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Abstract

MCP-Mod (Multiple Comparison Procedure-Modelling) is an efficient statistical method for the

analysis of Phase II dose-finding trials, although it requires specialised expertise to pre-specify

plausible candidate models along with model parameters. This can be problematic given limited

knowledge of the agent/compound being studied, and misspecification of candidate models and

model parameters can severely degrade its performance. To circumvent this challenge, in the

work, we introduce LiMAP-curvature, a Bayesian model-free approach for the detection of the

dose-response signal in Phase II dose-finding trials. LiMAP-curvature is built upon a Bayesian

hierarchical framework incorporating information about the total curvature of the dose-response

curve. Through extensive simulations, we show that LiMAP-curvature has comparable perfor-

mance to MCP-Mod if the true underlying dose-response model is included in the candidate

model set of MCP-Mod. Otherwise, LiMAP-curvature can achieve performance superior to that

of MCP-Mod, especially when the true dose-response model drastically deviates from candidate

models in MCP-Mod.

Keywords: Dose-finding trial, Dose-response signal detection, Model-free approach, Bayesian

hierarchical model, Curvature prior

1. Introduction1

Characterising the dose-response relationship and finding the right dose are important but2

challenging in the pharmaceutical drug development process. Nearly half of failures in Phase III3

trials result in part from a lack of understanding of the dose-response relationship in Phase II4
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trials (Sacks et al., 2014). Over the last decade, the Multiple Comparison Procedure-Modelling5

(MCP-Mod) method, developed by Bretz et al. (2005), has been increasingly popular for Phase6

II trials as it can provide superior statistical evidence for dose selection.7

MCP-Mod is a two-step approach that combines MCP principles and modelling techniques.8

In the first MCP step, it establishes a dose-response signal (Proof of Concept, PoC), and in the9

second Mod step, it estimates the dose-response curve and target doses of interest. MCP-Mod10

overcomes shortcomings of traditional approaches for dose-finding studies (see e.g. Ting, 2006,11

for an excellent introduction). MCP-Mod requires the pre-specification of plausible candidate12

models and model parameters to capture model uncertainty, which however is primarily based13

on the limited knowledge of the agent/compound being studied, if it is available at all (Chen14

& Liu, 2020). Misspecification of candidate models and model parameters in MCP-Mod may15

cause a loss in power and unreliable model selection (see Saha & Brannath, 2019, and references16

therein).17

Motivated by the limitations of MCP-Mod, non-parametric methods have gained popularity18

for detecting dose-response trends and estimating dose-response relationships in Phase II trials.19

These methods offer flexibility and adaptability to capture complex patterns in the data with-20

out imposing strong assumptions on the underlying functional form of the dose-response curve.21

West & Harrison (2006) introduced the normal dynamic linear model (NDLM), which leverages22

the flexibility of dynamic linear models to estimate the dose-response curve. By accommodating23

time-varying coefficients, NDLM can capture the dynamic nature of the dose-response relation-24

ship, allowing for more accurate and interpretable estimates. Kirby et al. (2009) applied cubic25

smoothing splines with generalised cross-validation for the smoothing parameter to estimate26

the dose-response curve.27

However, these approaches still face challenges in incorporating prior knowledge about the28

curvature or shape of the dose-response curve. Determining the optimal level of smoothness or29

choosing the appropriate model can be subjective and dependent on the specific data at hand.30

To address these limitations, in this work, we develop a model-free Bayesian approach, which is31

a novel Bayesian hierarchical framework incorporating the total (in the L2 sense) curvature of32

the dose-response curve as a prior parameter. Our approach avoids the requirement of a set of33

pre-specified candidate models. The responses at the given set of doses are estimated through34
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maximum a posteriori (MAP), with which we construct a test statistic to establish PoC through35

simulations. We can then estimate the dose-response relationship with simple interpolation.36

The remainder of this work is organised as follows. We describe in detail our MAP approach37

with a curvature prior, abbreviated LiMAP-curvature, in Section 2. In Section 3, we evaluate the38

operating characteristics of LiMAP-curvature through simulations and compare its performance39

to that of MCP-Mod and smoothing spline. We present concluding remarks and future directions40

in Section 4.41

2. Methods42

We consider a trial with a total of M + 1 distinct doses x0, x1, . . . , xM , where x0 represents43

placebo. We let Ni be the number of patients in dose group i and f(x) be the true dose-response44

function at dose x. We assume that f(x) is defined on the interval [0, 1] to align with the typical45

range of doses in pharmaceutical drug development where doses are often scaled or normalised46

within this range for convenience and comparability. For i = 0, 1, . . . ,M and j = 1, 2, . . . , Ni,47

we let Yij be the response observed for patient j allocated to dose xi. We assume that48

Yij = µi + εij , (1)

where µi = f(xi) denotes the mean response at dose xi, and εij
iid∼ N(0, σ2) denotes the error49

term for patient j in dose group i. For the sake of simplicity, we assume that the variance σ2 is50

known and constant across all dose groups. This assumption is commonly used in different areas,51

including MCP-Mod (Bretz et al., 2005), BMCPMod (Fleischer et al., 2022) and Bayesian meta-52

analysis (Burke et al., 2018). See Fleischer et al. (2022) for further discussion on the assumption53

on the standard deviation σ.54

In MCP-Mod, a set of plausible candidate models is required. This constrains the possible55

set of dose-response curves. However, with limited knowledge of the agent/compounds in Phase56

II trials, it is more likely to mis-specify the set of candidate models. The procedure for specifying57

candidate models is also somewhat cumbersome. So we would like to avoid the pre-specification58

of possible models beforehand, but still want to impose a certain degree of smoothness on the59
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dose-response curve. To this end, we introduce the L2-total curvature60

Sf =

(∫ xM

x0

f ′′(x)2 dx

)1/2

to measure how far the dose-response curve f(x) is from being a straight line. We will impose a61

half-normal HN(γ2) prior on Sf to give low prior probabilities to the dose-response relationship62

that is very curved, where the standard deviation γ controls the trade-off between the L2-total63

curvature of f(x) and fidelity to data Y . To capture an appropriate level of curvature and allow64

for optimal model performance, we assign a hyperprior for γ with a half-normal distribution65

HN(τ2), which reflects our prior beliefs about the likely range of values for γ before observing66

any data. By incorporating a hyperprior, we introduce additional uncertainty and flexibility67

into the prior distribution of Sf , influencing the estimation of the dose-response curve. The68

specification of the standard deviation τ will be discussed in Section 4.69

Given the dose-response function f(x) being available at M + 1 distinct doses, for i =70

1, 2, . . . ,M − 1, we have71

f ′′(xi) ≈ 2

(
µi+1 − µi

(xi+1 − xi)(xi+1 − xi−1)
− µi − µi−1

(xi − xi−1)(xi+1 − xi−1)

)

through the second-order central difference scheme (Burden et al., 2015), therefore the L2-total72

curvature Sf being approximated through numerical integration with73

Sµ = 2

(
M−1∑
i=1

(
µi+1 − µi

(xi+1 − xi)(xi+1 − xi−1)
− µi − µi−1

(xi − xi−1)(xi+1 − xi−1)

)2

∆xi

)1/2

,

where ∆xi = (xi+1−xi−1)/2 for i = 2, 3, . . . ,M −2 with ∆x1 = (x2 +x1)/2−x0 and ∆xM−1 =74

xM − (xM−1 + xM−2)/2.75

We let76

Y = {Yij , i = 0, 1, . . . ,M, j = 1, 2, . . . , Ni}

and define our Bayesian hierarchical model to be77

p(µ, γ | Y ) ∝ p(µ, γ)p(Y | µ), (2)

4
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where the prior78

p(µ, γ) = p(γ)
M∏
i=0

p(µi)p(Sµ | γ)

with79

Sµ | γ ∼ HN(γ2), γ ∼ HN(τ2), µi
iid∼ U(0, 1) for i = 0, 1, . . . ,M,

and the likelihood80

p(Y | µ) =

M∏
i=0

Ni∏
j=1

p(Yij | µi).

Suppose the standard deviation τ in the hyperprior for γ is pre-specified. The MAP estimates of81

all parameters in the model defined in Eq. (2) can be obtained by maximising the corresponding82

log-likelihood83

µ̂, γ̂ = arg max
µ,γ

log p(µ, γ | Y )

∝ arg max
µ,γ

−
M∑
i=0

Ni∑
j=1

(
Yij − µi

σ

)2

− 2 log γ −
(
Sµ
γ

)2

−
(
γ

τ

)2


through a numerical optimisation algorithm like the Broyden–Fletcher–Goldfarb–Shanno (BFGS)84

method and its variants (see, e.g. Nocedal & Wright, 1999, for more details).85

To establish PoC, we propose a test statistic86

T = max{µ1 − µ0, µ2 − µ0, . . . , µM − µ0}

with hypotheses87

H0 : µ1 = . . . = µM = µ0

H1 : max{µ1, µ2, . . . , µM} > µ0.

We define a significance level α for a dose-response signal, such that the corresponding critical88

value c satisfies89

P(T > c | H0) < α.
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For a given α, we compute the critical value c via simulation90

P(T > c | H0) ≈
1

R

R∑
r=1

1{T (r)>c},

where T (r) is the test statistic computed from the data Y (r) simulated under the null hypothesis91

H0, R is the total number of replicates, and 1A is the indicator function equal to 1 if condition92

A holds and 0 otherwise.93

Finally, the mean response estimates µ̂ can be linearly interpolated (or using a more sophis-94

ticated interpolation scheme) to obtain an estimate of the dose-response curve f(x), which will95

also yield an estimate of the target dose of interest. In this work, we only perform simple linear96

interpolation as we shall focus on the PoC stage of dose-finding trials.97

3. Simulations98

In this section, we assess the performance of LiMAP-curvature, in terms of power to detect99

dose-response signals as well as estimates of the dose-response curve and target doses of interest.100

We compare LiMAP-curvature to smoothing spline and MCP-Mod.101

3.1. Simulation settings102

We simulate randomised, double-blind, placebo-controlled, parallel-group trials with pa-103

tients being equally allocated to placebo (0) or one of four active doses (0.15, 0.50, 0.80 and 1).104

We take the placebo effect to be 0 and the maximum treatment effect to be 0.5, respectively.105

We vary the sample size per dose group in {10, 20, 30, 40, 50, 60}. We choose one of 12 common106

dose-response shapes to be the true dose-response model. These models are plotted in Figure 1,107

with corresponding parameters summarised in Supplemental Material, Table S1. We simulate108

each patient’s response according to Eq. (1) with a standard deviation of σ = 1. For each of 72109

combinations of parameters, consisting of sample size and dose-response shape, we run 10,000110

simulated trials.111

For each simulated trial, we run LiMAP-curvature to establish PoC and find the target doses112

of interest with a standard deviation of τ ∈ {1, 3, 5} for the hyperprior HN(τ2). To benchmark113

LiMAP-curvature against smoothing spline and MCP-Mod, we run smoothing spline through114

the stats package (version 3.6.2) in R and employ the generalised cross-validation to choose the115

6
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Figure 1: Dose-response shapes selected for the true dose-response model.

smoothing parameter for smoothing spline (Green & Silverman, 1993). We also run MCP-Mod116

through the DoseFinding package (version 1.0-4) in R, where we specify a fixed set of candidate117

models made up of linear, emax1, emax2, exponential1, quadratic and logistic1 (top six figures118

of Figure 1).119
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3.2. Simulation results120

To evaluate the performance of LiMAP-curvature, smoothing spline and MCP-Mod, we plot121

receiver operating characteristic (ROC) curves for all true dose-response models for sample size122

40 in Figure 2. The ROC curve is produced by plotting the true positive rate against the false123

positive rate across a range of critical values. The closer the ROC curve approaches the top left124

corner, the better the method performs overall. See Supplemental Material, Figures S1-S5 for125

ROC curves for all other sample sizes. We also summarise their powers at 5% and 10% type I126

error rates in Supplemental Material, Table S2 and S3, respectively.127

As illustrated in Figure 2, we find that LiMAP-curvature has better performance when the128

true dose-response relationship is not dramatically curved, e.g. linear, emax1, logistic1, logistic2129

and sigEmax, achieving over 80% power at a type I error rate of 5%. Choosing an appropriate τ130

can further improve the performance of LiMAP-curvature. More specifically, LiMAP-curvature131

achieves better performance with a larger τ for the true dose-response curve that is more curved,132

e.g. quadratic1 and beta models. Otherwise, e.g. in logistic1 and power models, a smaller τ133

performs better. How to select an appropriate τ in practice will be discussed in Section 4.134

To benchmark the performance of LiMAP-curvature, smoothing spline and MCP-Mod, we135

consider two cases:136

1. the true dose-response curve is one of the candidate models in MCP-Mod,137

2. the true dose-response curve is not one of the candidate models in MCP-Mod.138

Figures 2(a-f) compare the performance of LiMAP-curvature, smoothing spline and MCP-Mod139

for the first case, which is a fairly rare situation in practice. The resulting ROC curves are in140

favour of MCP-Mod as expected due to its utilisation of exact population parameter estimates141

in its candidate model set, but LiMAP-curvature with τ = 3 achieves comparable performance.142

We note that for the true dose-response curve that is not dramatically curved, e.g. linear, emax1143

and logistic1, τ = 1 yields better performance than when τ = 3, resulting in a power gain of144

around 2-9% compared to MCP-Mod and around 8-11% compared to smoothing spline, all at145

5% type I error rate.146

Figures 2(g-l) compare the performance of LiMAP-curvature, smoothing spline and MCP-147

Mod for the second case. This is the situation we expect to encounter in practice. We see that148

with τ = 3, LiMAP-curvature uniformly outperforms MCP-Mod, especially when the true dose-149

8
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Figure 2: ROC curves of LiMAP-curvature, smoothing spline and MCP-Mod across different true dose-response
models with the sample size of 40 patients per arm. The ROC curves of MCP-Mod in (a)-(f) are produced with
the true dose-response model not included in the candidate model set, and the ROC curves of MCP-Mod in
(g)-(l) are produced with the true dose-response model not included in the candidate model set.

response model drastically deviates from the candidate model set in MCP-Mod such as sigEmax150

and beta models. In the latter case, LiMAP-curvature has a power gain of approximately 5-13%151

compared to MCP-Mod at a type I error rate of 5%. Some true dose-response models such as152

exponential2, quadratic2 and power models, are well captured by the candidate model set of153

MCP-Mod so that we see the similar performance of LiMAP-curvature and MCP-Mod. Even154

9
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with an inappropriate choice of τ , LiMAP-curvature is still able to achieve significantly better155

performance, e.g. a power gained by approximately 2-3% over MCP-Mod at a 5% type I error156

rate. Moreover, compared to the smoothing spline, LiMAP-curvature consistently outperforms157

it, except for the beta model. LiMAP-curvature demonstrates a power gain of about 3-9% over158

smoothing spline at a 5% type I error rate.159

We also evaluate and compare the performance in estimating the dose-response curve and160

target doses of interest, known as the minimum effective dose (MED). See Supplemental Mate-161

rial, Figures S6-S11 for the dose-response curves estimated using LiMAP-curvature, smoothing162

spline and MCP-Mod for various true dose-response models and sample sizes. The correspond-163

ing results for MED estimation are summarised in Supplemental Material, Table S4.164

4. Discussion165

In this work, we have introduced LiMAP-curvature, a novel Bayesian approach for establish-166

ing PoC and estimating the dose-response curve alongside target doses of interest in Phase II167

trials. LiMAP-curvature is “model-free”, in the sense that it does not require pre-specification of168

candidate dose-response models, which can influence the performance of MCP-Mod. It is built169

on a Bayesian hierarchical framework incorporating prior information on the L2-total curvature170

of the dose-response curve.171

We have shown through simulations that LiMAP-curvature has performance comparable to172

that of MCP-Mod in establishing PoC and estimating MED when the true dose-response model173

is included in the candidate model set of MCP-Mod, which is fairly rare in practice. When the174

true dose-response model deviates from the candidate model set of MCP-Mod, LiMAP-curvature175

has been demonstrated to outperform MCP-Mod. Furthermore, we note that LiMAP-curvature176

also outperforms smoothing spline in terms of power to detect dose-response signals in most177

cases. This indicates the advantages of LiMAP-curvature over the widely used non-parametric178

method of smoothing spline. The ability of LiMAP-curvature to consistently outperform both179

MCP-Mod and smoothing spline across various scenarios highlights its effectiveness and poten-180

tial as a valuable tool in Phase II trial analysis.181

To obtain optimal performance, MCP-Mod requires specialised expertise to pre-specify plau-182

sible candidate models and model parameters, but the knowledge of the agent/compounds being183

studied is usually limited. Compared to MCP-Mod, the only requirement for pre-specification184

10
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in LiMAP-curvature is the standard deviation τ for the hyperprior γ ∼ HN(τ2), which encodes185

prior knowledge of how far the dose-response curve is from a straight line. With additional sim-186

ulations with varying values of the standard deviation τ (see Supplemental Material, Figure S12187

and Table S5), we recommend choosing188

1. τ ∈ [2, 4] if our prior knowledge is poor,189

2. τ < 2 if we are confident that the curvature of the dose-response curve is weak,190

3. τ > 4 if we are confident that the curvature of the dose-response curve is strong.191

A number of relevant issues for LiMAP-curvature deserve further research. One such exten-192

sion involves integrating the sigmoid Emax model as the default response function within the193

LiMAP-curvature framework. The sigmoid Emax model is noted for its ability to approximate194

most common monotonic dose-response relationships, providing a robust framework for mod-195

elling complex dose-response relationships. However, the challenge lies in selecting appropriate196

prior distributions for the additional parameters introduced by the sigmoid Emax model, which197

requires careful consideration to ensure accurate and reliable dose-response estimation. Another198

important extension involves adapting LiMAP-curvature to handle a wider variety of endpoints199

and trial designs. The current version of LiMAP-curvature is limited to the analysis Phase II200

dose-finding trials with continuous endpoints, i.e. a single normally distributed homoscedastic201

response measured at the end of the trial. To expand its applicability, extensions to other com-202

mon types of endpoints (e.g. binary, counts and survival endpoints) and trials (e.g. longitudinal203

dose-finding trials) require further investigation. Other directions of future research include the204

investigation of trial designs tailored to LiMAP-curvature and the development of statistical205

software implementing LiMAP-curvature.206
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