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Abstract 

Background: Emphysema is a common pulmonary pathology known to be associated with 

increased risk of lung cancer and lung biopsy complications. Prevailing quantitation method of 

calculating voxel-wise percentage of low attenuation area (LAA) of lung tissue from CT scans is 

prone to noise and error due overcounting of single voxel LAA and incomplete segmentation of 

airways.  

Purpose: We aim to develop an accurate algorithm to quantitatively measure emphysema and 

classify its severity.. 

Methods and Materials: Two chest CT datasets were obtained from two tertiary hospitals as 

training and external validation datasets. Exclusion criteria included any patients whose 

emphysema extent was not specified by the accompanying report. The training dataset included 

722 patients, and the validation dataset included 1006 patients. Following lung segmentation and 

airways removal, we applied convolution of the segmented lung with averaging kernels of different 

sizes in 2D and 3D. Cutoffs between "none," "mild to moderate," and "severe" emphysema were 

determined via weighted logistic regression on the training dataset, and the categorical emphysema 

extent was obtained for each patient. The main measure for evaluating model performance was 

area under the curve (AUC) of the receiver operating characteristic (ROC) on the training dataset 

and accuracy of classification on both the training and the validation dataset. The 1x1x1 kernel, 

which is equivalent to the traditional LAA score, was used for comparison to other kernels for 

performance evaluation. 
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Results: The best model used a 3D 3x3x3 kernel for average filtering with airways post processing 

and achieved a mean AUC of 0.782 and 0.985 for "none"-versus-rest and  "severe"-versus-rest 

classifications respectively. It achieved a 0.676 and 0.757 multiclass classification accuracy on the 

training and validation dataset respectively.  

Conclusions and Relevance: We present an automated pipeline that can achieve accurate 

emphysema quantification and severity classification. We showed that convolving the segmented 

lung with a 3D 3x3x3 kernel and post-processing to remove airways can reliably quantify 

emphysema. 

 

1. Introduction 

Emphysema is a lung disease belonging to a subtype of chronic obstructive pulmonary 

disease (COPD) and resulting from the destruction of walls of the acinus (1). COPD was the third 

leading cause of death in 2019 in the United States (2), with its impact amplified due to the 

COVID-19 pandemic since then. Furthermore, emphysema has been associated with increased risk 

and worse prognosis for lung cancer (3–5) and with increased risk of pneumothorax following 

percutaneous CT-guided lung biopsy (6). Hence, quantification of emphysema can be used for 

more objective assessment of COPD severity, which can then provide guidance on biopsy planning 

and interventions such as lung reduction surgery (7,8).  Moreover, emphysema quantification 

allows for a precise and consistent benchmark to incorporate emphysema as a predictor for lung 

cancer risk stratification and other research projects in pulmonary medicine. 

One commonly utilized method for emphysema quantification based on CT imaging is to 

measure the percentage of voxel-wise low attenuation area (LAA). Previous attempts on 

emphysema quantification have determined the -950 HU threshold to be optimal or at least near-
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optimal for voxel-wise LAA classification (9), and LAA scores with the -950 threshold were used 

in pulmonary function related predictions such as airflow limitation (10). Traditional single voxel-

wise LAA is a suboptimal metric for emphysema evaluation because it fails to exclude regions of 

single voxel LAA that can be physiologically present in patients with normal lung physiology and 

could be accentuated by quantum mottles especially in low dose chest CTs (11).  

Hence, we present an updated lung emphysema quantification algorithm that applies a 

kernel convolution to account for multiple adjacent patches of LAA and additional image 

processing to accurately remove airways. We then find the optimal cutoff values for emphysema 

severity categories by correlating the emphysema quantitation with the corresponding radiologist 

reported classification.  

 

2. Materials and Methods 

Patients 

This retrospective, single-institution, institutional review board (IRB) approved, and 

Health Insurance Portability and Accountability Act (HIPAA)-compliant study included two chest 

CT datasets. The cut-off determination dataset consisted of consecutively collected 801 patients 

who were in the lung cancer screening program and obtained chest CT from [hospital 1] from 

2015-2022, and data validation dataset consisted of 1093 patients who similarly were in the lung 

cancer screening program and obtained chest CT from [hospital 2] from 2018-2022. The 

radiologist-classified emphysema extent for each patient was extracted from corresponding 

radiology reports using regular expression. Radiology reports that did not mention emphysema 

were regarded as no emphysema (recorded as "none"). Reports with indications of both 

emphysema and the extent of emphysema allowed classification of emphysema extent into "mild," 
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"mild to moderate," "moderate," "moderate to severe," and "severe." The "mild" and "moderate" 

classes were combined into "mild to moderate." and "moderate to severe" and "severe" classes 

were combined into "severe" for three categories of classification in the end. 89 reports in the 

cutoff determination dataset and 87 reports in the external validation dataset mentioned 

emphysema in the report but did not specify the severity, which were therefore noted as "not 

specified," and were excluded during the cutoff determination process, as shown in Figure 1.  

Preprocessing and Lung Mask Segmentation 

For each patient, the full series of axial CT scans was stacked into a 3D array with the first 

dimension representing the axial direction and following a superior to inferior orientation. The 3D 

array was first adjusted to a window width of 1500 HU and a window level of -600 HU and resized 

to 1mm voxels before being passed into an in-house thresholding based segmentation algorithm to 

retrieve the 3D lung mask. Next, an in-house image processing algorithm was used for segmenting 

out the lungs while excluding major airways. The axial scans were binarized by  a -800 HU 

threshold, contours of each region were detected, and regions that occupy at least 80% of the entire 

area enclosed by their contours were flagged as airways and were removed.   An illustration of the 

segmentation algorithm workflow is shown in Figure 2.  

We tested the accuracy of the lung segmentation and airways removal algorithm on the 

Lung CT Segmentation Challenge 2017 Dataset, (19–21) (n=60) by comparing the masks 

outputted by our algorithm and the ground truth masks using Dice score as the metric. Furthermore, 

50 randomly selected segmentation masks were reviewed manually by a board certified radiologist 

(radiologist 1). The source codes for the in-house processing algorithms are made available for 

review. 

Emphysema Quantification 
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The windowed image and windowed mask were passed through a function that maped each 

voxel in the original image to a patch average of a  ps mm 3D cubic or 2D square kernel, where ps 

is a positive integer, with the original voxel as its center, as shown in the supplementary 

information section. The emphysema scores are obtained as the fraction of the patch average that 

is below -950 HU. The patch average obtained from a ps =1 kernel in both 2D and 3D cases is 

equivalent to the original image. Emphysema scores based on 3D kernels of ps = 1,3,5 and 2D 

kernels of ps = 3,5,7 were generated for each patient. In practice, any emphysema score larger than 

0.100 for all kernels was noted to be severe emphysema.  

A board certified radiologist (radiologist 1) also visually evaluated and confirmed the 

accuracy of the emphysema quantitation masks by visually reviewing emphysema Gaussian-

smoothed heat-map overlaid on chest CT images (Figure 3). Only voxels labeled by the algorithm 

as emphysema-positive were overlaid by a heatmap voxel (shown in the fourth column of Figure 

3).  

Calibration with Cutoff Determination 

A total of 722 chest CTs from [hospital 1] were obtained after excluding "not specified" 

entries (n=89)  to determine the emphysema severity cutoffs. Random split stratified by 

emphysema category was applied to produce 5 consecutive folds of the dataset, thus generating 

five pairs of training and test dataset with the test dataset being each fold and the training dataset 

being the rest 4 folds combined.  

For each training set, the outliers for each class, defined by scores that are either greater 

than upper quartile (UQ) + 1.5*interquartile range (IQR) or less than lower quartile (LQ )- 

1.5*IQR,(12) were  removed (13–15). The cutoffs for separating "none" and "mild to moderate" 
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and for separating "mild to moderate"  and "severe" were determined by "none"-versus-rest and 

"severe"-versus-rest binary classifications respectively.  

For each classification, a weighted logistic regression model (sklearn 1.1.0 

LogisticRegression class) with weights inversely proportional the number of samples in each 

category was trained on each training set with the emphysema score as the variable and the 

binarized encoding of the emphysema extent as the ground truth label. An ROC curve was plotted 

on the model's prediction on validation set, and the emphysema score cutoff was selected based 

on maximizing Youden index to optimize the trade-off between sensitivity and specificity (16). 

The final cutoff was determined, and the emphysema prediction on the test set was made.  

Predictions from the five test sets were recombined to give the final predictions for all 722 

patient entries. Four metrics — the mean absolute encoded difference between prediction and 

ground truth labels, the multiclass accuracy, F-score, and kappa score, — were computed. The 

three categories — “none," "mild to moderate," "severe" — were encoded into 0,1,2 respectively 

to calculate the mean absolute encoded difference. 

The above process (from train-test split to metric calculation) were repeated 10 times to 

obtain AUC distributions (n=50) and metric distributions (n=10). The final cutoffs were 

determined by averaging across the cutoffs determined from each training set (n=50). The entire 

cutoff determination workflow is illustrated in Figure 1. 

Validation Dataset 

 For validation of algorithm performance, 1006 lung cancer screening CTs from [hospital 

2] were collected  after excluding "not specified" entries (n=87). Emphysema scores were 

produced using the six kernels, and the corresponding emphysema classifications were made based 

on the final cutoffs obtained for each kernel from the cutoff determination dataset.  
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3. Results 

Patients  

 Demographics of the two datasets (after exclusion criteria) are shown in Table 1. 722 

participants and 1006 participants were included in the cutoff determination and external 

validation dataset respectively. Both dataset had an average age in the 60-65 range and had more 

male participants, with the external validation dataset consisting of more males. Both datasets 

largely contained patients with no or mild emphysema.  

Preprocessing and Lung Mask Segmentation 

Upon testing the accuracy of our lung segmentation algorithm with the Lung CT 

Segmentation Challenge 2017 Dataset, our algorithm achieved a mean Dice score of 0.930 with a 

standard deviation of 0.030. The first two columns of Figure 3 present one example of the lung 

mask outputted by the algorithm in comparison with the original image from each category of 

none, mild, moderate, severe cases. All 50 out of 50 randomly sampled lung segmentation masks 

that were reviewed by the board certified radiologist were confirmed to be accurate in 

identification of the left/right lobe and qualitatively satisfactory in segmentation of the lung 

parenchyma. 

Emphysema Quantification 

As shown in a representative example in Figure 3, the area of heatmap increased drastically 

with increased emphysema severity according to radiologist labels, indicating that the emphysema 

quantification algorithm was able to capture emphysema-positive regions and differentiate among 

lung scans of different emphysema severities. False positive cases were also recorded for error 

analyses, including pulmonary cysts and honeycombing cases that were erroneously identified as 

emphysema (Figure S1). 
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Calibration with Cutoff Determination 

Depending on the kernel and the exact split into the sub-training and validation datasets, 

the outlier removal decreased the number of patients in the sub-training dataset from n=577-578 

to n=477-565. For each cutoff, during the cutoff determination process, 50 AUCs on the validation 

dataset were obtained for each kernel (10 repeats of 5 train-test split,). Figure 4 compares the 

distribution of AUCs given by logistic regression for each of the 6 kernels. For 3D kernels, a ps=1, 

which is equivalent to LAA, resulted in lower AUCs for both cutoffs. The three 2D kernels showed 

similar AUC distributions, with 3x3 and 5x5 performing better for distinguishing "none"-versus-

rest emphysema. For both "none"-versus-rest and "severe"-versus-rest classifications, the AUC of 

ps=1 is significantly lower than AUCs of other kernels. The AUC of 3D ps=5 is significantly lower 

than AUCs of other kernels for "none"-versus-res classification.  The mean AUCs are also 

presented in Table 2, with the 3D ps=3, 2D ps=3, and 2D ps=5, 2D ps=7 kernels achieving the 

similar mean AUCs of 0.774-0.794 and 0.985-0.992 for "none"-versus-rest and "none to moderate" 

versus "severe" classification respectively.  

For each kernel, boxplots of the emphysema score distributions grouped by radiologist 

classification in the cutoff determination dataset were plotted in Figure 5, and quantitative metrics 

were presented in Table 2. As shown in Figure 5A and 5B, the median emphysema scores showed 

a consistent increase with the increase in emphysema severity for all kernels, with the spread of 

emphysema score distribution for "none" and "mild" but not "severe" decreases rapidly with kernel 

size. LAA score had the highest mean absolute difference between model predictions and 

radiologist classifications (0.482) and the lowest accuracy (0.583). 3D ps=5 kernel had the second 

lowest accuracy (0.643). All other kernels achieved accuracy in range 0.663-0.686, with 2D ps=3 

and 3D ps=3 kernels achieving the highest kappa scores, and 2D ps=3 and 2D ps=5 kernels 
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achieving the highest F scores. As shown in Figure 5B, all cutoffs demonstrated separations 

between the three classes. 

External Dataset Validation 

Finally, the metrics for ternary (none, mild-moderate, and severe) classification on the 

external validation dataset are shown in Table 3. Boxplots of emphysema score distributions for 

each kernel are presented in Figure 6. Comparison between the Figure 5B and Figure 6B 

demonstrated a disparity in the emphysema score distributions between 3D kernels and 2D kernels. 

While the two 3D kernels (ps=3 and ps=5) showed slight decrease or remained constant in terms 

of the spread of score distribution in "none" and "mild to moderate" classes, which was consistent 

with the LAA score, all three 2D kernels exhibited a larger spread of "none" and "mild to 

moderate" distributions. All three 2D kernels as well as the 3D ps=5 kernel had much higher mean 

absolute encoded difference (0.354-0.521) and lower accuracy (0.561-0.674) than  LAA score 

(mean difference=0.267, accuracy=0.747). The 3D ps=3 is the best kernel with lowest mean 

difference 0.257, highest accuracy 0.757, and highest kappa score 0.378. Indeed, as shown in 

Figure 6B, only the 3D ps=3 cutoffs showed reasonable separations between the three classes. The 

confusion matrices for the 3D kernels for the cutoff determination dataset (averaged over 10 

repeats) and the external validation dataset are provided in Table S1 and S2. 

 

4. Discussion  

 We have demonstrated an accurate emphysema quantification algorithm that leverages 3-

dimensional multi-voxel kernels and image processing with airways removal. The 3x3x3 (3D 

ps=3) kernel (AUC = 0.782 & 0.985, accuracy=0.676 & 0.757) achieved accurate emphysema 
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quantification as demonstrated by the provided evaluation metrics and qualitative analyses of heat 

map overlays of emphysema regions.  

 Accurate emphysema quantitation has a number of important clinical and research 

applications. First, the current practice of reporting emphysema in clinical radiology is subjective 

and poorly calibrated among radiologists at different practices. Quantitative imaging would 

introduce more reliable reporting of emphysema and its severity in radiology reporting. 

Furthermore, being able to objectively quantify emphysema opens up the possibility of more 

precisely defining a research cohort (e.g. severe emphysema cohort as quantified by imaging) 

rather than relying on subjective classification by a radiologist. Finally, being able to identify an 

area with objective severe emphysema would allow for more precise targeting and treatment of 

obstructive airways disease by lung reduction surgery. 

 Traditionally accepted emphysema quantitation by counting voxel-wise LAA had a 

number of disadvantages including overcounting of quantum mottles in low dose CT as well as 

subclinical emphysema that likely contribute minimally to the overall disease severity. By 

counting in 2D or 3D kernels in patches, our proposed algorithm mitigates these shortcomings and 

focuses on larger and connected regions of emphysema.  

In evaluating our algorithm, the 2D kernels achieved comparable AUC, accuracy, and other 

metrics with 3D ps=3 kernel, but the score distribution was less robust in the external validation 

dataset, resulting in lower performance than the LAA score. Indeed, in cases where one particular 

axial slice is especially noisy or the lung segmentation has failed to remove airways very close to 

lung lobes, 3D kernels ignored this false positive if its neighboring axial slices are normal, but 

such conditions inflated the emphysema scores produced by 2D kernels, which neglected the 

connection along the inferior-superior axis. Although the 3D ps=1 (LAA score) also achieved 
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comparable accuracy with the 3D ps=3 kernel on the external validation, the former's low AUC 

scores make it unlikely to be a good predictor. Furthermore, inspecting the confusion matrix and 

the boxplot for the external validation dataset showed that the LAA score was more biased toward 

predicting "none" classes than the 3D ps=3 kernel. 

 A few notable incorrect predictions from error analysis included false positive cases 

resulting from pulmonary cysts, honeycombing, and bronchiolitis obliterans. The algorithm not 

being able to differentiate false-positive pathologies in CT scans from true emphysema is not 

unexpected given that these pathologies also present with areas of low attenuation. These may 

ultimately need to be resolved at the discretion of clinical radiologists or with more advanced deep 

learning based algorithms that may be able to take into account contextual information surrounding 

the pathologies.  

 A few limitations are noted for the study. First, the ground truth labels of emphysema 

severity extracted from radiology reports were sometimes imperfect, especially in the cases where 

there was no mention of emphysema. Most cases that did not mention emphysema were noted to 

have little to no emphysema based on our quantitation algorithm, but the cost of re-annotating the 

images was prohibitive for the study. Second, the ground truth labels were based on radiologic 

classification of emphysema rather than clinical COPD severity assessment tools such as the 

GOLD criteria. However, GOLD criteria may be also influenced by chronic bronchitis in addition 

to the degree of emphysema, therefore, arguably, no existing clinical guideline would be perfect 

in quantifying the degree of lung parenchymal destruction. Third, since the lung segmentation 

component of this algorithm removes small patches of dense regions within the lung lobe that are 

below -800 HU during the airway removal process, it  occasionally over-removes small lung 

parenchyma regions that are emphysema-rich and connected to major airways. However, given 
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that these cases represent severe emphysema patients, such slight over-removal of emphysematous 

regions were unlikely to affect the final emphysema severity classification.  

In conclusion, we propose a 3D averaging kernel based algorithm that can quantify and 

differentiate emphysema severity, which can be useful for integrating quantitative imaging and its 

associated objectivity into radiology reporting, which in turn can better inform lung cancer risk, 

define research cohorts, and guide lung reduction surgery planning.  
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Figures and Tables 

 

Figure 1. Cutoff determination and validation workflow.  
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Figure 2. Lung segmentation & emphysema quantification workflow  
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Figure 3. Row 1-4: None, mild, moderate, severe cases. Column 1-4: axial ct scan with window level -600 and 

window width 1500, lung mask, axial ct scan with window level -750 and window width 600, axial ct scan 

overlayed with heatmap indicating emphysema locations and severity as classified by 3D kernel with patch size = 3 

(i.e. a 3x3x3 kernel). Red circle indicates non-airway regions removed by the postprocessing step of the 

segmentation algorithm. 
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Figure 4. Comparison of AUC distributions for different kernels. LAA score (3D ps=1) and 3D ps=5 kernels had 

the lowest AUC scores.  
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Figure 5. (A) Cubic root transformed emphysema score distributions of the cutoff determination dataset of 6 

different kernels. (B)  Cubic root transformed emphysema score distributions after regrouping with the final cutoffs.  
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Figure 6. (A) Cubic root transformed emphysema score distributions of the external validation dataset of 6 different 

kernels. (B)  Cubic root transformed emphysema score distributions after regrouping with the final cutoffs. 

 

 

 

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 2, 2022. ; https://doi.org/10.1101/2022.10.31.22281562doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281562
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Cutoff 

  Determination Dataset 

External 

  Validation Dataset 

Number of Participants (Total) 722 1006 

none 472 736 

mild 164 148 

mild to moderate 7 11 

moderate  54 76 

moderate to severe 5 5 

severe 20 30 

Male % 62.2 84.6 

Age 65.4±6.5 63.2±6.6 

 

Table 1. Demographic statistic of patients after exclusion 
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3D ps=1  

(LAA) 3D ps=3 3D ps=5 2D ps=3 2D ps=5 2D ps=7 

Cutoff("none

" vs "rest) 0.280 0.159 0.082 0.131 0.094 0.057 

Cutoff("sever

e" vs rest) 0.377 0.261 0.158 0.254 0.162 0.135 

AUC ("none" 

vs rest) 0.692±0.010 0.782±0.013 0.712±0.013 0.796±0.011 0.794±0.009 0.774±0.010 

AUC 

("severe" 

versus rest) 0.949±0.006 0.985±0.002 0.987±0.006 0.988±0.003 0.992±0.002 0.991±0.003 

mean 

absolute 

difference 0.482±0.008 0.365±0.004 0.38±0.005 0.337±0.005 0.355±0.003 0.366±0.007 

multiclass 

accuracy 0.583±0.005 0.667±0.003 0.643±0.005 0.686±0.004 0.675±0.002 0.663±0.006 

F score 0.577±0.006 0.676±0.003 0.658±0.007 0.702±0.004 0.706±0.002 0.672±0.009 

kappa score 0.196±0.005 0.316±0.008 0.257±0.009 0.333±0.007 0.304±0.005 0.312±0.008 

 

Table 2. Quantitative cutoffs (for cubic-root transformed emphysema scores) and metrics for emphysema 

classification based on different kernels. Abbreviations: LAA (fraction of low attenuation area), ps (patch size of 

kernel) 
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3D ps=1  

(LAA) 3D ps=3 3D ps=5 2D ps=3 2D ps=5 2D ps=7 

mean 

absolute 

difference 0.267 0.257 0.354 0.398 0.452 0.521 

multiclass 

accuracy 0.747 0.757 0.674 0.664 0.629 0.561 

F score 0.780 0.779 0.660 0.642 0.601 0.516 

kappa score 0.319 0.378 0.299 0.304 0.257 0.218 

 

Table 3. Quantitative metrics for emphysema classification on external validation dataset using final cutoffs 

obtained from the cutoff determination dataset. Abbreviations: LAA (fraction of low attenuation area), ps (patch size 

of kernel) 
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