
 1

Clinical study type classification, validation, and PubMed filter comparison with 1 

natural language processing and active learning 2 

 3 

David G P van IJzendoorn,1* Philippe C Habets,1* Christiaan H Vinkers,1# Willem M Otte 1,2# 4 

* Shared first author, # shared last author 5 

 6 

1 DeepDoc Academy, Rotterdam, The Netherlands 7 

2 Department of Child Neurology, UMC Utrecht Brain Center, University Medical Center 8 

Utrecht, and Utrecht University, Utrecht, The Netherlands 9 

 10 

Willem M Otte, ORCID: https://orcid.org/0000-0003-1511-6834 11 

David G P van IJzendoorn, ORCID: https://orcid.org/0000-0002-2249-5919 12 

Philippe C Habets, ORCID: https://orcid.org/0000-0001-5831-9020 13 

Christiaan H Vinkers, ORCID: https://orcid.org/0000-0003-3698-0744 14 

15 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.01.22281685doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.11.01.22281685


 2

Abstract 16 

Each day, many thousands of new studies are published. Identifying specific study types with 17 

high sensitivity and specificity may improve searchability and accelerate updating systematic 18 

reviews and meta-analyses. Machine learning transformer models could facilitate this 19 

identification process if sufficient training data is available.  20 

We used an active learning strategy to construct a large training set (n=50,000) and fine-21 

tuned the PubMedBERT language model to classify PubMed abstracts as randomized 22 

controlled trials, human studies, systematic reviews with and without meta-analyses, 23 

protocols, and rodent studies. In an external dataset (n=5,000), the average sensitivity and 24 

specificity across study types were 0.94 and 0.96, respectively. PubMed’s internal filters had 25 

a low sensitivity for both systematic reviews with meta-analysis (0.175, CI: 0.057–0.293) and 26 

randomized controlled trials (0.256, CI: 0.119–0.393). We applied this labeling to all 34 27 

million PubMed abstracts currently available and provide the results within an online meta-28 

information platform (EvidenceHunt). 29 

In conclusion, we show that study type classification in PubMed is opportune, given the 30 

available language models. The high accuracy in this study invites extending these models to 31 

more elaborate and hierarchical identification schemes. 32 

 33 

Keywords 34 

Study classification, transformer model, eHealth, literature search, PubMed 35 
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Introduction 37 

Systematic reviews and meta-analyses of randomized control trial (RCT) results are the 38 

cornerstones of evidence-based medicine. Identifying the relevant RCTs in databases such as 39 

PubMed is essential to collecting and collaboratively analyzing new results. PubMed 40 

currently offers the largest and most comprehensive collection of abstracts of biomedical 41 

studies, currently spanning over 34 million abstracts. Unfortunately, these abstracts are not 42 

always accompanied by sufficiently reliable and standardized meta-information (Williamson 43 

and Minter 2019). Therefore, to conduct a systematic review, manual screening of all search 44 

results is essential to exclude irrelevant publications. This manual screening includes the 45 

identification of systematic reviews and meta-analyses that have already been published on 46 

the study in question, but also the existing individual RCTs must also be detected. With 47 

insufficiently reliable meta-data of study abstracts, this process can go suboptimal in two 48 

ways; irrelevant studies may be retrieved, or relevant studies may not be retrieved—the 49 

former event results in more reading work, the latter in the unnecessary omission of evidence.  50 

Therefore, current search strategies that scan raw abstracts for keywords are consistently set 51 

up to achieve high sensitivity (i.e., minimal number of false negatives), but this often results 52 

in low specificity (i.e., many false positives) (Beynon et al. 2013; Geersing 2012; Li et al 53 

2019). Therefore, it frequently happens that a systematic review requires thousands of 54 

abstracts to be screened to identify all relevant RCTs. In addition to RCTs, PubMed also 55 

contains many other study types, including narrative reviews, letters, editorials, preclinical 56 

studies, errata, and more fundamental biomedical research. Its low prevalence makes it 57 

challenging to identify RCTs without receiving large numbers of false positives. The time-58 

consuming task of identifying relevant literature hampers rapid updating of emerging and 59 

often quickly developing evidence. PubMed offers filters for different study types. 60 
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Unfortunately, these filters’ sensitivity and specificity are presumably too low to be useful for 61 

the identification of previously published systematic reviews, meta-analyses, and RCTs. 62 

We propose a solution based on the rapidly developing field of natural language processing. 63 

Instead of creating a filter based on individual words, the overall coherence of the abstract is 64 

mapped and linked to a specific study type. General patterns from descriptions of different 65 

types of studies – including systematic reviews and RCTs – could then assign abstracts to a 66 

specific study type with high sensitivity and specificity. This approach requires a training set 67 

of enough abstracts assigned with study-type labels by human reviewers; it also requires 68 

proper validation to know whether the classification is sufficiently generalizable to serve the 69 

public interest. 70 

In this study, we created a large training set (N=50,000), modeled the overarching patterns, 71 

and validated the resulting model on an independent dataset (N=5,000). We compared this 72 

new approach to existing PubMed filters. Because the prevalence of systematic reviews and 73 

RCTs is relatively low, we tested a new method of creating a training set applying active 74 

learning to present all potentially relevant studies to the rater rather than manually classifying 75 

all studies individually. Using this approach diminishes raters’ efforts as it allows stopping 76 

when these potentially relevant studies are identified rather than labeling all studies in the 77 

dataset. 78 

We hypothesized that it would be feasible be possible to generate a classification model, for 79 

different types of studies, with high sensitivity and specificity. We also showed a relatively 80 

low performance of the internal PubMed filters and an overall efficiency gain in generating a 81 

training data set using an active learning approach. 82 

83 
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Methods 84 

 85 

Data collection 86 

In September 2022, we selected two batches of PubMed abstracts. The first dataset was for 87 

interrater agreement characterization, model training, and internal validation, and the second 88 

dataset was for external validation. 89 

The first batch consists of the first 50,000 abstracts (out of 199,563) in the first week of 90 

January 2018 (query: ALL[SB] AND 2018/01/01:2018/01/07[DP] AND HASABSTRACT). 91 

This batch was split into an interrater set of 5,000 and a training set of 45,000 abstracts. The 92 

second batch consists of the first 5,000 abstracts (out of 255,506) taken four years later 93 

(query: ALL[SB] AND 2022/01/01:2022/01/07[DP] AND HASABSTRACT). 94 

We deliberately selected our external validation data several years later – after the COVID-19 95 

pandemic – as this would allow us to test the generalizability of our model if the literature 96 

gives rise to previously unseen topics and shifts in research trends. 97 

 98 

Data labeling 99 

All abstracts in the interrater set were independently labeled using a pre-specified protocol by 100 

two authors with at least fifteen years of PubMed experience (Vinkers and Otte). Abstracts 101 

were assigned one of the following study labels: 1) a randomized controlled trial, 2) a human 102 

study, 3) a systematic review without meta-analysis, 4) a systematic review with meta-103 

analysis, 5) a study protocol, 6) a rodent study or 7) any other abstract type. Study labels are 104 

provided in Table 1. Not all abstracts contained valuable texts: in some cases, abstracts 105 

referred to a duplicated study. We removed these studies and ended up with a total dataset 106 

size of 4,867 abstracts. 107 
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Labeling was done assisted by active learning. For each study label, the two independent 108 

raters selected five relevant and irrelevant abstracts and used this to initiate a Naïve Bayes 109 

classifier. The classifier assigned label probabilities to all abstracts and presented the raters 110 

with the abstracts that had the highest probabilities for a given class. After each rating, the 111 

classifier was updated to re-assign the probabilities. The rating was continued until all studies 112 

were identified (operationally decided after 200 presented non-relevant abstracts). Because of 113 

the unbalanced distribution of the study types, we chose to use active learning. We used 114 

open-source ASReview LAB v1.0 for labeling.1 115 

After pooling the active learning results and inventorying all disagreements, we determined 116 

the interrater labeling agreement. We relabeled the disagreements independently and resolved 117 

the latest remaining label disagreements in a final discussion round. The inter-rater agreement 118 

is expressed as Cohen’s kappa coefficient (κ). This qualitative statistic is more robust than 119 

simple percent agreement calculation, as it considers the possibility of the agreement 120 

occurring by chance. We used the kappa function from the R package ‘psych’ v2.2.9. 121 

The training set of 45,000 abstracts was similarly labeled with active learning, except for the 122 

prevalent ‘human study’ type. Given the larger dataset and excellent interrater agreement (see 123 

Results), the data was split and labeled by one of the two rating authors. We combined this 124 

additional dataset with the first 4,867 abstracts and used it for model training. 125 

 126 

Model fine-tuning 127 

We fine-tuned PubMedBERT, a state-of-the-art language model pruned to the PubMed 128 

database. PubMedBERT has a transformer architecture to leverage unsupervised pre-training 129 

on a large multi-domain corpus of millions of PubMed abstracts by capturing the used 130 

scientific and clinical language. The transformer model has learned the textual context by 131 

                                                 
1 https://asreview.nl/ 
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mapping subword relationships in example corpora into a neural network. The model applies 132 

an evolving set of mathematical techniques, called attention or self-attention, to detect subtle 133 

ways, even distant data elements, in paragraphs up to a few hundred words. This attention 134 

mechanism has a substantial advantage compared to previous machine-learning designs. The 135 

textual pattern mapping could be done once, as a pre-training, to capture the general structure 136 

of a specific text genre effectively. Pre-training is computationally expensive and requires a 137 

vast amount of example data. PubMedBERT captures the textual structure of fourteen million 138 

PubMed abstracts containing 3.2 billion words (i.e., 21 Gb of raw text data).  139 

We only need to fine-tune this pre-existent language model to our training set for our 140 

classification task. To that aim, we added one additional neural network layer to 141 

PubMedBERT and trained the entire network on the classification to predict which abstracts 142 

belong to which study type. The pre-trained PubMedBERT transformer was downloaded 143 

using the HuggingFace Python library (V4.17, python V3.9). The additional network layer 144 

had a dropout of 0.2, a reshape of 7, and a SoftMax layer. All abstract texts were tokenized 145 

and truncated to a maximum sequence length of 512. 146 

As our set of labels is not larger enough to cover all abstracts – excluding, for example, 147 

studies on non-human primates, cell studies, classical reviews, or diagnostic and prognostic 148 

studies – we also added an additional study type label: ‘remaining’ to the training set, 149 

covering the unlabeled abstracts. 150 

We split the training dataset into train, test, and eval datasets using an 80%, 15%, and 5% 151 

split, respectively, and trained the model until the loss did not improve for two epochs (12 152 

epochs total) at a learning rate of 1e-5 in batches of 8 abstracts on a V100 NVIDIA graphics 153 

processing unit. We tested the model after each epoch (average accuracy on the eval samples) 154 

and selected the model instance with the best accuracy for external validation. The model was 155 

finally tested on the withheld test dataset (accuracy of 92.45%).  156 
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 157 

External validation 158 

The model was trained on 2018 data only. External model validation was done in an 159 

independent dataset of 5,000 abstracts sampled in 2022. The two authors (Otte and Vinkers) 160 

raters independently labeled a random subset (i.e., 2,500 each) of these abstracts. We 161 

characterized the model’s performance with sensitivity and specificity based on the true 162 

positive, true negative, false positive, and false negative numbers (human labels considered 163 

the ‘gold standard’). Due to the relatively large number of studies not belonging to one of the 164 

study type labels, we subsampled this ‘remaining’ category such that we evaluated 1,000 165 

abstracts per rater to the model’s predictions. 166 

 167 

Comparison to PubMed’s internal filter types 168 

PubMed provides filters to select various study types, including ‘Books and Documents’, 169 

‘Clinical Trial’, ‘Meta-Analysis’, ‘Randomized Controlled Trial’, ‘Review’, and ‘Systematic 170 

Review’. These labels are assigned to the studies by librarians; however, the exact criteria 171 

and overall labeling procedure are not publicly documented. Based on our experience, we 172 

notice various false positives and negatives, for example, the ‘Randomized Controlled Trial’ 173 

label assigned to an observational cohort study and a systematic review with meta-analysis 174 

lacking a ‘Meta-Analysis’ label. Therefore, we quantified the agreement between our human 175 

rater dataset (N 4,867) and PubMed’s labels for a subset of labels. We restricted the 176 

comparison to ‘Randomized Controlled Trial’, ‘Meta-analysis’ given the lack of definition 177 

details on the other categories. 178 

179 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.01.22281685doi: medRxiv preprint 

https://doi.org/10.1101/2022.11.01.22281685


 9

Results 180 

 181 

Interrater agreement 182 

The active learning approach accelerated the labeling of low-prevalent study types. For 183 

example, the prevalence of randomized controlled trials among PubMed abstracts is 4.4%. 184 

Systematic reviews with meta-analysis are even scarcer, at 1.7%. The approximate time to 185 

read and classify an abstract was 5-10 seconds. The kappa coefficients of the first and second 186 

labeling round are presented in Table 2 and Table 3. We found high interrater agreement, 187 

particularly if mismatches were reevaluated in an independent second round.  188 

 189 

External validation 190 

We found excellent sensitivity and specificity on the external dataset with abstracts published 191 

four years later compared to the training data (Table 4). This indicates that the model is 192 

generalizable for texts written in different periods (i.e., post-COVID-19 pandemic), as the test 193 

dataset dated before the COVID-19 pandemic (2018), whereas the test dataset was four years 194 

later (2022). 195 

 196 

Comparison to PubMed’s internal filter types 197 

PubMed’s internal ‘Randomized Controlled Trial’ and. ‘Meta-Analysis’ filters only partially 198 

captured the ‘gold standard’ manual labels (Table 5). The number of false negatives 199 

exceeded the number of false positives in both categories. The sensitivity was very low for 200 

the ‘Meta-Analysis’ (0.17) and low for the ‘Randomized Controlled Trial’ (0.26), indicating 201 

limited usability of PubMed’s internal filters to select, for example, randomized trials for a 202 

systematic review. 203 

 204 
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Implementation 205 

We implemented the model in an online cloud platform (https://evidencehunt.com/) after 206 

applying the study type prediction to all PubMed abstracts available (34.7 million). Users 207 

may query, select and export study types. The database is updated weekly with new abstracts 208 

to facilitate scholars and clinicians in need of robust study-type selection and precise search 209 

queries of the vast scientific literature. 210 

211 
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Discussion 212 

We show that it is possible to classify study types in PubMed abstracts with high sensitivity 213 

and specificity (>95%) based on a transformer model that is fine-tuned on an efficiently 214 

constructed training set. Creating a suitable training set requires a lot of time, mainly if the 215 

labels include low-prevalence categories. Because RCTs and systematic reviews are 216 

relatively infrequent in PubMed, a conventional method of training set construction requires 217 

labeling thousands of abstracts. By effectively using active learning, we were able to label 218 

only those abstracts that were marked as potentially interesting. This approach confirms a 219 

trend in the research field of systematic reviews where active learning has previously been 220 

very efficient. The current active learning environment is user-friendly and freely accessible. 221 

Because labeling via active learning mostly works with binary classifications (i.e., relevant or 222 

irrelevant), we repeated the process for each study type and later combined these labels to 223 

create the appropriate dataset for the multiclass classifier. The added value of active learning 224 

is interesting for constructing more detailed classification schemas. The added value may be s 225 

limited if the prevalence of positive entries is high (as in our case with ‘human study’ type). 226 

One limitation of the current classification algorithm is that it does not cover all existing 227 

PubMed abstracts. For example, classical reviews, cell line studies, and prediction studies are 228 

missing. Also, our classification only assigns a single label to an abstract. In practice, there 229 

are situations where an abstract describes both human and animal results, for example. Open 230 

trials are now not separately classified in a separate category, and there is currently no 231 

distinction between phase 1, 2, 3, and 4 clinical trials. However, this may be possible in the 232 

future with additional training. Hierarchical classification is desirable as meta-analyses may 233 

or may not be nested in rodent-oriented or human-oriented systematic reviews, but also 234 

necessary to establish a classification scheme separating children and adults. RCTs are 235 
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possible in children and adults, so assigning multiple labels to a single abstract is a necessary 236 

next step. 237 

Machine learning models require exceedingly larger training data sets, we show that using 238 

active learning can accelerate the labeling process. With the exponential increase of 239 

publications each year, finding relevant publications is becoming more difficult. Here we 240 

show that transformer models can aid in selecting studies, potentially preventing wasting 241 

precious time and energy to find relevant publications. 242 

243 
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Tables 263 

 264 

Study type label Used working definition 

1. Randomized controlled trial. An explicit mention of randomization. 

Excluding non-human primate and rodent trials. 

2. Human study. Human studies other than randomized 

controlled trials, observational and intervention 

(e.g., cohorts, open trials, or case-control 

studies). 

3. Systematic review without meta-analysis. Excluding non-systematic reviews, non-human 

studies, protocols, or systematic reviews with a 

meta-analysis. 

4. Systematic review with meta-analysis. An explicit mention of a meta-analysis. 

5. Study protocol. Study protocol for trials or systematic reviews. 

6. Rodent study. Only primary research studies on rats or mice, 

excluding rodent cell line research. 

7. Misc. All other studies. 

 265 

Table 1. Study labels with pre-specified working definitions used for labeling. 266 

267 
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 268 

Study type label Total (N) Mismatch (N) κ (CI) 

Randomized controlled trial 218 14 0.77 (0.65–0.88) 

Human study 2267 27 0.97 (0.96–0.98) 

Systematic review without 
meta-analysis 354 32 0.78 (0.71–0.85) 

Systematic review with meta-
analysis 83 7 0.83 (0.71–0.95) 

Study protocol 130 4 0.90 (0.80–1.00) 

Rodent study 403 46 0.77 (0.71–0.83) 

 269 

Table 2. After the initial active learning round, the interrater agreement is expressed as a 270 

kappa coefficient with 95% confidence interval. The total N is based on the finalized version. 271 

272 
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 273 

Study type label Total (N) Mismatch (N) κ (CI) 

Randomized controlled trial 218 2 0.97 (0.92–1.00) 

Human study 2267 9 0.99 (0.98–1.00) 

Systematic review without 
meta-analysis 354 6 0.96 (0.92–0.99) 

Systematic review with meta-
analysis 83 2 0.95 (0.88–0.99) 

Study protocol 130 0 1.00 (1.00–1.00) 

Rodent study 403 7 0.97 (0.94–0.99) 

 274 

Table 3. After the second active learning round, the interrater agreement is expressed as 275 

kappa coefficient with 95% confidence interval. The total N is based on the finalized version. 276 

277 
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 278 

Rater Study type label N TP TN FP FN Sensitivity CI 
(lower) 

CI 
(upper) Specificity CI 

(lower) 
CI 
(upper) 

1 Randomized controlled trial 1000 31 956 5 8 0.795 0.668 0.922 0.995 0.99 0.999 

1 Human study 1000 32 796 170 2 0.941 0.862 1.020 0.824 0.800 0.848 

1 
Systematic review without meta-
analysis 

1000 25 966 7 2 0.926 0.827 1.025 0.993 0.987 0.998 

1 Systematic review with meta-analysis 1000 40 956 4 0 1.000 1.000 1.000 0.996 0.992 1.000 

1 Study protocol 1000 18 959 23 0 1.000 1.000 1.000 0.977 0.967 0.986 

1 Rodent study 1000 89 893 9 9 0.908 0.851 0.965 0.990 0.984 0.997 

1 (Remaining, non-labeled) * 1000 542 251 5 202 0.728 0.697 0.760 0.980 0.964 0.997 

2 Randomized controlled trial 1000 20 970 8 2 0.909 0.789 1.029 0.992 0.986 0.997 

2 Human study 1000 4 799 196 1 0.800 0.449 1.151 0.803 0.778 0.828 

2 
Systematic review without meta-
analysis 

1000 11 976 13 0 1.000 1.000 1.000 0.987 0.980 0.994 

2 Systematic review with meta-analysis 1000 60 930 9 1 0.984 0.952 1.015 0.990 0.984 0.997 

2 Study protocol 1000 9 985 6 0 1.000 1.000 1.000 0.994 0.989 0.999 

2 Rodent study 1000 76 887 35 2 0.974 0.939 1.009 0.962 0.95 0.974 

2 (Remaining, non-labeled) * 1000 551 184 2 263 0.677 0.645 0.709 0.989 0.974 1.004 

 279 

Table 4. The fine-tuned PubMedBERT model’s performance on unseen external data. TP, 280 

true positive, TN, true negative, FP, false positive, FN, false negative. CI, 95% confidence 281 

interval. We prevented skewed contingency tables and artificially high performances, by 282 

pruning the ‘remaining’ category of unlabeled abstracts to a random subset, such that the total 283 

sample size per rater equals N 1,000 (originally n=2,500). 284 

285 
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 286 

Study type label N TP TN FP FN Sensitivity 
CI 

(lower) 
CI 

(upper) Specificity 
CI 

(lower) 
CI 

(upper) 
Systematic review with 
meta-analysis 4867 7 4824 3 33 0.175 0.057 0.293 0.999 0.999 1.000 

Randomized controlled 
trial 

4867 10 4820 8 29 0.256 0.119 0.393 0.998 0.997 0.999 

 287 

Table 5. PubMed’s internal filter comparison. TP, true positive, TN, true negative, FP, false 288 

positive, FN, false negative. CI, 95% confidence interval. 289 
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