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Abstract— Heart rate variability (HRV) is the reflection of
physiological effects modulating heart rhythm. In particular,
spectral HRV metrics provide valuable information to inves-
tigate activities of the cardiac autonomic nervous system.
However, uncertainties and artifacts from measurements can
reduce signal quality and therefore affect the evaluation of
HRV measures. In this paper, we propose a new method for
HRV spectrum estimation with measurement uncertainties
using matrix completion (MC). We show that missing values
of HRV spectrum can be efficiently estimated using the MC
method by leveraging the low rank property of the spectrum
matrix. In addition, we proposed a refined matrix completion
(RMC) method to improve the estimation accuracy and
computational efficiency by introducing model information
for the HRV spectrum. Experimental studies on five public
benchmark datasets show the effectiveness and robustness
of the developed RMC method for estimating missing entries
for HRV spectrum with different masking ratios. Furthermore,
our developed RMC method is compared with five deep
learning models and the traditional MC method; the results
of this comparison study demonstrate that our developed
RMC method obtains the least estimation error with the
minimal computation cost, indicating the advantages of our
developed method for HRV spectrum estimation.

Index Terms— Heart rate variability, uncertainty, spectrum
estimation, HRV modelling, matrix completion.
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I. INTRODUCTION

Heart rate variability (HRV) is defined as the changes of time
intervals between consecutive heartbeats [1]. Modulated by the
sympathetic and parasympathetic branches of the autonomic
nervous system (ANS), these changes are considered as reliable
reflections of many physiological factors modulating the normal
rhythm of the heart [2], [3]. For example, high HRV suggests
healthy cardiac activities, as it allows a better adjustment to
external and internal stimuli; In contrast, low HRV indicates
inadequate parasympathetic or excessive sympathetic activity,
which is believed to be associated with increased morbidity [4],
[5]. HRV is therefore widely used to assess physiological
and pathological conditions, particularly in the setting of
cardiovascular disease (CVD) [6], [7], which is currently the
most common cause of death worldwide, with an estimation
of 30% of global mortality according to the World Health
Organization (WHO) [8], [9].

HRV data can be evaluated using a variety of signal analysis
methods. For example, HRV measures can be calculated in
the time domain, which typically computes statistical indices
of HRV data, including the mean value of normal-to-normal
RR intervals (NN), root mean square of successive difference
of intervals (RMSSD), and standard deviation of NN intervals
(SDNN) [10], [11]. Compared to time domain analysis, HRV
indices in the frequency domain describe absolute or relative
power distribution with different frequency bands of the HRV
data. In particular, spectral features of HRV data were found
to be reliable markers of sympathetic and/or parasympathetic
activity [12]. For example, the low frequency (LF: 0.04 - 0.15
Hz) of HRV spectrum is generally mediated by sympathetic
and parasympathetic actions; while the high frequency (HF:
0.15 - 0.4 Hz) is mediated by the parasympathetic nervous
system; as a consequence, the LF/HF ratio can be used as an
index of sympathovagal balance [13], [14].

The most common method used to derive HRV data is via
electrocardiography (ECG) recordings. With appropriate QRS
detectors, R-peaks in the ECG morphology can be identified,
then HRV sequence can be obtained by computing the RR
intervals [15]. Other than using ECGs, some studies suggest
using photoplethysmography (PPG) to derive the HRV data,
where PPG is a non-invasive technique that utilises optical
principles to obtain pulse waves from the microcirculation in
peripheral tissue [15], [16]. In particular, the use of PPG signal
to detect pulse-wave related HRV, also known as pulse rate
variability (PRV), has attracted considerable attentions in recent
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years [16], which is due to the convenience and low cost of
acquiring PPG signals using wearable devices [17].

Despite the widespread use of ECG or PPG signals for
HRV analysis, it is still challenging to obtain reliable HRV
data from these signals. This can be due to a number of
factors; (i) either the ECG or PPG signal is sensitive to
measurement noise and uncertainties, e.g., missing values,
which would have subsequent effects on the HRV data [17]; (ii)
the analytical approach and computational procedures present
complexities when deriving HRV measures using these signals,
such as R peak identification using QRS detectors, RR interval
interpolation and resampling to generate the tachogram. These
processes could introduce additional estimation errors on HRV
data analysis [15]; and (iii) the ECG signal is a composition of
multiple frequency components that are produced by a variety
of physiological processes, and abnormalities in these processes
can easily affect the frequency spectrum of HRV data [10].

To this end, many computational techniques have been
developed to address these challenges in the analysis of HRV
data. For example, the Gaussian model was used to estimate
frequency components from noisy HRV data [18]; ensemble
machine learning was used to explore linear and non-linear
correlations between HRV features derived from ECG data [19];
and a hybrid deep learning model was developed to combine
different HRV features and produced reliable classification
performance [20]. Nevertheless, machine learning methods, and
in particular deep neural networks, typically require expertise in
model development and hyperparameters tuning. Furthermore,
it is essential to form a large number of training samples to
guarantee the model performance. Therefore, more efficient
and reliable methods need to be developed to address these
uncertainties in HRV data analysis.

Low-rank matrix completion (MC) is a promising method
to estimate missing entries for incomplete or inexact observed
data [21], where the low-rank property of data measurements
is believed to exist in many real-world applications. This is
due to the characteristics of intrinsic low dimensional space or
an underlying trend of massive measured data [22], [23]. Using
the low-rank property, missing entries in the observations can
be potentially inferred by the partially sampled data. The MC
technique has been studied for image processing [22], remote
sensing [24], and wireless sensor networks [25]. It also has
been used in bioinformatics, such as in the recognition of long
non-coding RNA (lncRNA) disease associations [26], and in
microRNA target prediction [27]. However, the use of MC
method for HRV spectrum estimation is largely unexplored in
the literature.

In this paper, we develop a new method to estimate
uncertainties of HRV spectrum using the MC method. By
leveraging the low-rank property of power spectral density
(PSD) of HRV data, we show that uncertainties in the spectrum
can be efficiently inferred using partial entries of the data matrix.
In particular, we investigate characteristics of the HRV data;
i.e. LF and HF of the spectrum, and a new framework of
refined matrix completion (RMC) method is developed for
missing value estimation by using important data entries in
the HRV matrix, which is expected to have more efficient
and robust performance on the uncertainty estimation. To

evaluate the performance of our method for HRV spectrum
estimation, extensive experimental studies are implemented on
five benchmark datasets; In addition, the traditional MC method
and five deep recurrent models are used for comparison study
with our developed RMC method. The experimental results and
comparison studies demonstrate the robustness and advantages
of our developed method for HRV spectrum estimation. The
contributions of this paper are:

1) A new method for uncertainty estimation of HRV
spectrum is developed by using the MC technique, which
leverages the low-rank property of data matrix that is
derived from HRV spectrum.

2) To improve the estimation performance and computation
efficiency, a new framework with refined matrix comple-
tion is proposed by investigating the modelled spectrum
of HRV data.

3) Extensive experimental studies are implemented on five
well-known ECG benchmark datasets to investigate the
performance of our developed model for HRV spectrum
estimation.

4) Comparative studies with five different types of deep
recurrent neural networks and the traditional MC method
are performed to show advantages of our developed
model for missing entry estimation.

The remainder of this paper is organised as follows. Section
II formulates the problem of HRV spectrum estimation. Section
III develops the MC method and refinement. Section IV
performs the analysis of HRV data. The results of spectrum
estimation and comparison study are presented in Section V,
and finally conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

A. Notations

In this paper, the set of real numbers is denoted as R, and the
set of natural numbers is denoted as N . Bold uppercase letter
A = {ai,j}i=1,...,n,j=1,...,p ∈ Rn×p denotes a matrix with n

rows and p columns. The notion ||A||F =

 n∑
i=1

p∑
j=1

|aij |2
1/2

denotes its Frobenius norm. The notion ||A||∗ =
∑

i σi(A) is
the nuclear norm of this matrix where σi(A) denotes the ith

singular value of A, and its 2-norm is defined as ||A||2 =
σmax(A) where σmax is the largest singular value.

B. Problem Formulation

Assuming the sequence z(t) ∈ R, t ∈ [0, Ts] is the pre-
processed HRV data with its frequency components represented
as

P
(
f, f̃

)
= F(z(t)), (1)

where f̃ = [fl, fr] indicates the interested frequency range of
the HRV data, fl and fr are the left and right bounds separately.
Here F(·) denotes the spectrum operator projected to the
interested frequency range f̃ , and P (f, f̃) is the calculated
power spectral density (PSD) function of the HRV data. From
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the PSD signal P (f, f̃), we can extract different frequency
variables that are related to the PSD. More precisely,

hk

(
f, f̃k

)
= ϕk

(
f̃k, P (f, f̃)

)
, (2)

where k = 1, 2, · · · , Nk indicates different types of HRV
variables, such as the power of LF or HF, or the ratio between
the LF and HF. The nonlinear mapping ϕk(·, ·) computes
frequency variable hk from the spectrum P (·, ·) for the kth

type of HRV variables in the f̃k frequency range.
We note that the measurements of HRV data depend on the

quality of ECG recordings, which may be prone to measurement
noise and missing values. Other factors such as the respiration
rate, circadian rhythms, and physiological states may also have
impact on quality of ECG signals [10]. These uncertainties will
then have subsequent influence on the frequency analysis of
HRV data, and therefore it is challenging to accurately estimate
the HRV spectrum.

Assuming the data from Ns subjects have been collected,
and a matrix H = {hi,k}i=1,...,Ns,k=1,...,Nk

∈ RNs×Nk can be
derived from the measurements, which is defined as

hi,k

(
f, f̃k

)
= ϕk

(
f̃k, Pi(f, f̃)

)
, (3)

where Pi is the PSD of the ith subject. It is noted that the PSD
of HRV data usually identifies dominating frequency compo-
nents with amplitudes of many non-dominating frequencies that
are small enough to be negligible, leading to a sparse matrix;
In addition, frequency components of the PSD spectrum can be
potentially affected by measurement noise, and computational
procedures of HRV data analysis may also produce uncertainties
in the spectrum. In this work, the PSD data derived from large
amount of collected ECGs demonstrate similarities among
the spectrum waveforms, indicating the low rank property
of the spectrum matrix. This motivates us to use low-rank
matrix completion to perform the matrix approximation for
uncertainty estimation. In particular, we propose the refined
matrix completion (RMC) to estimate uncertainties in a more
efficient way.

III. METHODOLOGY

This section introduces the concept of low-rank matrix
completion for a sparse matrix. The key idea is to find a
good approximation of the matrix, with respect to some pre-
defined cost function such as finding an optimal approximation
by minimizing the rank of the matrix. The section starts from a
revisit of low-rank matrix completion, followed by the matrix
approximation with interested zone, and then the introduction
of the refined matrix completion.

A. Low-rank Matrix Completion
Assuming matrix H ∈ RNs×Nk is sparse, i.e., only a limited

number of entries in the matrix are non-zero. We denote the
set Ω as the collection of non-zero entries of the matrix H,
which is represented as

Ω = {(i, k) |hi,k ̸= 0 , i = 1, . . . Ns, k = 1, . . . , Nk} . (4)

It is noted that the spectra H derived from data segments
usually are obtained by recursively slicing the HRV sequence,

which indicates the existence of redundant information in the
matrix. In order to keep useful information and reduce the
redundant information, a low-rank matrix completion technique
[21], [28] is adapted in this paper. It can be formulated by
approximating matrix H in terms of the smallest rank, i.e.,

min rank(X)

s.t. xi,k = hi,k, for (i, k) ∈ Ω,
(5)

where matrix X = {xi,k}i=1,...,Ns,k=1,...,Nk
∈ RNs×Nk is

an optimal approximation matrix that can keep the majority
information of H.

The optimisation of rank-minimization problem in Eq. (5)
is generally computationally intractable. Instead of solving the
original problem of rank norm, a convex relaxation based on
the nuclear norm is given by [21],

min ||X||∗
s.t. xi,k = hi,k, for (i, k) ∈ Ω,

(6)

where, || · ||∗ indicates the nuclear norm of matrix X, which is
defined as the summation of its singular values. In particular, it
is demonstrated that a smaller nuclear norm indicates the lower
rank of the matrix [21]. However, it is generally too harsh to
force the estimation of all observed entries in the matrix, so
alternatively, a more practical approximation of Eq. (6) can be
formulated by relaxing the constraint [29], [30].

min ||X||∗
s.t. ||AΩ,H(X)−AΩ,H(H)||F ≤ δ,

(7)

where || · ||F denotes the Frobenius norm, δ is a small value to
constrain the estimation, and AΩ,H(·) is a projection operator
that is defined as

AΩ,H(X) =

{
xi,k = hi,k (i, k) ∈ Ω

0 otherwise.
(8)

The optimisation problem in Eq. (7) can be formulated as
a penalised least-squares convex program [31], which can be
efficiently solved by the singular value thresholding (SVT)
technique as described in [32].

B. Matrix Approximation with Interested Zone

The above-mentioned method assumes that observed entries
including the missing ones should be random variables sat-
isfying the uniform distribution [21]. However, we note that
some frequency components of HRV spectrum are prone to
measurement certainties. For example, the LF spectrum could
be affected by respiration rate, and HF spectrum would be
affected by measurement noises. In this study, we investigate
using some frequency components of the spectrum to estimate
noise affected entries. This indicates that some parts of columns
or rows (instead of random entries) are missing. Therefore the
traditional low-rank MC techniques mentioned above cannot be
applied directly. Alternatively, a method called Interest-Zone
Matrix-Approximation (IZMA) [28] is proposed to solve the
low-rank MC problem when some columns/sub-columns or
rows/sub-rows are missing. More specifically, the IZMA tries

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.30.22281728doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.30.22281728
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 IEEE XXX, VOL. XX, NO. XX, 2022

to solve the following optimization problem,

min ||AΩ,H(X)−AΩ,H(H)||F
s.t. p(X) ≤ 0,

(9)

where the nonlinear mapping p(·) : RNs×Nk → Rn is a smooth
function for some n ∈ N . For example, p(X) can be some
constraints with respect to the estimated matrix, such as p(X) =
||X||2 − λ, λ > 0. Another example of this nonlinear mapping
is p(X) = ||X||∗ − λ for some λ > 0 as described in [28].

The optimisation problem with entries in an interested zone
in Eq. (9) can be solved by the following steps; It first
approximates the following optimisation for the constrained
full matrix,

min ||X−H||F
s.t. p(X) ≤ 0,

(10)

The solution to the optimisation in Eq. (10) with the spectral
norm constraint can be estimated by,{

X̃ = UΣ̃V∗,

Σ̃ = diag(σ̃i),
(11)

where matrices U and V are calculated by H = UΣV∗,
with Σ = diag(σ1, σ2, · · · , σn). Next, the diagonal matrix
is thresholded as σ̃i = min(σi, λ), i = 1, 2, · · · , k, and the
approximation X̃ can be obtained by the reconstruction.

Then, the estimation of matrix H with entries in the interested
zone can be updated as follows,

H(X) := I(X̃)−AΩ,H(X̃) +AΩ,H(H), (12)

where I is an identity operator, and H(·) denotes the updating
process, which combines the known entries in matrix H and
the estimated entries in matrix X̃.

Next, the estimated matrix is replaced with H(X) and the
iteration is repeated starting from Eq. (10). The estimation is
evaluated by ϵ(X) ≜ ||AΩ,H(X)−AΩ,H(H)||F , and missing
entries in matrix H can be approximated until ϵ(X) converges.
For convenience, we denote the whole iteration process of the
constrained approximation as T (H, λ), which will be used in
the next section for the HRV spectrum estimation.

It is noted that the matrix approximation in Eq. (9) differs
from the low-rank MC as presented in Eq. (5), where the low-
rank MC requires to fix the known entries for the estimation,
while the matrix approximation in Eq. (9) minimize the
objective function with Frobenius norm to the constraint
function. In particular, the technique of matrix approximation
with an interested zone can also be extended as matrix
completion, which develops a new iteration process separate
from the traditional SVT technique; more details of the iteration
process can be found in [28], and it will also be discussed in
Section III-C.

The above approximation of missing entries is data-driven
and implemented using an iteration process. We note that for
the analysis of HRV data, some mathematical techniques can
be used to model the spectrum, such as the Gaussian model as
pointed out in [18], the model can be used to characterise HRV
spectra and investigate the relationship between them. In the
next subsection, we will use the Gaussian model to develop a

refined matrix completion (RMC) by generating a new matrix
with a much lower dimension. Consequently, this new matrix
is employed to perform low-rank matrix completion by using
techniques such as IZMA, which is expected to improve the
efficiency and performance of the estimation.

C. Model-based Refined MC for HRV Spectrum
Estimation

In general, the spectrum of HRV data can be divided
into different frequency bands with specific characteristics,
such as the Mayer wave in the LF spectrum, and the RAS
wave in the HF spectrum. It is assumed that the matrix
S = {si,ℓ}i=1,...,nr, ℓ=1,...,nfr

∈ Rnr×nfr consists of nr

spectra that are derived from the HRV data, where si =[
si,1, · · · , si,nfr

]T ∈ Rnfr is a vector of the spectrum.
Given the relationship between the LF and HF components

of the spectrum [18], we assume the LF part can be used as
a reference to estimate uncertainties in the HF part, or the
HF can be used to estimate the LF part. Specifically, for each
si ∈ S, it can be modelled with Gaussian functions [18], and
the entry si,ℓ can be represented as follows,

smi,ℓ(f,Ai,ℓ, σi,ℓ, fi,ℓ) =
Ai,ℓ√
2πσi,ℓ

exp

(
−

(f−fi,ℓ)
2

2σ2
i,ℓ

)
, (13)

where f ∈ [fl,i, fr,i] indicates the interval of frequency band of
interests, i.e., LF or HF spectrum. Consequently, Ai,ℓ > 0 is the
weight of amplitude, fi,ℓ > 0 is the peak position of frequencies
in the spectrum, and σi,ℓ > 0 is its standard deviation for
this frequency. For simplicity of notations, smi,ℓ is used to
represent smi,ℓ(f,Ai,ℓ, σi,ℓ, fi,ℓ) when no confusion arises, and
s̃mi = {smi,ℓ}ℓ=1,...,nfr

indicates the modelled spectrum.
It is noted that the HRV spectrum can be characterised with

different frequency components, and they can be simulated by
changing the frequency intervals of the modelling, after which
the complete spectrum can be obtained by combining these
different frequency components. Next, we use the modelled
information to define a new matrix for the estimation of missing
entries. For the convenience of presentation, it is assumed that
some entries of matrix S are missing, and the set Sm =
{sj}j=1,...,nq

contains the rows in S with missing values.
For any sj ∈ Sm, we model the spectrum and obtain s̃mj with

Eq. (13), and then calculate the correlation between s̃mj and
s̃mq spectra, where s̃mq is the modelled information of spectrum
in S, and the correlation is computed as follows [33],

γ(smj,ℓt , s
m
q,ℓt)=

N1∑
ℓt=1

(smj,ℓt − s̄mj )(smq,ℓt − s̄mq )√√√√ N1∑
ℓt=1

(smj,ℓt−s̄
m
j )2

√√√√ N1∑
ℓt=1

(smq,ℓt−s̄
m
q )2

, (14)

where s̄mj = 1
N1

N1∑
ℓt=1

smj,ℓt and s̄mq = 1
N1

N1∑
ℓt=1

smq,ℓt are means

of the two spectra respectively, ℓt = 1, . . . , N1, N1 ≤ nfr

is the index of known components of the spectrum, and
γj,q = γ(smj,ℓt , s

m
q,ℓt

) indicates the relationship between the
two spectra.
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After calculating γj,q for the sj spectrum, a new vector
tj =

[
γj,1 · · · γj,nr−1

]
can be obtained, we sort tj and

select the K highest ranked elements for sj , then a set that
contains the identified indices can be formed as,

GK(sj) = {gk |tj,gk ∈ tj , gk ∈ J , k = 1, . . . ,K } , (15)

where J = 1, . . . , nr − 1 denotes the index of spectrum in
matrix S.

Next, a refined matrix SGK
∈ RK×nfr can be formulated

by combining sj and the identified HRV spectra. Consequently,
the optimisation in Eq. (9) can be updated as,

min ||AΩ̃,SGK
(XGK

)−AΩ̃,SGK
(SGK

)||F
s.t. p(XGK

) ≤ 0,
(16)

where Ω̃ is the set of observed entries in the refined matrix,
AΩ̃,SGK

(·) is the updated operator to model the missing values,
XGK

indicates the estimated matrix, and the spectral norm
p(XGK

) = ||XGK
||2 − λ can be used for the constraint.

For the estimation of missing entries in the refined matrix,
we first approximate the following constrained full matrix,

min ||XGK
− SGK

||F
s.t. p(XGK

) ≤ 0,
(17)

where the soft imputing method as described in Eq. (11) can
be used to solve the estimation in Eq. (17). Then, by updating
the parameter λ in the constraint function, missing entries in
the refined matrix can be estimated using the iteration process
as described in Section III-B. Algorithm 1 presents the pseudo
code of the proposed RMC method. The hyperparameters
tolerance etol and λtol are set as 10-8 and 10 according to the
configuration in [28].

As an illustration, Figure 1 demonstrates the concept of
estimating missing entries for HRV spectrum using the RMC
technique, where the matrix is constructed with m spectra that
are derived from HRV data segments. The x-axis of the matrix
indicates the frequency band of interests, and y-axis shows the
indices of data segments. Suppose the data of s3 spectrum are
affected by measurement uncertainties, which are masked as
missing entries. We model the spectra in the matrix, and use
the LF spectrum as references to identify relevant elements.
Then, these identified spectra, such as vectors s2, s5, and sm,
along with s3 form a new matrix, where the missing entries can
be estimated using the RMC method described in the above
iteration procedures.

D. Evaluation of Estimation Performance

The developed RMC method for HRV spectrum estimation
is used to analyse a variety of datasets as discussed in the
next section. To evaluate the model performance on spectrum
estimation across different subjects and datasets, we use
the normalised root mean square error (NRMSE) as the
performance indicator [34]. For the estimation of missing
entries in the sj spectrum, the NRMSE index can be calculated

Fig. 1: Illustration of matrix completion (MC) and the proposed
refined matrix completion (RMC) using the model information
for HRV spectrum estimation.

as follows,

NRMSE =

√√√√√ 1
Nf

∑Nf

k=1(ŝj,k − sj,k)2

1
Nf−1

∑Nf

k=1(sj,k − s̄j)2
(18)

where, sj,k ∈ S is the original spectrum, j = 1, 2, · · · , nr

is the index of the spectrum, and k = 1, 2, · · · , Nf indicates
the data points of missing entries in the spectrum. ŝj,k is the
estimated spectrum, and s̄j =

1
Nf

∑Nf

k=1 sj,k is the mean value
of the spectrum. The calculation of this index normalises the
root mean square error with the variance of the spectrum, which
enables the evaluation of model performance across different
ECG datasets using an indicator with the same scale.

IV. DATA ANALYSIS

A. Datasets

Generally, HRV data can be derived from ECG signals, and
in the current study, we retrieved five widely used benchmark
ECG datasets to evaluate the performance of our developed
RMC model. These datasets are summarised as follows.

1) Combined measurement of ECG, Breathing and Seis-
mocardiograms (CEBSDB) [35]: this dataset consists of
ECG recordings sampled from 20 healthy volunteers.
After excluding a low quality recording (‘m018’) due to
the issue of electrode contact, the ECG signals collected
from 19 subjects are used to for the study, which have a
sampling duration of approximately 50 minutes.

2) MIT-BIH Supraventricular Arrhythmia Database (SADB)
[36]: this dataset includes 78 ECG recordings sampled
from subjects with supraventricular arrhythmias, and each
signal has a recording time duration of 30 minutes.

3) St Petersburg INCART 12-lead Arrhythmia Database
(SPIADB) [37]: this dataset consists of 75 ECG record-
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Algorithm 1: Estimation of HRV spectrum using the
RMC method.
Input : Matrix S ∈ Rnr×nfr , AΩ,H, Sm,

tolerance etol and λtol.
Output : Estimated spectrum matrix X.

1 Initialisation: sj ∈ Sm, λ← 0, λprev ← 106;
2 for i← 1 to nr − 1 do
3 Compuate smi (f) by modelling si(f) ∈ S;
4 Calcualte γ(smi,ℓt , s

m
j,ℓt

) between the spectra;
5 end
6 Sort γ(smi,ℓt , s

m
j,ℓt

) and obtain GK(sj);
7 Update S← SGK

, and AΩ,H ← AΩ̃,GK
;

8 Assign S← AΩ,HS, λmin ← 0, λmax ← ||S||∗;
9 while ϵ(X) > etol or |λ− λprev| > λtol do

10 Update λprev ← λ;
11 Compute and update λ← (λmin + λmax)/2;
12 Estimate and update X← T (S, λ);
13 Compute the estimation error ϵ(X);
14 if ϵ(X) > etol then
15 Update λmin ← λ;
16 else
17 Update λmax ← λ;
18 end
19 end
20 Output the estimated matrix X.

ings with a duration of 30 minutes, which are collected
from patients undergoing tests for coronary artery disease.

4) European ST-T Database (ESTDB) [38]: this database is
widely used for the evaluation of ST and T-wave changes
in the ECG morphologies, and includes 90 annotated
excerpts of ambulatory ECG recordings with two-hour
sampling durations.

5) Apnea-ECG Database (APEDB) [39]: this data consists
of 70 ECG recordings with a set of apnea annotations,
and each of the recordings has an approximate duration
of 7 to 10 hours.

These datasets include ECG recordings with diverse charac-
teristics, such as data sampled from healthy volunteers, patients
with arrhythmias, coronary artery disease, ST and T-wave
changes, and apnea. Therefore, the five ECG datasets will
generate different types of HRV data, and in combination
allow a comprehensive evaluation of our developed method
for spectrum estimation. It is noted that the ECG signals in
these datasets have varied lengths of sampling durations, and
we use the first one hour of the signal only in instances of a
long-time sampling duration.

B. Signal Processing
To generate HRV data for this study, we first identify R-peaks

from these ECG recordings by analysing the QRS complex.
Figure 2(a) shows the identified R-peaks in the ECG recording
using the QRS detector as developed in [40]. After identifying
the R-peaks, a sequence of RR intervals can be calculated from
timestamps of the consecutive peak values. Next, we implement

outlier detection in the derived RR intervals using an open
source benchmarked toolbox [41], where the outliers are defined
as data points that are too close together, or large RR intervals
caused by gaps, or artifact annotations of the signal. Figure 2(c)
illustrates the detected outliers, which are processed by removal
and interpolated to generate the preprocessed sequence.

Fig. 2: ECG signal processing and signal quality analysis
of HRV data. (a) R-peaks identification for ECG recording
sampled from healthy subject. (b) R-peaks identification for
ECG recording sampled from abnormal subject. (c) Outlier
detection in RR intervals. (d) Signal quality analysis for the
HRV data.

We note that although a variety of techniques have been
developed to detect the R-peaks [40], [42], it is still challenging
to accurately identify the peak values for different types of
ECG recordings. For example, as shown in Figure 2(a), the
R-peaks are correctly identified for the ECG signal that is
sampled from a healthy subject. However, as shown in Figure
2(b), the R peaks in waves A and B are wrongly identified for
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the ECG signal that is collected from an abnormal subject. The
comparison of R-peak detection indicates that it may be not
always reliable to use the technique to identify peak values for
different types of ECGs. Therefore, a more robust approach
needs to be developed to process the identified R-peaks.

To obtain high-quality HRV data, two widely used detectors
are employed for the peak value identification in the study, i.e.,
the ‘jqrs’ detector [40], and the ‘wqrs’ detector [42]. Then,
an index to show the signal quality (SQI) is computed for
each of the identified R-peaks by comparing annotations from
the two detectors [43]. Next, we calculate the average SQI
value of R-peaks for HRV data, which is segmented with 5-
minutes duration, and the calculated average value is used as
a quality indicator for the data segment. For example, a high-
quality segment can be defined when the SQI indicator is larger
than 0.9; Otherwise, it is regarded as a low-quality segment.
Figure 2(d) shows SQI values of the identified R-peaks in
an ECG recording. As illustrated in Figure 2(d), the two data
segments have SQI values of 0.813 and 0.737, and therefore are
regarded as low-quality segments. By calculating the average
SQI values, the low-quality and high-quality data segments
can be efficiently identified, and the low-quality segments will
not be used for further analysis.

C. Calculation of the PSD Spectrum
The preprocessed HRV data is then resampled with a

frequency of 4 Hz, and a 4th order Butterworth filter is used
to remove noises with the pass band of 0.03 Hz to 0.9 Hz
[44]. The filtered data is then used to derive HRV spectrum in
the frequency domain, and Welch’s algorithm with an overlap
of 50% is used for the calculation [44], [45]. Next, the HRV
spectrum matrix can be obtained by stacking all the calculated
spectra. Figure 3(a) shows the three-dimensional plots of PSD
spectra that are derived from different data segments. It can be
seen from Figure 3(a) that the PSD spectra have similar patterns
in the waveforms, i.e., LF and HF components, indicating the
low-rank property of the HRV matrix derived from the PSD
spectra.

In a further step, we calculate the singular values of the
derived HRV matrix, and compute the ratio between singular
values and the nuclear norm of the spectrum matrix, which is
used as an indicator of the rank property of the matrix [34]. As
shown in Figure 3(b), we demonstrate the calculated cumulative
ratios for the five ECG datasets. It can be seen from the figure
that the summation of the top ten singular values accounts for
approximate 80% of the nuclear norm, indicating the low-rank
properties of the spectrum matrices that are derived from these
datasets.

V. RESULTS AND DISCUSSION

A. Missing Data Estimation for PSD Spectrum
The derived HRV matrix is then used to evaluate the perfor-

mance of our developed model for missing entry estimation,
which is simulated by masking the spectra with different ratios.
We show an example of masking 50% of the spectrum in Figure
4(a), which mostly represents the HF of the PSD spectrum.
Then, the rest part of the spectrum, i.e., LF, is used to estimate

Fig. 3: HRV spectrum and the cumulative ratios. (a) PSD spec-
tra of different data segments. (b) Distributions of cumulative
ratios between singular values of the nuclear norm.

the HF by the MC method. It can be seen from Figure 4(a)
that the estimated HF spectrum matches well with the original
PSD spectrum, which efficiently estimated the waveform for
the HF of the spectrum but with large variations around the
frequency of 0.25 Hz.

Next, we use the developed RMC method to estimate missing
values in the spectrum. We first simulate the spectrum with
the model as described in Eq. (13), and then use the modelled
signal to identify relevant data segments in the HRV matrix.
As illustrated in Figure 4(a), we show the signal modelling
for the PSD spectrum of 31st data segment of the matrix. It
can be seen that the modelled signal efficiently represents the
characteristics of the spectrum, such as the LF and HF. Then,
we calculate correlation coefficients between different data
segments using the modelled signals, and select the data with
high coefficients to reconstruct the HRV matrix. Figure 4(b)
shows the calculated coefficients for segments in the original
data matrix, and Figure 4(c) illustrates estimation errors for
different combinations of selected data segments.

It can be seen from Figure 4(c) that the RMC model obtains
the least estimation error when using nine data segments, which
has the value of 0.222 in terms of the NRMSE, and it is smaller
than the estimation error of 0.830 using the traditional MC
method. As shown in Figure 4(b), we highlight the selected
data segments with square markers. It can be seen from Figure
4(b) that the selected important data elements include five
neighbours of the target data segment, this is consistent with
the rational approach that missing values can be generally
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Fig. 4: HRV spectrum estimation using matrix completion. (a)
Spectrum estimation with different methods. (b) The correlation
coefficients of different HRV segments. (c) Estimation errors
of different combinations of data segments.

imputed using nearest neighbours. We also note that the model
identifies four segments as important data, which are not the
neighbours of the target segment, indicating that some data
with far distances in the sequence may also provide valuable
information for the estimation of missing entries.

In a further step, we apply different masking ratios on
the HRV spectrum, which are used to evaluate the model
performance on estimating missing entries with different
conditions. As shown in Figures 5 and 6, our developed
RMC method efficiently estimates missing values for the PSD
spectra with masking ratios of 30% (Figure 5(g)), and 70%
(Figure 6(g)), which have estimation errors of 0.221 and 0.426
separately. The two experiments show the robustness of our
developed RMC method for the estimation of missing entries
in the HRV spectrum.

B. Comparison Methods and Results

It is understood that machine learning techniques, in partic-
ular deep recurrent neural networks, have been demonstrated
with excellent performance on prediction or regression analysis
[46]. In this study, we employed different types of deep learning

models to estimate missing values for comparison study. To
be specific, we used the gated recurrent units (GRU), the
long short-term memory (LSTM) model, and the bidirectional
LSTM (BiLSTM). Moreover, we note that convolutional neural
networks (CNN) are efficient in extracting features from data
sequences [46]. Therefore, other than the GRU, LSTM, and
BiLSTM, we used two additional hybrid models by combining
the CNN and LSTM models for comparison study.

Hyperparameters of the five deep learning models are tuned
with trial-and-error search, and the optimal parameters are
obtained as follows; For the recurrent neural networks, the GRU,
LSTM, and BiLSTM models have 120 hidden units; For the
two types of hybrid models, the first one (CNN LSTM 3) uses
three 1D-CNN layers with 32, 64, and 64 filters respectively,
each filter has a size of 3, and each CNN layer is followed by a
rectified linear unit (ReLU) function, and a bath normalisation
layer, which is then flattened and connected with a LSTM layer
for the regression analysis. The second type of hybrid models
(CNN LSTM 5) consists of five CNN layers, which have 32,
32, 64, 64, and 64 filters respectively, which also uses a LSTM
layer for the regression analysis. The deep learning models are
trained with Adam optimizer with an initial learning rate of
0.005, the maximum epoch size is 100, and the batch size is
set as 20. For the prediction analysis, we use data points from
previous steps, i.e., 10 steps, to predict the current value in
the data sequence.

The estimation results using these deep learning models are
demonstrated in Figures 5 and 6, which correspond to the
masking ratios of 30% and 70% respectively. As a comparison
study, we also include the estimation results from the traditional
MC method. It can be seen from Figures 5 and 6 that the
deep learning models have good performance on the spectrum
estimation; In particular, the BiLSTM and hybrid models
efficiently estimate the peak values around 0.3 Hz for the two
masking ratios. Compared with the deep learning models and
the MC method, our developed RMC method has more efficient
estimation performance, which obtains the least estimation
errors of 0.221 and 0.426 for the 30% and 70% masking ratios
respectively.

C. Statistical Results

We implement the estimation of missing entries for all ECG
recordings in the five benchmark datasets using our developed
RMC method and the deep learning models. Tables I-III show
the mean value and standard deviation of estimation errors for
the five benchmark datasets with 30%, 50%, and 70% masking
ratios. The minimum estimation error for each dataset is bold-
faced. It can be seen from Tables I-III that compared with the
five deep learning models and the traditional MC method, our
developed RMC method obtains the least estimation error for
all of the five ECG datasets, and the increased masks ratios
occurred alongside an increase in the estimation errors, which
have the values of 0.286 ± 0.194, 0.312 ± 0.203, and 0.379
± 0.228 for the CEBSDB with the three masking ratios.

Additionally, we provide violin plots as shown in Figure 7
to demonstrate the distributions of estimation errors for the
seven models. It can be seen from Figure 7 that our developed

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.30.22281728doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.30.22281728
http://creativecommons.org/licenses/by-nc-nd/4.0/


LEI LU et al.: MATRIX COMPLETION FOR HRV SPECTRUM ESTIMATION 9

Fig. 5: HRV spectrum estimation using different models for missing values with the 30% masking ratio. (a) The GRU model,
(b) the LSTM model, (c) the BiLSTM model, (d) the CNN LSTM 3 model, (e) the CNN LSTM 5 model, (f) the MC method,
and (g) the RMC method.

Fig. 6: HRV spectrum estimation using different models for missing values with the 70% masking ratio. (a) The GRU model,
(b) the LSTM model, (c) the BiLSTM model, (d) the CNN LSTM 3 model, (e) the CNN LSTM 5 model, (f) the MC method,
and (g) the RMC method.

TABLE I: Comparison of prediction errors for different estimation methods on benchmark datasets with 30% masking ratio.

Datasets GRU LSTM BiLSTM CNN LSTM 3 CNN LSTM 5 MC RMC

CEBSDB 1.379 ± 1.112 1.346 ± 0.970 0.671 ± 0.355 0.672 ± 0.459 0.770 ± 0.692 0.393 ± 0.291 0.286 ± 0.194

SADB 1.389 ± 1.751 1.318 ± 1.280 0.733 ± 0.901 0.746 ± 0.902 0.902 ± 1.808 0.332 ± 0.253 0.304 ± 0.199

SPIADB 1.241 ± 0.776 1.211 ± 0.609 0.647 ± 0.289 0.655 ± 0.375 0.709 ± 0.378 0.361 ± 0.539 0.305 ± 0.327

ESTDB 1.317 ± 1.096 1.297 ± 1.043 0.687 ± 0.430 0.691 ± 0.456 0.753 ± 0.549 0.494 ± 0.464 0.329 ± 0.251

APEADB 1.283 ± 0.740 1.268 ± 0.646 0.644 ± 0.263 0.663 ± 0.337 0.727 ± 0.392 0.426 ± 0.357 0.290 ± 0.228

RMC method obtains the least estimation errors with median
values of 0.330, 0.337, 0.260, 0.259, and 0.235 for the five
benchmark datasets respectively. In particular, we note that
compared with the five deep learning models and the traditional
MC method, the RMC method has much smaller variations of
the estimation errors for all the ECG datasets, which indicate
the stability and robustness of our developed RMC method for
the spectrum estimation.

D. Comparison on Computation Costs

We calculate the computation cost for missing entry esti-
mation using the RMC method and other six methods. All
of the estimation tasks are implemented with Matlab R2022a,
Intel(R) Core(TM) i7-1165G7@2.8GHz, and 32GB RAM. We
calculate the mean value and standard deviation of computation
time for all HRV data segments in the benchmark dataset.
Table IV presents the comparison of computation cost for all
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TABLE II: Comparison of prediction errors for different estimation methods on benchmark datasets with 50% masking ratio.

Datasets GRU LSTM BiLSTM CNN LSTM 3 CNN LSTM 5 MC RMC

CEBSDB 1.061 ± 0.234 1.091 ± 0.275 0.621 ± 0.163 0.619 ± 0.164 0.663 ± 0.175 0.432 ± 0.192 0.312 ± 0.203

SADB 1.067 ± 0.149 1.093 ± 0.190 0.670 ± 0.153 0.673 ± 0.129 0.714 ± 0.136 0.386 ± 0.254 0.338 ± 0.226

SPIADB 1.076 ± 0.168 1.097 ± 0.201 0.657 ± 0.150 0.662 ± 0.115 0.706 ± 0.128 0.388 ± 0.529 0.310 ± 0.290

ESTDB 1.113 ± 0.707 1.138 ± 0.692 0.680 ± 0.306 0.704 ± 0.427 0.745 ± 0.443 0.590 ± 0.446 0.336 ± 0.276

APEADB 1.059 ± 0.292 1.085 ± 0.334 0.642 ± 0.216 0.648 ± 0.168 0.687 ± 0.175 0.547 ± 0.422 0.312 ± 0.256

TABLE III: Comparison of prediction errors for different estimation methods on benchmark datasets with 70% masking ratio.

Datasets GRU LSTM BiLSTM CNN LSTM 3 CNN LSTM 5 MC RMC

CEBSDB 1.350 ± 0.591 1.446 ± 0.676 0.926 ± 0.563 0.906 ± 0.451 1.030 ± 0.622 0.633 ± 0.202 0.379 ± 0.228

SADB 1.131 ± 0.361 1.247 ± 0.422 0.983 ± 0.652 0.819 ± 0.238 0.873 ± 0.284 0.539 ± 0.318 0.397 ± 0.262

SPIADB 1.179 ± 0.398 1.325 ± 0.544 1.019 ± 0.674 0.828 ± 0.230 0.890 ± 0.308 0.502 ± 0.406 0.338 ± 0.247

ESTDB 1.193 ± 0.418 1.335 ± 0.543 1.028 ± 0.743 0.849 ± 0.304 0.903 ± 0.369 0.728 ± 0.356 0.337 ± 0.252

APEADB 1.144 ± 0.368 1.266 ± 0.470 0.958 ± 0.689 0.811 ± 0.256 0.864 ± 0.315 0.694 ± 0.409 0.315 ± 0.246

Fig. 7: Distributions of estimation errors for missing values in five ECG benchmark datasets, (a) CEBSDB, (b) SADB, (c)
SPIADB, (d) ESTDB, and (e) APEADB.

the estimation methods. We note that the five deep learning
models have an increasing trend of computation cost with the
increasing model complexity, which can be seen from Table IV
that among these deep learning models, the GRU model has the
least computation time with 1.117 ± 0.460 s. Compared with
the deep learning models and the MC method, our developed
RMC method has the least computation time with 0.105 ±
0.096 s. The results demonstrate the efficiency of our developed

RMC method for the HRV spectrum estimation.

E. Discussion

HRV metrics - and in particular the spectrum parameters
- are important indicators for physiological and pathological
condition monitoring, such as the diagnosis of cardiovascular
diseases [6], [7]. However, HRV metrics are sensitive to various
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TABLE IV: Comparison of computation time for different
estimation methods.

Methods Computation Cost (s)

GRU 1.117 ± 0.460

LSTM 1.357 ± 0.704

BiLSTM 2.298 ± 2.091

CNN LSTM 3 2.484 ± 2.218

CNN LSTM 5 2.889 ± 0.909

MC 0.669 ± 0.340

RMC 0.105 ± 0.096

measurement uncertainties in the datasets, such as motion
artifacts and missing values. In this paper, we evaluate our
developed method for missing entry estimation; this is crucial
because HRV data can be easily affected by measurement
noise and computational procedures, which would produce
uncertainties in the spectrum analysis. For the sake of simplicity,
we simulate the uncertainties as missing entries in the spectrum.
With extensive experimental studies on five benchmark ECG
datasets, we show that the PSD data that are derived from large
amount of collected ECGs demonstrate similarities between the
spectrum waveforms, which enables to use the MC technique
for the spectrum estimation by exploring the low rank property
of the matrix, we then show the advantages and robustness of
our developed RMC method for the missing value estimation.

Deep neural networks (DNN) have been demonstrated
with excellent performance on analysing healthcare data for
various applications [46]. However, DNN models typically
require a large number of training data to ensure the model
performance, which is a challenge when using small datasets.
As demonstrated in the current study, we employed five widely
used recurrent neural networks for comparison study, and the
results demonstrated that our developed RMC method had
superior performance than these deep learning models on all
the benchmark datasets. The comparison results indicate that
statistical machine learning techniques may have superior or
comparable performance with deep learning models for small
datasets. We also note that the MC method was developed with
mathematical theory, our current study on the refined matrix
completion was evaluated with extensive experimental studies,
the next step of our research will focus on theoretical analysis
of the developed RMC method.

VI. CONCLUSIONS

This paper develops a new method to address the challenges
of uncertainty in the estimation of HRV spectrum using the low-
rank matrix completion method. By investigating the modelled
spectrum of HRV data, a refined matrix completion (RMC)
method was developed for the uncertainties of PSD spectrum.
Five benchmark ECG datasets with three masking ratios of
30%, 50%, and 70% are used to evaluate the performance
of our developed RMC method, and the results demonstrate
the effectiveness and robustness of our developed method for

the spectrum estimation. In addition, compared with five deep
learning models and the traditional MC method, our developed
RMC method obtains the least estimation error whilst having
the least computation cost, indicating advantages and efficiency
of our developed model for HRV spectrum estimation.
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