Cohort 4, N = 20). 255 

Similar as before, proteins with a significant difference (p-value < 0.05) between two 256 

classes and with |log2(fold change)| > 0.25 in the discovery dataset were included in 257 

our final feature set. Then, some proteins (NA rate > 50%) were removed. We 258 

optimized the models’ parameters in the discovery dataset. An AUC score of 0.79 259 

was obtained using only the PBMC proteins (Figure 5A), indicating that PBMC 260 

proteomics had an excellent prediction ability of the antibody response after both 57 261 

and 180 days.  262 

The four PBMC biomarkers (PYCARD, MTMR2, PPCDC, and BRAF) selected by 263 

machine learning showed different expression patterns of the immune cells between 264 

Groups 3 and 4 (Figure 5C). In particular, PYCARD and PPCDC are mainly 265 

expressed in innate immune cells, like monocytes and dendritic cells. MTMR2 and 266 

BRAF, on the other hand, are expressed in innate and adaptive immune cells, 267 

including NK cells, monocytes, T cells, and B cells (Figure 5D). 268 

However, seven participants were incorrectly predicted using this model. Specifically, 269 

participants Nos. 209 and 216 were incorrectly classified, probably because they 270 

both received simvastatin and rosuvastatin (Guerra-De-Blas et al., 2019; Karmaus et 271 

al., 2019). In addition, three participants (Nos. 212, 222, and 225) with fatty liver 272 

disease and metabolic abnormalities were also wrongly predicted, probably due to 273 

their metabolic conditions. No. 226 was misclassified because of receiving 274 

dexamethasone and amoxicillin. 275 

Discussion 276 

Predicting the host response to CoronaVac® vaccination using a machine 277 

learning model 278 

We conducted a TMT-based proteomics analysis to profile the PBMC and serum 279 

features that could affect the response to the CoronaVac® vaccination. Using a set of 280 

biomarkers measured before vaccination, we built three models to predict individual 281 

NAb levels at D57 and another model to predict the persistence of NAbs until at least 282 

D180. These potential biomarkers, which were used to distinguish different host 283 

responses, were validated using an independent cohort, confirming that the changes 284 

in PBMC and serum proteins reflect the pathophysiological differences between 285 

seropositive and seronegative subjects. 286 
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Potential biomarkers for vaccine-induced antibody generation and persistence 287 

The proteins used by our machine learning classifiers contain several known 288 

biomarkers for COVID-19 severity or viral infections. Of note, SERPINA10, 289 

predominantly expressed in the liver and subsequently secreted into plasma, inhibits 290 

the activity of the coagulation factors Xa and XIa in the presence of protein Z, 291 

calcium, and phospholipids (Han et al., 2000). SERPINA10 is a known discriminating 292 

feature between severe and non-severe COVID-19 (Shen et al., 2020), and can be 293 

used as a classifier of disease severity (Messner et al., 2020). Specifically, it is 294 

upregulated in the severe COVID-19 cases. In our data, SERPINA10 was 295 

downregulated in the seropositive group with a negative SHapley Additive 296 

exPlanations (SHAP) value (Figures 2C and 2E). This result further highlights the 297 

role of coagulation during COVID-19 vaccination and indicates that SERPINA10 may 298 

contribute to reducing antibody generation. SOD3, an antioxidant enzyme, has been 299 

reported to be downregulated in the urine of severe COVID-19 cases (Bi et al., 300 

2021). In our study, SOD3 was significantly upregulated in the seropositive group 301 

with a positive SHAP value, indicating that SOD3 may promote antibody generation. 302 

PYCARD, a key mediator of apoptosis and inflammation, is mainly involved in the 303 

innate immune response (Wang et al., 2017). It also contributes to T-cell immunity 304 

stimulation and cytoskeletal rearrangements coupled to chemotaxis and antigen 305 

uptake during adaptive immunity (de Souza et al., 2021). We found PYCARD was 306 

upregulated in the seropositive group with a positive SHAP value (Figures 5B-C). 307 

And thus, we suggest this protein may also promote antibody persistence. These 308 

potential biomarkers may promote or reduce antibody generation or persistence, 309 

providing therapeutic guidance for vaccination strategy. 310 

Mechanisms behind vaccine-induced immunity 311 

To investigate the molecular mechanisms behind vaccine-induced immunity, we 312 

integrated our proteomics analyses and thus generated a summary of the 313 

dysregulated pathways between the seropositive and the seronegative groups 314 

(Figures 6, S6-7). 315 

Neutrophil degranulation    316 

In our data, we found several proteins involved in activating the neutrophil 317 

degranulation-based innate immunity, in particular, LTA4H, LTF, MMP9, TTR, CAP1, 318 

PYCARD, and GDI2. Specifically, MMP9, LTF, and CAP1 were upregulated at D28 in 319 

the seropositive group. Previous studies have shown that the release of MMP9 from 320 

neutrophils stimulates the migration of inflammatory cells and promotes inflammation 321 

and the degradation of the alveolar-capillary barrier (Davey et al., 2011). In our 322 

seropositive data, MMP9 was upregulated at D28 and then downregulated at D57 323 

(Figure 6C). This result suggests MMP9 may contribute to a reduced antibody 324 

generation, and is consistent with this protein being an indicator of respiratory failure 325 

(Ueland et al., 2020) and enhanced mortality risk in COVID-19 patients (C et al., 326 

2021). Indeed, evidence has shown that neutrophil activation is a hallmark of severe 327 

SARS-CoV-2 infection (Meizlish et al., 2021). Therefore, we speculate that a modest 328 

upregulation of neutrophil degranulation may contribute to immunity activation and 329 
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vice versa. 330 

Regulation of lymphocyte migration  331 

Most regulators of leukocyte extravasation and lymphocyte migration were elevated 332 

at D0 or during the early stages in the seropositive group: MSN, MMP9, CXCL12, 333 

FADD, NCK2, and TMSB10. In particular, MSN interacts with members of the ezrin-334 

radixin-moesin family and regulates lymphocyte egress from lymphoid organs 335 

(Serrador et al., 1998). TMSB10, CXCL12, and NCK2 regulate the cytoskeleton 336 

organization and are involved in transmigration (Figure 6A). By secreting proteases 337 

like MMP9, leukocytes degrade the basement membrane and penetrate the tissue 338 

interstitial spaces (Sternlicht and Werb, 2001). T-cell receptors are activated through 339 

the binding by FADD and the interaction with NCK2, consistently with our immune 340 

cell analysis (Figure 6C). Except for antigen recognition, T cell migration was 341 

positively regulated by CXCL12, FADD, and PYCARD in our seropositive groups. 342 

Intriguingly, increased FADD at baseline possibly contributed to the enhanced 343 

antibody generation at D57 (Figure 2D). Also, higher PYCARD at baseline led to a 344 

long antibody persistence based on our machine learning models (Figure 5C).  345 

Humoral immune response  346 

The B-cell receptor is a complex of surface immunoglobulin, and some of its 347 

accessory molecules, such as IGHM, IGHV3-15, IGKV1-8, and IGKV1-16, were 348 

upregulated in our seropositive group (Figure 6C). Following the receptor cross-349 

linking, a complex cascade of signaling molecules results in NF-κB complex and B-350 

cell receptor activation. These IgG and cytokines are expressed by JCHAIN and LTF, 351 

which were both significantly elevated in our data after vaccination. In addition, 352 

several of our overlapping proteins’ clusters of PBMC and serum were involved in 353 

neutrophil degranulation, protein-lipid complex remodeling, platelet degranulation, 354 

and complement system (Figures S6-S7). Our data show that the neutrophil 355 

degranulation-based activation of the innate immunity, the multiple immune cell 356 

migration enhancement, and the humoral immune response activation are 357 

dysregulated at baseline and during the early stages after vaccination (Figures 6A-358 

C). 359 

Comparisons with other studies before/after vaccination  360 

Several studies of COVID-19 vaccination have identified modulation of multiple 361 

proteins, metabolites, and gene expression after vaccination (Arunachalam et al., 362 

2021; Liu et al., 2021; Zhang et al., 2021; Wang et al., 2022). However, no study has 363 

systematically investigated the heterogeneous hematological host responses to 364 

vaccination in both PBMCs and sera. Neither has any study presented any means to 365 

predict the host responses of vaccination. Vaccine-induced protection against 366 

COVID-19 may involve NAbs, T-cells, and innate immune mechanisms. In the 367 

comparative analysis of multiple vaccines, T cell responses in CoronaVac® remains 368 

unclear (Sadarangani et al., 2021). Our PBMCs analysis showed that CD8+ T cells, 369 

memory B cells, and activated NK cells were increasingly upregulated in the 370 

seropositive group. Previous study showed that mRNA vaccinations can significantly 371 
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enhance the innate immune response, as proven by the greater frequency CD14+ 372 

CD16+ inflammatory monocytes and higher concentration of plasma IFNγ 373 

(Arunachalam et al., 2021). In our PBMC proteome, monocytes and the IFNγ, IFNa 374 

and IFNb signaling were elevated in the seropositive groups. A single-cell RNA-375 

sequencing study of the PBMCs of healthy subjects revealed that, after CoronaVac® 376 

vaccination, the levels of B cells, T cells, NK cells, and myeloid cells better 377 

resembled those of COVID-19 recovery controls rather than their own before 378 

vaccination (Zhang et al., 2021). Similarly, our PBMCs analysis showed that CD8+ T 379 

cells, memory B cells, and activated NK cells were increasingly upregulated in the 380 

seropositive group. Consistent with other reports (Wang et al., 2022), our findings 381 

support that the humoral immune response, complement activation were induced by 382 

CoronaVac®. What’s unique in the seropositive participants is activated regulation of 383 

lymphocyte migration pathway, which suggests enhanced immunity. 384 

Planning booster shot and their benefits 385 

Due to the relatively high effectiveness of booster immunization against severe 386 

COVID-19, hospitalization, and even the Omicron variant (Xue et al., 2022), it should 387 

be strongly supported and administered at the appropriate time. The effectiveness 388 

and the safety of boosters have been assessed via large-scale randomized studies 389 

and individuals, proving the booster’s benefits and the negligible impact of its 390 

immune-mediated side effects (Zeng et al., 2021). Boosting is particularly important 391 

for specific subpopulations: individuals who generate less or shorter-lived NAbs and 392 

those who are immunocompromised, such as our seronegative participants (Group 393 

0). Moreover, the vaccination strategy may change for recipients with heterologous or 394 

homologous vaccinations (Costa Clemens et al., 2022). Our machine learning 395 

models predict the seropositivity of individuals at D57 and their NAbs persistence 396 

until at least D180 using potential blood-derived protein biomarkers. These tools can 397 

establish which populations or individuals may generate enough and persistent 398 

NAbs, and therefore help plan precise booster administrations. Furthermore, a better 399 

balance between primary vaccination and booster may benefit more countries in the 400 

global fight against COVID-19 (Krause et al., 2021).  401 

In summary, we performed a systematic PBMC and serum proteomic study of the 402 

heterogeneous hematological host responses to vaccination. We developed a 403 

machine learning model based on a panel of proteins expressed at baseline to 404 

predict antibody generation and decline after vaccination. The model can be 405 

potentially used to identify the individuals of high risk, and guide booster shot, or 406 

recommendation of other vaccines. Furthermore, our data also provides a panoramic 407 

view of the molecular changes in PBMCs and serum after vaccination.  408 

Limitations of the study 409 

The findings of this study have to be considered in light of some limitations. First, the 410 

predictive models need to be further validated in larger cohorts and multicenter 411 

samples, both biologically and clinically. Second, the explanations for 412 

misclassifications are not very strong, may because of complex drug history. Third, 413 
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the B cell and T cell responses and the neutralization tests were analyzed in the 414 

mixed PBMCs but not assessed in vitro.  415 
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models to predict the effectiveness of vaccination using potential biomarkers at 448 

baseline. Subject information for vaccinated recipients is summarized in Tables 1-2, 449 

Table S1. Study design of the TMT-Pro labeling-based quantitative proteomics 450 

analysis of the PBMCs and sera samples is depicted in Figure 1A and S2A.   451 

Participants and Samples 452 

We recruited 163 vaccination recipients (>18 years) who were not infected with 453 

SARS-CoV-2 and some of them had stable chronic medical conditions, including 454 

hypertension, T2DM, and metabolic fatty liver disease, were eligible to be enrolled 455 

from the affiliated hospital of Hangzhou Normal University between January and 456 

February 2021, including a discovery (N = 137) and an independent test cohort (N = 457 

26). All participants received two doses of CoronaVac® (0.5 mL/dose, Sinovac life 458 

science, Beijing, China), an inactivated vaccine against SARS-CoV-2; the second 459 

dose 28 days after the first one. Blood samples were collected before vaccination 460 

(D0), then 28 (D28), 57 (D57). Blood mononuclear cells and serum were extracted 461 

from the blood samples. The xenoreactivity was also measured at D0, D28, D57 and 462 

180 days after the first dose vaccination (D180). The NAbs for the receptor-binding 463 

domain of the SARS-CoV-2 spike protein were detected using the iFlash 2019-nCoV 464 

NAb assay (SHENZHEN YHLO BIOTECH CO., LTD, Shenzhen, China, 465 

Cat#C86109), which is a paramagnetic particle chemiluminescent immunoassay for 466 

the qualitative detection of SARS-CoV-2 NAbs in human serum and plasma using the 467 

automated iFlash immunoassay system; the cut-off value for the antibody was 10.00 468 

AU/mL. 469 

The participants were classified into three groups based on the xenoreactivity of their 470 

NAbs on D28 and Day 57. Specifically, Group 0 included the participants that were 471 

seronegative on D28 and D57; Group 1 included the participants that were 472 

seronegative on D28 but were seropositive on D57; Group 2 included the participants 473 

that were seropositive on D28 and D57. Groups 1 and 2 were then merged into 474 

Group 1+2 (all the seropositive participants). Group 1+2 was then split into Group 3 475 

(seronegative at D180) and Group 4 (seropositive at D180). 476 

This research was approved by the ethical committee of the Affiliated Hospital of 477 

Hangzhou Normal University and Westlake University (Hangzhou, China). The study 478 

was registered in the Chinese Clinical Trial Register (ChiCTR2100042717), and all 479 

participants signed a written informed consent before enrolment. 480 

Serum and PBMC Protein Extraction and Digestion 481 

From each sample, 4 µL of serum were depleted of 14 high abundant serum proteins 482 

using a human affinity depletion resin (Thermo Fisher Scientific™, San Jose, USA) 483 

and then concentrated into 50 μL through a 3K MWCO filtering unit (Thermo Fisher 484 

Scientific™, San Jose, USA). More details can be found in the manufacturer’s 485 

protocols. The resulting serum samples were then prepared for mass spectrometry 486 

as described (Shen et al., 2020). Briefly, they were denatured in 8 M urea at 31.5°C 487 

for 30 min. Next, the proteins were reduced with 10 mM tris (2-carboxyethyl) 488 

phosphine (TCEP) and then alkylated with 40 mM iodoacetamide (IAA). Finally, the 489 
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protein extracts were diluted and digested using a double step trypsinization for 16 490 

hours totally (Hualishi Tech. Ltd, Beijing, China). 491 

PBMCs were prepared as previously described (Gao et al., 2020). Briefly, 30 μL of 492 

lysis buffer in 100 mM TEAB with 20 mM TCEP, and 40 mM IAA were added to the 493 

PCT-Microtubes for 60 min. The proteins were digested using a mixture of trypsin 494 

and Lys-C for 100 min. Then, the digestion was arrested by adding 10% 495 

trifluoroacetic acid (TFA). 496 

LC-MS/MS Analysis 497 

The proteome analysis was performed similar as previously described (Shen et al., 498 

2020). Digested peptides were cleaned-up and labeled using TMTpro 16plex label 499 

reagents (Thermo Fisher Scientific, San Jose, USA). Peptides were separated into 500 

30 fractions, which were later combined into 15 fractions. Subsequently, the fractions 501 

were dried, redissolved in 2% ACN/0.1% formic acid. All the samples were analyzed 502 

using liquid chromatography (LC)-coupled tandem mass spectrometry (MS/MS) with 503 

a data-dependent acquisition mode on an Orbitrap 480 (Thermo Fisher Scientific, 504 

San Jose, USA). During each acquisition, peptides were analyzed using a 30 505 

minutes-long LC gradient (from 7% to 30% buffer B). The m/z range of MS1 was 506 

375-1800, with a resolution of 60,000, normalized Automatic Gain Control (AGC) 507 

target of 300%, maximum ion injection time (max IT) of 50 ms, and compensation 508 

voltages of -48V and -68V for FAIMS Pro™. MS/MS experiments were performed 509 

with a resolution of 30,000, normalized AGC target of 200%, and 86 ms max IT for 510 

Serum and 100 ms for PBMC. The turbo-TMT and the advanced peak determination 511 

were enabled.  512 

Database Search for Proteomics Quantification 513 

The mass spectrometric data were analyzed using Proteome Discoverer (Version 514 

2.4.0.305, Thermo Fisher Scientific) and the Homo sapiens protein database 515 

downloaded from UniProtKB on 27 April 2020 (Fasta file containing 20,301 reviewed 516 

protein sequences). The database search was performed as previously described 517 

(Shen et al., 2020), including Carbamidomethyl (C) as a fixed modification and 518 

oxidation (M) as a variable modification. The false discovery rate (FDR) was set as 519 

0.01. Data normalization was performed against the total peptide amount. Other 520 

parameters followed the default setup. 521 

Quality Control of the Proteome Data 522 

The quality of the proteomics data was ensured at multiple levels. A pool of samples 523 

labeled by TMTpro-134N was used as the control for aligning the data from different 524 

batches. Also, we assessed the reproducibility of the data using technical replicates, 525 

water samples (buffer A) as blanks every four injections to avoid carry-over. 526 

After removing the proteins with over 90% missing values, 6331 proteins of PBMC 527 

and 961 of serum underwent quality controls. We then assessed the coefficient of 528 

variation in the pooled samples (Figure S2B). Finally, the Pearson’s correlation 529 
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values of the technical replicates (17 PBMC samples and three serum samples) were 530 

used to evaluate the reproducibility of the data (Figure S2C). 531 

Statistical Analysis of Clinical Indicators 532 

Continuous variables were calculated by student t-test or Welch t-test, Pearson χ² 533 

test or Fisher’s exact test for the analysis of categorical outcomes. We calculated 534 

Geometric Mean Titers (GMT) of the neutralizing antibody titers and the overall anti-535 

Spike IgG levels, using the t-test method to compare the difference. Statistical 536 

analysis was performed by IBM SPSS Statistics 26 (Armonk, NY: IBM Corp). 537 

Differential Expression Analysis 538 

A set of statistical tools were used to process and analyze our proteomics data. First, 539 

the batch effect of the serum proteome was removed using the R package combat 540 

(https://lifeinfor.shinyapps.io/batchserver/). No other significant batch effect was 541 

highlighted by principal component analysis (Figures S2D-E). For comparing the 542 

protein expressions between groups, the log2(fold change) was calculated using the 543 

mean values of each group. A two-sided unpaired Welch's t-test was performed for 544 

each group pair. A one-way analysis of variance (ANOVA) was performed among 545 

three groups at three time points. Finally, the adjusted p-values were calculated using 546 

the B-H correction.  547 

DEPs were selected by imposing the B-H adjusted p-values to be less than 0.05 and 548 

the absolute log2(fold change) larger than 0.25. Next, a soft clustering of the time 549 

series data was performed using MFuzz (version 2.48.0). We clustered the PBMC 550 

and serum DEPs expression along time using default settings (Figure S6). The 551 

single-cell RNA expression of PBMCs was derived from the Human Proteins Atlas 552 

(HPA; Karlsson et al., 2021). 553 

Estimation of the Immune Cell Type Fractions 554 

CIBERSORT (https://cibersort.stanford.edu/) is an analytical tool for estimating the 555 

cell composition of tissues using their gene expression profiles (Newman et al., 556 

2015). In CIBERSORT, the relative amounts of 20 human immune cell types 557 

(including naïve and memory B cells, seven T cell types, NK cells, plasma cells, 558 

monocytes, etc.) were estimated in our PBMC bulk cells using the leukocyte gene 559 

signature matrix. In addition, vaccinated individuals were divided into seronegative 560 

and seropositive groups, and the fraction of each immune cell type was investigated 561 

and visualized with bar plots using R software (R 4.0.5). 562 

Machine Learning 563 

For prediction of NAbs generation on D57, we used the samples from a discovery 564 

cohort (Cohort 1, N = 137) to optimize the model's parameters, the discovery dataset 565 

was randomly split into a training (80%) and a validation (20%) dataset. To establish 566 

the features for our machine learning models, we used a differential protein 567 

expression analysis which returned a set of biomarkers from the PBMCs and the 568 

serum (Figure 2A and 5A). Proteins with a significant difference (p-value < 0.05) 569 
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between two classes and with |log2(fold change)| > 0.25 in the training dataset were 570 

included in our final feature set. Then, sparse proteins (NA rate > 50%) were 571 

removed. The missing values were imputed with the minimum of each protein. We 572 

decided on the top N best features as the final feature set for our model, as well as 573 

the optimal parameters, by searching for the highest AUC in the validation dataset. 574 

All individual models for these two tasks can achieve an AUC of 1.0 in the validation 575 

dataset. Finally, the results illustrated in this paper were derived from the model with 576 

the best features and parameters. The implementation of machine learning was done 577 

using Python 3.8.10 and xgboost 1.4.2 python package (Chen and Guestrin, 578 

2016).The model was then tested using an independent test cohort (Cohort 2, N = 579 

26): the first based on PBMC biomarkers and the second on serum biomarkers. We 580 

next developed a third model that was an ensemble of the two previous ones. This 581 

third model led to an AUC of 0.87, which was higher than using PBMC or serum 582 

proteins individually.  583 

For prediction of NAbs persistence till D180, we discarded participants from Group 0 584 

(the seronegative ones) and those without clinical indicators on D180, and the 585 

remaining two cohorts: a training cohort (Cohort 3, N = 107) and a test cohort for the 586 

validation (Cohort 4, N = 20). We optimized the models’ parameters in the training 587 

and a validation dataset. Similarly, we tested in Cohort 4, and an AUC score of 0.79 588 

was obtained using only the PBMC proteins (Figure 5A).  589 

Functional Analyses 590 

Specifically, we investigated 38 PBMC DEPs and 14 serum DEPs from different 591 

immune response groups using a two-sided unpaired Welch's t-test, and 985 DEPs 592 

from PBMCs and 129 DEPs from serum were evaluated using the ANOVA test, 593 

biomarker proteins were also included. Several pathway analysis tools were used to 594 

perform the functional analysis of our significantly DEPs. Enrichments analyses 595 

based on Gene Ontology processes, KEGG pathways, Reactome gene sets, and 596 

Wiki pathways were performed using the web-based platform of Metascape (Zhou et 597 

al., 2019). With an ingenuine pathway analysis (Kramer et al., 2014) of the regulated 598 

proteins, we identified the most significantly regulated pathways; p-values were 599 

based on a right-tailed Fisher’s Exact Test, and the enriched pathways’ overall 600 

activation/inhibition state was predicted using the z-score. A pathway’s regulation 601 

was significant if its p-value < 0.05. Gene Set Variation Analysis (GSVA) was 602 

performed using the R package GSVA (version 3.11) (Hanzelmann et al., 2013) to 603 

identify the most dysregulated pathways (Canonical pathways) between the 604 

seronegative and the seropositive groups (B-H adjusted p-value < 0.05). The 605 

functional network images generated by Metascape were visualized with Cytoscape 606 

(version 3.9.0) to generate the network of predicted associations for a specific group 607 

of proteins (Otasek et al., 2019). 608 

 609 
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Table 1. Clinical metadata of the subjects for Group 0 and Group 1+2.  739 

Characteristics 

Discovery 

cohort 

(Cohort 1, N = 

137) 

Test cohort 

(Cohort 2, N = 

26) 

p 

Discovery cohort Test cohort 

Group 0 

 (N = 14) 

Group 1+2 (N 

= 123) 
p 

Group 0 

 (N = 5) 

Group 1+2  

(N = 21) 
p 

Age (years) 38.839 (11.806) 41.615 (8.782) 0.171 
44.643 

(12.258) 

38.179 

(11.622) 
0.052 51.800 (5.495) 39.191 (7.633) 0.002 

Sex (male/female) 43/94 16/10 0.141 6/8 37/86 0.329 5/0 11/10 0.123 

Body mass index (kg/m2)   24.026 (3.770) 25.314 (3.138) 0.104 26.002 (4.465) 23.801 (3.636) 0.064 26.208 (4.955) 25.097 (2.676) 0.650 

Total bilirubin (μmol/L) 19.883 (6.726) 19.285 (5.663) 0.671 19.650 (5.490) 19.909 (6.871) 0.892 20.080 (6.058) 19.095 (5.706) 0.734 

Albumin (g/L) 48.457 (2.302) 47.015 (2.706) 0.005 47.979 (2.555) 48.511 (2.277) 0.414 45.820 (1.587) 47.300 (2.865) 0.281 

Alanine aminotransferase 

(U/L)   
20.479 (18.397) 

20.704 

(10.932) 
0.952 17.607 (8.737) 

20.806 

(19.186) 
0.540 19.840 (12.213) 20.910 (10.923) 0.849 

Aspartate aminotransferase 

(U/L) 
20.410 (9.150) 22.054 (5.075) 0.375 18.693 (5.496) 20.606 (9.473) 0.461 23.620 (6.460) 21.681 (4.806) 0.454 

Alkaline phosphatase (U/L) 66.730 (20.253) 
69.462 

(17.775) 
0.522 

67.929 

(19.828) 

66.594 

(20.376) 
0.816 72.200 (12.696) 68.810 (18.983) 0.710 

γ-glutamyl transpeptidase 

(U/L) 
24.854 (21.930) 

22.692 

(12.142) 
0.626 

19.714 

(10.542) 

25.439 

(22.823) 
0.357 21.600 (7.956) 22.952 (13.086) 0.828 

LDL-cholesterol (mmol/L) 3.118 (0.779) 3.106 (0.883) 0.941 2.796 (0.705) 3.155 (0.782) 0.102 3.264 (0.108) 3.068 (0.982) 0.665 

HDL-cholesterol (mmol/L) 1.372 (0.326) 1.220 (0.268) 0.026 1.266 (0.182) 1.384 (0.337) 0.092 1.284 (0.163) 1.205 (0.288) 0.563 

Total cholesterol (mmol/L) 4.965 (0.966) 4.860 (0.983) 0.611 4.557 (0.928) 5.012 (0.963) 0.103 4.984 (0.172) 4.830 (1.094) 0.760 

Triglyceride (mmol/L) 1.017 (0.566) 1.174 (0.645) 0.207 1.089 (0.603) 1.009 (0.564) 0.618 0.962 (0.263) 1.225 (0.701) 0.424 

Glucose (mmol/L) 4.146 (1.141) 3.502 (0.826) 0.007 4.210 (1.096) 4.138 (1.150) 0.825 3.398 (1.092) 3.526 (0.782) 0.762 

Creatinine (μmol/L) 60.307 (29.087) 
67.923 

(13.702) 
0.194 

57.786 

(17.375) 

60.594 

(30.169) 
0.607 75.800 (13.046) 66.048 (13.47) 0.157 

Uric Acid (μmol/L) 307.839 (95.341) 
343.385 

(83.196) 
0.078 

309.286 

(52.889) 

307.675 

(99.170) 
0.952 

384.400 

(75.075) 
333.619 (83.690) 0.227 

CRP (mg/L) 1.407 (3.782) 1.206 (1.341) 0.790 1.180 (1.460) 1.442 (3.979) 0.808 1.624 (1.984) 1.235 (1.239) 0.579 
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Leukocytes (109/L) 6.203 (1.453) 6.692 (1.517) 0.120 2.164 (0.674) 2.063 (0.591) 0.594 6.320 (1.659) 6.781 (1.511) 0.552 

Platelets (109/L) 247.796 (57.838) 
271.500 

(59.567) 
0.058 

245.143 

(62.954) 

248.098 

(57.496) 
0.857 

227.200 

(53.742) 
282.048 (57.010) 0.063 

Red blood cells (109/L) 6.203 (1.453) 6.692 (1.517) 0.120 4.742 (0.452) 4.732 (0.630) 0.953 5.320 (0.409) 5.043 (0.605) 0.344 

Lymphocytes (109/L) 2.074 (0.598) 2.323 (0.513) 0.048 2.164 (0.674) 2.063 (0.591) 0.552 2.060 (0.541) 2.386 (0.499) 0.209 

hemoglobin (g/L) 140.985 (19.497) 
150.039 

(20.166) 
0.032 

138.143 

(22.408) 

141.309 

(19.215) 
0.567 

160.800 

(13.608) 
147.476 (20.868) 0.190 

Comorbidities, N (%) 

Hypertension 13 (9) 6 (23) 0.005 1 (7) 12 (10) 0.092 2 (40) 4 (19) 0.558 

T2DM 5 (4) 0 (0) >0.999 1 (7) 4 (3) 0.426 0 (0) 0 (0) >0.999 

MAFLD 37 (27) 13 (50) 0.020 7 (50) 30 (24) 0.005 2 (40) 11 (52) >0.999 

Seroconversion of neutralizing antibody to live SARS-CoV-2, N (%) 

Day 28 30 (22) 2 (7) 0.112 0 (0) 30 (25) 0.040 0 (0) 2 (10) >0.999 

Day 57 123 (90) 21 (81) 0.189 0 (0) 123 (100) >0.999 0 (0) 21 (100) <0.001 

Day 180 30 (25) a 12 (48) b 0.021 0 (0) c  30 (28) d    >0.999 0 (0) e 12 (60) f 0.043 

GMT of neutralizing antibody to live SARS-CoV-2 (AU/mL) 

Day 28 8.523 (5.368) 6.789 (2.781) 0.018 4.817 (1.185) 8.945 (5.497) <0.001 4.658 (1.379) 7.296 (2.807) .055 

Day 57 
27.372 (28.155) 

23.309 

(19.138) 
0.482 

7.746 (1.293) 

29.606 

(28.884) 
<0.001 

7.948 (1.64) 26.967 (19.602) 
.043 

Day 180 8.627 (4.315) 10.795 (4.325) 0.024 6.055 (1.976) 8.94 (4.422) <0.001 6.842 (0.343) 11.784 (4.297) <0.001 

Data are shown as mean values (standard deviation within parentheses) and N (%). Pearson χ² test or Fisher's exact test were used to analyze the 740 

categorical outcomes and student t-test or Welch t-test for continuous outcomes. Hypertension was defined as systolic blood pressure ≥140 or 741 

diastolic blood pressure ≥ 90 mmHg. T2DM: Type 2 diabetes mellitus, which was defined as fasting glucose ≥ 7.0 mmol/L. MALFD: metabolic 742 

associated fatty liver disease. Superscripts a, b, c, d, e, and f: subjects left in each group were 120, 25, 13, 107, 5, and 20, respectively. Group 0, the 743 

seronegative group, included the participants that were seronegative on D28 and D57. Groups 1+2 were all the seropositive participants on D57.  744 
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Table 2. Clinical metadata of the subjects for Group 3 and Group 4. 745 

Characteristics 

Discovery 

cohort 

(Cohort 3, N = 

107) 

Test cohort 

(Cohort 4, N = 

20) 

p 

Discovery cohort Test cohort 

Group 3 (N = 

77) 
Group 4 (N = 30) p Group 3 (N = 8) Group 4 (N = 12) p 

Age (years) 
40.019 

(10.814） 
39.950 (6.970） 0.971 40.130 (10.598) 39.733 (11.531) 0.866 40.625 (6.278) 39.500 (7.634) 0.734 

Sex (male/female) 32/75 10/10 0.023 20/57 12/18 0.155 2/6 8/4 0.170 

Body mass index (kg/m2)   23.965 (3.746） 25.260 (2.638） 0.142 23.879 (3.660) 24.186 (4.014) 0.705 26.738 (1.701) 24.275 (2.745) 0.037 

Total bilirubin (μmol/L) 20.114 (7.080） 18.735 (5.604） 0.412 20.705 (6.615) 18.597 (8.075) 0.167 20.913 (6.399) 17.283 (4.736) 0.161 

Albumin (g/L) 48.492 (2.245） 47.175 (2.88） 0.023 48.239 (2.191) 49.140 (2.289) 0.062 46.200 (2.183) 47.825 (3.184) 0.226 

Alanine aminotransferase 

(U/L)   

21.114 

(19.713） 
21.310 (11.048） 0.966 18.468 (16.533) 27.907 (25.255) 0.066 19.350 (12.294) 22.617 (10.487) 0.532 

Aspartate aminotransferase 

(U/L) 
20.425 (9.418） 21.555 (4.895） 0.602 19.136 (7.126) 23.733 (13.243) 0.08 20.738 (4.525) 22.100 (5.248) 0.556 

Alkaline phosphatase (U/L) 
66.720 

(21.280） 
69.000 (19.456） 0.657 66.065 (22.940) 68.400 (16.492) 0.612 59.875 (15.524) 75.083 (19.988) 0.087 

γ-glutamyl transpeptidase 

(U/L) 

26.178 

(23.377） 
23.3 (13.326） 0.595 24.208 (19.513) 31.233 (31.030) 0.164 18.375 (8.123) 26.583 (15.341) 0.184 

LDL-cholesterol (mmol/L) 3.160 (0.800） 3.076 (1.007） 0.680 3.097 (0.769) 3.320 (0.867) 0.196 2.605 (0.655) 3.389 (1.100) 0.088 

HDL-cholesterol (mmol/L) 1.370 (0.337） 1.179 (0.27） 0.018 1.406 (0.353) 1.278 (0.276) 0.076 1.188 (0.332) 1.173 (0.235) 0.912 

Total cholesterol (mmol/L) 4.996 (0.935） 4.821 (1.122） 0.458 4.907 (0.910) 5.223 (0.973) 0.116 4.316 (0.698) 5.157 (1.247) 0.102 

Triglyceride (mmol/L) 1.025 (0.596） 1.245 (0.713） 0.145 0.888 (0.451) 1.375 (0.768) 0.002 1.154 (0.657) 1.305 (0.771) 0.655 

Glucose (mmol/L) 4.181 (1.222） 3.593 (0.738） 0.040 4.229 (1.275) 4.060 (1.082) 0.524 3.405 (0.708) 3.718 (0.762) 0.367 

Creatinine (μmol/L) 
60.009 

(31.812） 
65.55 (13.621） 0.446 59.610 (37.004) 61.033 (10.440) 0.836 63.000 (10.637) 67.250 (15.51) 0.509 

Uric Acid (μmol/L) 
301.122 

(100.483） 

331.650 

(85.363） 
0.205 

288.299 

(93.366) 

334.033 

(111.819) 
0.034 

349.000 

(91.377) 
320.083 (83.115) 0.473 
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CRP (mg/L) 1.224 (2.529） 1.136 (1.209） 0.879 1.270 (2.904) 1.106 (1.151) 0.764 1.084 (0.997) 1.170 (1.374) 0.881 

Leukocytes (109/L) 6.173 (1.516） 6.815 (1.542） 0.085 6.012 (1.424) 6.587 (1.685) 0.078 6.500 (1.009) 7.025 (1.828) 0.471 

Platelets (109/L) 
245.738 

(60.240） 

287.100 

(53.450） 
0.005 

242.351 

(60.909) 
254.433 (58.591) 0.354 

276.500 

(53.407) 
294.167 (54.621) 0.484 

Red blood cells (109/L) 4.719 (0.654） 5.020 (0.611） 0.059 4.631 (0.679) 4.943 (0.533) 0.026 4.675 (0.534) 5.25 0(0.565) 0.035 

Lymphocytes (109/L) 2.026 (0.577） 2.395 (0.510） 0.009 1.949 (0.544) 2.223 (0.622) 0.027 2.188 (0.491) 2.533 (0.494) 0.142 

hemoglobin (g/L) 
141.037 

(20.188） 
146.600 (21.01） 0.263 

138.558 

(21.516) 
147.400 (14.776) 0.041 

143.375 

(14.956) 
148.750 (24.647) 0.589 

Comorbidity, N (%) 

Hypertension 12 (12) 4 (20) 0.280 8 (11) 4 (14) 0.736 0 (0) 4 (34) 0.094 

T2DM 4 (4) 0 (0) >0.999 3 (4) 1 (4) >0.999 0 (0) 0 (0) >0.999 

MAFLD 30 (28) 11 (55) 0.018 17 (22) 13 (43) 0.028 5 (63) 6 (50) 0.670 

Seroconversion of neutralizing antibody to live SARS-CoV-2, N (%) 

Day 28 26 (25) 2 (10) 0.240 16 (21) 10 (34) 0.174 0 (0) 2 (17) 0.475 

Day 57 107 (100) 20 (100) >0.999 77 (100) 30 (100) >0.999 8 (100) 12 (100) >0.999 

Day 180 30 (29) 11 (55) 0.018 0 (0) 30 (100) <0.001 0 (0) 12 (100) <0.001 

GMT of neutralizing antibody to live SARS-CoV-2 (AU/mL) 

Day 28 9.033 (5.837) 7.41 (2.83) 0.023 8.034 (4.35) 11.596 (8.092) 0.028 
6.0563 

(1.07254) 
8.3125 (3.29792) 0.045 

Day 57 29.925 (30.425) 27.133 (20.096) 0.694 24.596 (27.2) 43.603 (34.288) 0.009 
15.695 

(6.17745) 

34.7583 

(22.6869) 
0.034 

Day 180 8.94 (4.422) 11.784 (4.297) 0.009 6.905 (1.641) 14.162 (5.021) <0.001 
8.475 (0.68498) 

13.9892 

(4.28151) 
0.001 

Data are shown as mean values (standard deviation in parentheses). Pearson χ² test or Fisher’s exact test were used to analyze the categorical 746 

outcomes and student t-test or Welch t-test for continuous outcomes. Hypertension was defined as systolic blood pressure ≥140 or diastolic blood 747 

pressure ≥ 90 mmHg. T2DM: Type 2 diabetes mellitus, which was defined as fasting glucose ≥ 7.0 mmol/L. MALFD: metabolic associated fatty liver 748 

disease. Group 3: the group that became seronegative before D180; Group 4: the group that was seropositive at least until D180.749 
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Figure legends 750 

Figure 1. Study design and overview of clinical indicators. (A) Study design of 751 

the TMT labeling-based quantitative proteomics analysis of the PBMCs and sera 752 

samples. Vaccination recipients were vaccinated with two doses of 500 l 753 

CoronaVac®, the first at D0 and the second at D28. Blood samples and PBMCs were 754 

collected at D0 (before vaccination), D28, and D57. Participants were divided into 755 

four groups based on the xenoreactivity of their NAbs on D28 and D57: Group 0, the 756 

seronegative group, included the participants that were seronegative on D28 and 757 

D57; Group 1, the late seropositive group, included the participants that were 758 

seronegative on Day 28 but seropositive on D57; Group 2, the early seropositive 759 

group, included the participants that were seropositive on D28 and D57. Groups 1 760 

and 2 were combined into Group 1+2 to bring together all the seropositive 761 

participants. Group 1+2 was then divided into Group 3 (seronegative participants on 762 

D180) and Group 4 (seropositive participants on D180). (B-C) Antibody titers of 763 

neutralizing antibodies (B) and Spike-specific IgG (C) to live SARS-CoV-2 at different 764 

time points after vaccination. The horizontal line represents the threshold of specific 765 

response. The bars represent the median and IQR values of titers. Sample 766 

comparisons were tested by student t-test or Welch t-test. * Represents p < 0.05, ** 767 

represents p < 0.01, *** represents p < 0.001. 768 

Figure 2. Machine learning-based prediction of individuals' seronegative or 769 

seropositive status based on their PBMCs and serum proteins before 770 

vaccination. (A) Our machine learning-based predictor was based on PBMC, serum, 771 

and both types of proteins. We used the samples from a discovery cohort (Cohort 1, 772 

N = 137) to optimize the model's parameters, the discovery dataset was randomly 773 

split into a training (80%) and a validation (20%) dataset. The model was then tested 774 

using a test cohort (Cohort 2, N = 26): the first based on PBMC biomarkers and the 775 

second on serum biomarkers. We next developed a third model that was an 776 

ensemble of the two previous ones. This third model led to an AUC of 0.87, which 777 

was higher than using PBMC or serum proteins individually. (B) The SHAP values of 778 

the five PBMC proteins were prioritized using the machine learning model. (C) The 779 

SHAP values of the seven serum proteins were prioritized using the machine 780 

learning model. (D) Boxplots of the selected biomarker proteins from the PBMC 781 

samples. (E) Boxplots of the selected biomarker proteins from the serum samples. 782 

Asterisks in (D) and (E) indicate the statistical significance based on the unpaired 783 

two-sided Welch's t-test. Specifically, the p-values are: *, < 0.05; **, < 0.01; ***, < 784 

0.001. Group 0: the seronegative group; Group 1+2: the seropositive group. 785 

Figure 3. Comparison of the immune responses in the seropositive and the 786 

seronegative groups using the PBMCs proteome. (A) Identification of NAb status-787 

associated proteins in PBMC using volcano plot analysis on D0, D28, and D57 (two-788 

sided unpaired Welch's t-test). The log10(B-H adjusted p-value) is plotted as a 789 

function of the log2(fold change) between seropositive and seronegative samples (B-790 
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H adjusted p-value < 0.05, |log2(fold change)| > 0.25). (B) Heatmap of the proteins 791 

that were significantly regulated in (A). The expression of each protein is shown for 792 

both immune response groups and at D0, D28, and D57. (C) Heatmap of the most 793 

significantly differentially enriched pathways between the seropositive and the 794 

seronegative groups generated using GSVA (B-H adjusted p-value < 0.05, |log2(fold 795 

change)| > 0.25). (D) Barplot visualizing the inferred proportions of 20 immune cell 796 

types. The average proportions of the 20 immune cell types were derived from the 797 

seronegative (Group 0) and the seropositive (Group 1+2) groups. (E) Barplots 798 

visualizing the average proportions (mean ± standard error of mean) of B cells, T 799 

cells, and several innate immune cells, in the seronegative (Group 0) and 800 

seropositive (Group 1+2) groups at three time points. Asterisks in (D) and (E) indicate 801 

the statistical significance based on the Mann-Whitney rank test. P-value: *, < 0.05; 802 

**, < 0.01; ***, < 0.001. 803 

Figure 4. Comparison of the immune responses in the seropositive and the 804 

seronegative groups using the serum proteome. (A) Identification of NAb status-805 

associated proteins in serum using volcano plot analysis on D0, D28, and D57 by the 806 

two-sided unpaired Welch's t-test. The B-H adjusted p-values are plotted as functions 807 

of the log2(fold change) of the mean values between the seropositive and the 808 

seronegative samples (B-H adjusted p-value < 0.05, |log2(fold change)| > 0.25). (B) 809 

Heatmap of the proteins that were significantly regulated in (A). The expression of 810 

each protein is shown for both immune response groups and at D0, D28, and D57. 811 

(C) The most significantly enriched networks generated using significantly 812 

dysregulated proteins from the serum proteome. Proteins involved in plasma 813 

lipoprotein remodeling and neutrophil degranulation are shown with their expression 814 

levels in the seropositive and the seronegative groups at three time points. The cutoff 815 

of the dysregulated proteins was set at p-value < 0.05 and |log2(fold change)| > 0.25. 816 

The proteins highlighted with a red * had B-H adjusted p-values < 0.05, while those 817 

with a black * were selected from our optimized machine learning models. Group 0: 818 

the seronegative group; Group 1+2: the seropositive group. 819 

Figure 5. Proteomics of seropositive and seronegative individuals 180 days 820 

after CoronaVac® vaccination. (A) Workflow for generating a model to predict the 821 

antibody persistence till D180. We discarded participants from Group 0 (the 822 

seronegative ones) and those without clinical indicators on D180, the remaining two 823 

cohorts: a training cohort (Cohort 3, N = 107) and a test cohort for the validation 824 

(Cohort 4, N = 20). (B) SHAP values of the machine learning classifier trained with 825 

selected PBMC proteins. (C) Expression of the selected proteins from the PBMC 826 

samples. The asterisks indicate the statistical significance based on the unpaired 827 

two-sided Welch's t-test. P-value: *, < 0.05; **, < 0.01; ***, < 0.001. Group 3 (N = 828 

107): the seronegative group on D180; Group 4 (N = 20): the persistently 829 

seropositive group. (D) Relative expression of the proteins selected for our model in 830 

the different cell type clusters of PBMCs (data from the Human Proteins Atlas(HPA; 831 

Karlsson et al., 2021)).  832 
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Figure 6. Functional and network analyses of the seropositive and 833 

seronegative groups' immune responses: a comparison between PBMC and 834 

serum data. (A) Chord diagrams of the most enriched pathways based on the 835 

significantly dysregulated proteins and the potential biomarker proteins. (B) Network 836 

analysis of the most significantly enriched pathways (with their p-values) based on 837 

the DEPs and the potential biomarker proteins. (C) Key PBMC and serum proteins 838 

characterized in seronegative and seropositive recipients. Proteins involved in the 839 

humoral immune response, neutrophil degranulation, network maps of SARS-CoV-2 840 

signaling pathways, and regulation of lymphocyte migration are shown in this network 841 

with their corresponding expression levels in the seronegative and the seropositive 842 

groups. Group 0: the seronegative group; Group 1+2: the seropositive group; Group 843 

3: the group that became seronegative before D180; Group 4: the group that was 844 

seropositive at least until D180. 845 

 846 

Figure S1. Factors associated with seropositivity of neutralizing antibodies at 847 

D57 and D180, respectively. (A) Multivariable logistic regression analysis was used 848 

to investigate factors associated with the generation of NAbs at D57 after adjusting 849 

sex, BMI and diastolic bold pressure. (B) Multivariable logistic regression analysis 850 

was used to investigate factors associated with the persistence of NAbs at D180 after 851 

adjusting leukocytes, monocytes, RBC, lymphocytes, hemoglobin, LDL, HDL, TG, 852 

ALT, and AST.  853 

Figure S2. Quality controls of the proteomics data. (A) Study design of our TMT-854 

labeling-based quantitative proteomics analysis of PBMCs and sera samples. 855 

Together, PBMCs and serum generated 528 peptide samples, including 33 pooled 856 

controls, distributed into 33 batches and analyzed using TMTpro 16-plex labeling 857 

based proteomics. (B) The proteomics data's coefficients of variation were calculated 858 

using the abundance of the quantified proteins in the 33 pooled controls of the 33 859 

batches. Also, they were computed after removing the outliers. (C) Quality control of 860 

the technical replicates based on the Pearson correlation coefficients. (D-E) PCA 861 

analyses were performed on all the proteomics data derived from the PBMC (D) and 862 

serum samples (E), for three immune response groups on D57 (Group 0, Group 1, 863 

and Group 2) and two immune response groups on D180 (Group 3 and Group 4). 864 

Group 1: the late seropositive group; Group 2: the early seropositive group. 865 

Figure S3. Machine learning-based prediction of Group 1 (being negative at 866 

D28 and then converting) and Group 0 (being negative at D28 and never 867 

converting) before vaccination. (A) Our machine learning-based predictor was 868 

based on PBMC, serum, and both types of proteins. We used the samples from a 869 

discovery cohort (Cohort 1, N = 137) to optimize the model's parameters. The model 870 

was then tested using a test cohort (Cohort 2, N = 26): the first based on PBMC 871 

biomarkers and the second on serum biomarkers. We next developed a third model 872 

that was an ensemble of the two previous ones. This third model led to an AUC of 873 

0.853, which was higher than using PBMC or serum proteins individually. (B) The 874 

SHAP values of the five PBMC proteins were prioritized using the machine learning 875 
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model. (C) The SHAP values of the five serum proteins were prioritized using the 876 

machine learning model. Identification of NAb status-associated proteins in PBMC 877 

(D) and serum (E) using volcano plot analysis on D0, D28, and D57 (two-sided 878 

unpaired Welch's t-test). The log10 (B-H adjusted p-value) is plotted as a function of 879 

the log2(fold change) between Group 1 and Group 0 samples (B-H adjusted p-value 880 

< 0.05, |log2(fold change)| > 0.25). 881 

Figure S4. Immune response and pathway analyses using the PBMC data. (A) 882 

Heatmap of 985 proteins selected using the ANOVA test. Each protein is compared 883 

among the three immune response groups (Group 0, 1, and 2) on D0, D28, and D57 884 

(p-value < 0.05). Group 0: the seronegative group; Group 1: the late seropositive 885 

group; Group 2: the early seropositive group. (B-D) Pathways' enrichment based on 886 

the proteins selected using the ANOVA test to compare the three immune response 887 

groups on D0 (B), D28 (C), and D57 (D) using Metascape (log10 p-value). (E) 888 

Barplots visualizing the estimated proportions of 20 immune cell types in each PBMC 889 

sample. Each column represents a sample; the colors indicate the inferred immune 890 

cell components. (F) Average proportions of 20 immune cell types, in Group 0, Group 891 

1, and Group 2, at three time points. The asterisks indicate the statistical significance 892 

based on the Kruskal-Wallis test. P-value: *, < 0.05; **, < 0.01; ***, < 0.001. (G) 893 

Barplots visualizing the estimated proportions of 20 immune cell types, in Group 0, 894 

Group 1, and Group 2, at three time points. Different colors indicate the predicted 895 

composition of immune cell types.  896 

Figure S5. Immune response and pathway analysis using the serum data. (A) 897 

Heatmap of 129 proteins selected using the ANOVA test. Each protein is compared 898 

between the three immune response groups (Group 0, 1, and 2) on D0, D28, and 899 

D57 (P-value < 0.05). Group 0: the seronegative group; Group 1: the late 900 

seropositive group; Group 2: the early seropositive group. (B) Pathways' enrichment 901 

based on the proteins selected in (A) using Metascape. (C-D) Comparison among 902 

three immune response groups (Group 0, 1, and 2) of the canonical pathways of 903 

proteins in (A) by IPA (Kramer et al., 2014). 904 

Figure S6. Immune response and pathway analysis using the PBMC and the 905 

serum data. (A-B) Pathways' enrichment analysis of selected PBMC proteins. 906 

Specifically, 6331 PBMC proteins and 961 serum proteins were grouped into 12 907 

discrete clusters using mFuzz, respectively. This analysis included all the proteins 908 

from the PBMC dataset that steadily increased (A) or decreased (B) over time. And 909 

the serum dataset that steadily increased (C) or decreased (D) over time. The 20 910 

most significantly enriched pathways involving these DEPs were analyzed using 911 

Metascape.  912 

Figure S7. Immune response and network analysis of the seropositive groups: 913 

comparison between PBMC and serum data. The most significantly dysregulated 914 

proteins identified using mFuzz from the following groups are here compared: (A) 915 

upregulated in both PBMC and serum, (B) downregulated in both PBMC and serum, 916 
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(C) upregulated in PBMC and downregulated in serum, and (D) downregulated in 917 

PBMC and upregulated in serum. The Venn diagrams show the overlaps between 918 

the PBMC (blue) and the serum proteins (red). Pathways and heatmaps were 919 

generated from the overlapping proteins from each pair. (E) The most significantly 920 

enriched networks generated using the DEPs from (A-D). The proteins involved in 921 

the complement system, including platelet degranulation, neutrophil degranulation, 922 

and protein-lipid complex remodeling.  923 
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