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 12 

Abstract 13 

Since the COVID-19 pandemic, governments have implemented lockdowns and 14 

movement restrictions to contain the disease outbreak. Previous studies have reported 15 

a significant positive correlation between NO2 and mobility level during the lockdowns 16 

in early 2020. Though NO2 level and mobility exhibited similar spatial distribution, our 17 

initial exploration indicated that the decreased mobility level did not always result in 18 

concurrent decreasing NO2 level during a two-year time period in Southeast Asia with 19 

human movement data at a very high spatial resolution (i.e., Facebook 20 

origin-destination data). It indicated that factors other than mobility level contributed to 21 

NO2 level decline. Our subsequent analysis used a trained Multi-Layer Perceptron 22 

model to assess mobility and other contributing factors (e.g., travel modes, 23 
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temperature, wind speed) and predicted future NO2 levels in Southeast Asia. The 24 

model results suggest that, while as expected mobility has a strong impact on NO2 25 

level, a more accurate prediction requires considering different travel modes (i.e., 26 

driving and walking). Mobility shows two-sided impacts on NO2 level: mobility above 27 

the average level has a high impact on NO2, whereas mobility at a relatively low level 28 

shows negligible impact. The results also suggest that spatio-temporal heterogeneity 29 

and temperature also have impacts on NO2 and they should be incorporated to 30 

facilitate a more comprehensive understanding of the association between NO2 and 31 

mobility in the future study.  32 

 33 

1 Introduction 34 

With over 300 million confirmed cases and 5 million deaths, COVID-19 has spread 35 

all over the world since its inception (World Health Organization, 2022). To contain 36 

the COVID-19 outbreak, countries had imposed stringent lockdowns and restriction 37 

measures since 2020 (Lai et al., 2020; R. Zhu et al., 2022). Such public health control 38 

measures have caused an unintended positive consequence in terms of air quality 39 

improvement (Addas and Maghrabi, 2021; Faridi et al., 2021). 40 

 41 

Sharp declines in air pollution level have been observed during the lockdowns in early 42 

2020 (Kanniah et al., 2020; Kumar et al., 2020; Tobías et al., 2020; Zangari et al., 43 

2020; Addas and Maghrabi, 2021; Ghahremanloo et al., 2021; Latif et al., 2021; 44 

Calafiore et al., 2022).  Faridi et al. (2021) reported that the extent of air pollutant 45 

reduction may vary with the degree of lockdown measures. Wyche et al. (2021) 46 

inferred that the NO2 decline during the UK lockdown period was due to the 70% 47 

vehicle traffic reduction. To investigate the correlation between the observed 48 

concurrent declines in NO2 and mobility trend, some studies took advantages of the 49 
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mobility trend datasets (e.g., released by Google and Apple) in interpreting mobility 50 

level and demonstrated its significant positive correlation with NO2 (Bao and Zhang, 51 

2020; Li and Tartarini, 2020; Zhu et al., 2020). 52 

 53 

Although this large number of studies have observed NO2 level decline and attributed 54 

the phenomenon to the reduction in mobility level, those studies focus more on the 55 

lockdowns in early 2020. Their investigations that were confined to a short time period 56 

for a few months did not account for other neglected factors which could also 57 

contribute to the observed pattern. Hence, the observed correlation between NO2
 and 58 

mobility was only limited to this short period and may not persist over a longer time 59 

period.  Roberts-Semple et al., (2021) reported that NO2 exhibits seasonal 60 

characteristics in northeastern New Jersey. Zangari et al. (2020) found that the NO2 61 

level in New York City decreased between January and May in each year since 2015, 62 

with or without the lockdown in early 2020. In addition to temporal changes, mobility 63 

and NO2 levels vary across regions and countries. By adopting the entire 2020 data in 64 

Singapore, Li et al. (2022) did confirm that it would not only overestimate the 65 

correlations between NO2 and mobility if only focusing on the lockdown time period, 66 

but show significant spatial variations in the correlation between NO2 and mobility as 67 

well. Thus, there is a demanding need to understand the spatio-temporal heterogeneity 68 

of NO2 and mobility over a larger geographical area and a longer time period. 69 

 70 

NO2 is known to cause problems on environment and health (Tian et al., 2019). 71 

Despite various mitigation measures implemented, such air pollutant has been a 72 

long-standing issue in Southeast Asia (SEA) (Kanniah et al., 2020). During the 73 

COVID-19 pandemic, countries in SEA had imposed stringent lockdowns in 2020 74 

along with various restriction measures (e.g., remote working, curfew, restrictions on 75 
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social gathering and traveling) which limited human movement and activities to a great 76 

extent (Luo et al., 2022). These changes in human behaviours provided an 77 

unprecedented opportunity to study how decrease in citizens’ mobility affects air 78 

pollution (Piccoli et al., 2020). Thus, this study aims to perform spatio-temporal 79 

analyses of NO2 level and mobility in SEA from March 2020 to February 2022 and 80 

develop a NO2 prediction model to explore its response to key influencing factors. 81 

Different from previous studies, we utilized high-resolution mobility and NO2 data in 82 

a two-year time period to investigate the long-term NO2 response in SEA. The study 83 

aims to 1) identify the temporal changes of NO2 and mobility throughout the two 84 

years of COVID-19 pandemic (March 2020 – February 2022); 2) evaluate the 85 

correlations between NO2 and mobility; and 3) assess the impact of different factors 86 

on NO2. 87 

 88 

2 Materials and methods  89 

2.1 Study area 90 

Our study area consisted of 10 countries within SEA: Brunei, Cambodia, Indonesia, 91 

Laos, Malaysia, Myanmar, the Philippines, Singapore, Thailand, and Vietnam. We 92 

extracted and analysed NO2 level, mobility, and other factors including travel modes, 93 

temperature, and haze from March 2020 to February 2022. This period was chosen 94 

because of reduced mobility due to government-mandated COVID-19 measures that 95 

occurred in different intensities and timescales across the countries, enabling direct 96 

comparison of mobility impact on NO2 levels. The whole study area of 770 km2 was 97 

square gridded to 0.25º for the follow-up analyses (Figure 1). 98 
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 99 

Figure 1. Area of study with coloured grids (0.25º × 0.25º) representing the different 100 

countries of interest within SEA. 101 

2.2 Data sources and pre-processing 102 

2.2.1 NO2 103 

The level-3 product of daily NO2 observations (Tropospheric NO2 column density) of 104 

TROPOMI/Sentinel-5 was obtained from the Google Earth Engine cloud-based 105 

platform. The original data was resampled from the source resolution of 0.01º to 0.25º 106 

through mean operator. 107 

2.2.2 Mobility  108 

This study adopted mobility data from Facebook Data for Good at Meta (Maas, 2019) 109 

and Apple Mobility Trends Reports (Apple, 2020). The Facebook movement dataset 110 

records user movements between origin and destination tiles aggregated using 111 

Facebook users’ locations every eight hours (8:00, 16:00, 00:00). As the resolution of 112 
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Facebook’s data in different countries varied from level 11 to level 14 (approximately 113 

0.09° to 0.17°) in Bing tile system (Schwartz, 2018). We aggregated the original 114 

dataset to 0.25° grids by aggregating the mobility volumes within each grid (data 115 

records with 0m distance were excluded). As the dataset only contains information of 116 

the origin and destination rather than the actual movement route, it is difficult to 117 

assign movement value to other grids apart from the origin and destination grids, 118 

especially in long-distance travels. To minimize the inherent uncertainties in longer 119 

distance movements, the subsequent analyses are limited to movements whose origin 120 

and destination belong to the same or neighbouring grids (accounting for 93.33 121 

percent of the total movement volume). The corresponding Facebook movement 122 

values were assigned equally to both starting and ending grids. Apple moving trends 123 

present the percentage changes of two travel modes, driving and walking over time. 124 

Note that, Apple moving trends data is calculated by referring to the number of 125 

searches carried out on its Maps application. 126 

Meteorological conditions were reported to affect pollutant concentration (Pearce et 127 

al., 2011; He et al., 2016; Wang et al., 2017). We sourced six meteorological 128 

parameters that could potentially influence NO2 level (Jiang et al., 2014; He et al., 129 

2017) from 1st March 2020 to 31st December 2021: 1) maximum hourly 2m surface 130 

temperature, 2) dew point temperature, 3) mean hourly 10m u-component of wind, 4) 131 

10m v-component of wind, 5) hourly precipitation, and 6) surface pressure. More 132 

specifically, we extracted each of these daily parameters from the ERA5 hourly 133 

reanalysis dataset from the Copernicus Climate Data Store (Copernicus, 2022) and 134 

aggregated them into daily meteorological values respectively.  135 

2.2.3 Haze 136 

Google Trends, an open-source database, was used to retrieve the indexed popularity 137 

of Google searches indicating the public’s interest on that topic (Google, 2022). The 138 

English word ‘haze’ was used to understand the severity of haze at country level. We 139 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.29.22281700doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.29.22281700
http://creativecommons.org/licenses/by-nd/4.0/


 

utilised “pytrends” (an Application Programming Interface for Google Trends) to 140 

extract and scale datasets obtained for different countries, providing compatible 141 

datasets in both space and time (General Mills, 2022). While the values are indexed, 142 

which limits our ability to determine the actual number of searches, the set of varying 143 

values remains a useful proxy for the severity of haze in that location. Other keywords 144 

within and across the national languages were used in the search, but the results were 145 

noisy and excluded. For instance, searches for ‘transboundary haze’ were only 146 

detected in Singapore, Malaysia, and Indonesia, possibly denoting its prevalence only 147 

in those countries, or an issue of lexicons instead. Hence, only the English word ‘haze’ 148 

was employed as an approximation to the presence and severity of haze. 149 

 150 

2.3 Data analyses  151 

To address our study objectives, we incorporated three synergistic analyses: (1) a 152 

case study of Indonesia; (2) Space-Time Cube (STC) and Emerging Hotspot 153 

Analysis (EHSA) in SEA; (3) a Multi-Layer Perceptron (MLP) model to predict 154 

NO2 and assess the impact of different input factors on NO2. Due to the constraint 155 

of available data from Facebook movement dataset, we conducted the first two 156 

analyses with limited settings (Table 1). For the first analysis, we conducted a case 157 

study spanning a long time period to identify the temporal changes throughout the 158 

COVID-19 pandemic. Nevertheless, the complete dataset of 2020 is available only 159 

in Indonesia and Singapore. We chose to carry out our case study in Indonesia 160 

considering that it has a much larger spatial area than Singapore. The analysis 161 

expands to 10 countries in SEA from May 2021 because they are available for the 162 

whole of SEA. For the third analysis, our study covers a period between 1st April 163 

2020 and 31st December 2021 because the meteorological data of 2022 was 164 

unavailable at the time this study was conducted. 165 
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Table 1. An overview of the corresponding spatial extent, temporal resolution and 166 

time period for each analysis. 167 

No Analysis 
Spatial 

extent 

Temporal 

resolution 
Time period 

1 
Case study of 

Indonesia 
Indonesia Monthly 

March 2020 to 

February 2022 

2 STC and EHSA SEA Weekly 
31st May 2021 to 

26th February 2022 

3 MLP model  SEA Daily 
1st April 2020 to 

31st December 2021 

 168 

2.3.1 Indonesia case study  169 

As the most populous country in SEA, the case study of Indonesia was conducted to 170 

provide an initial and exploratory understanding of the linkage of mobility and NO2 171 

variations between March 2020 and February 2022. The monthly NO2 data and 172 

Facebook movement data in a spatial resolution of 0.25o were studied across 173 

Indonesia. Ordinary kriging (Wackernagel, 2003) was applied to fill in the grids 174 

without data  (Childs, 2004; Shad et al., 2009). A series of continuous raster maps 175 

were generated to facilitate the identification and subsequent interpretation of 176 

potential patterns in Indonesia. 177 

 178 

2.3.2 Space-time hotspot analysis in SEA 179 

We used the EHSA tool in ArcGIS Pro 2.8 software (Esri, 2022) to detect 180 

spatio-temporal trends in NO2 and Facebook movement within their respective STC. 181 

We conducted this analysis at a weekly interval between 31st May 2021 and 26th 182 

February 2022 over the 10 countries in SEA. We then examined spatial clusters by 183 
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hot spot categories in greater detail through examining Pearson’s correlation between 184 

the log of NO2 level and the log of Facebook movement values over the 39-week 185 

period for each point in a spatial cluster. As the magnitude of the ranges of NO2 186 

(-5.10e-5 to 8.26e-4) and Facebook movement (2.50 to 8.28e+7) could potentially 187 

skew the analysis outcome, we performed data cleaning and transformation as below. 188 

Firstly, NO2 data points with less than 1e-6 mol/m2 and Facebook movement values 189 

below 50 were excluded as they were observed as noise (Figure 2). Then we 190 

conducted a logarithmic transformation of base 10 for both variables. Note that before 191 

taken logarithm, the filtered NO2 data were multiplied by 10e+7 to ensure that data 192 

values remain positive. By removing data anomalies and reducing data skewness, 193 

these transformations improve the accuracy of our analyses. 194 

 195 

Figure 2. Scatter plot between NO2 and Facebook movement. 196 

 197 

2.3.3 NO2 prediction in SEA using MLP model 198 

In addition to the correlation between NO2 and mobility, we evaluated the impacts of 199 

different factors on NO2 using an MLP model. MLP is the most popular feedforward 200 

model with good performance in air pollution prediction and forecasting (Cabaneros 201 

et al., 2019; Shams et al., 2021). It is an artificial neural network (ANN) that consists 202 
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of an input layer, an output layer, and multiple hidden layers in between. The number 203 

of nodes in the input layer should be the same as the number of input variables. Input 204 

variables included 15 parameters (Table 2) across five categories: location (i.e., 205 

longitude and latitude), elapsed days (i.e., the number of days since the start of the 206 

study period), meteorological parameters (i.e., rainfall, wind speed, u-component of 207 

wind, v-component of wind, temperature, dew-point temperature, surface pressure), 208 

haze, and mobility (i.e., Facebook movement, the logarithm of Facebook movement, 209 

Apple driving and walking trends). To improve the model performance of MLP, we 210 

adopted the same method for data transformation as mentioned in section 2.3.2. 211 

 212 

Table 2. List of features in MLP model. 213 

Feature 

category 
Feature meaning Feature name 

Location 
Longitude lon 

Latitude lat 

Elapsed days 
The number of days since the 

start of study period 
day 

Meteorological 

parameters 

rainfall rainfall 

wind speed wind speed 

u-component of wind u-wind 

v-component of wind v-wind 

temperature 2m-temp 

dew-point temperature dew-pt 

surface pressure surface-p 

Haze 
relative number of haze 

searches 
haze 

Mobility 

Facebook movement facebook_movement 

logarithm of Facebook 

movement 
log_facebook_movement 

Apple driving trend apple_driving 
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Apple walking trend apple_walking 

 214 

We used the rectified linear unit (ReLU) activation function in this MLP model. 215 

ReLU outputs negative values to 0 and keeps other values the same as the inputs. 216 

Therefore, we converted all the negative values to positive values using the 217 

transformation method as mentioned in 3.1.2. to improve the model efficiency. By 218 

training different MLP models, we could then determine the optimum model 219 

architecture to be used in this study that resulted in a smaller error with little 220 

additional computational effort. Of all the data records, 70% were used for training 221 

and while the remainder were used for testing. Each input variable was normalised 222 

before training the model. Root mean square error (RMSE), mean absolute error 223 

(MAE) and R2 were used as the metrics for model evaluation. 224 

 225 

We then used SHapley Additive exPlanation (SHAP) to explain the model in order to 226 

quantify the impact of the different features on the model output (Lundberg and Lee, 227 

2017; Li, 2022). Traditional sensitivity analyses usually evaluate the changes in the 228 

output as a result of the change in only one input parameter. This may not be realistic as 229 

the possible correlation between variables is not accounted for. For example, air 230 

pressure and air temperature tend to increase or decrease together. SHAP values can 231 

account for the possible interactions amongst the input features when evaluating the 232 

impact of each feature on the output. However, it should be noted that the SHAP value 233 

or impact is different from the correlation. A high correlation means that the two 234 

variables tend to change together, while a higher SHAP value indicates a greater 235 

impact of one variable on the other, i.e., a change in one variable results in a greater 236 

magnitude of change in the other. The SHAP results can pinpoint the parameters that 237 

have relatively higher impacts on the NO2 level in SEA.  238 
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3 Results & Discussion 239 

3.1 Spatio-temporal distribution of NO2 and mobility level in Indonesia 240 

To begin with, we compared the spatio-temporal distribution variations of NO2 and 241 

Facebook movement levels in Indonesia during March 2020 and February 2022. 242 

Overall, the result showed a decreasing trend during the study period except in March 243 

2021 (Figure 3). On the other hand, NO2 showed a cyclical trend in 2020 and an 244 

increasing trend in 2021 before reaching peak in October 2021. 245 

246 
  Figure 3. Comparison of Facebook movement and NO2 in Indoensia. 247 

South and West Indonesia showed high NO2 levels, especially in Jakarta and its 248 

surrounding regions where the maximum mean NO2 value reaches 1.01e-04 mol/m2 in 249 

April 2020 (Figure 4). In comparison, the NO2 level is substantially lower in other 250 

areas, especially in East Indonesia. Facebook movement presents a similar 251 

distribution. The similarity in distributions of Facebook movement and NO2 level 252 

suggests a possible association between them. 253 

 254 
Figure 4. Spatial Distribution of Facebook movement and NO2 level in April 2020. 255 
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Figures 5 and 6 illustrate the temporal changes in Facebook movement and NO2 256 

distribution. Maps showing the temporal variations over the last two years are 257 

presented in Appendix A. During the first wave of COVID-19, although Facebook 258 

movement did not vary significantly, NO2 exhibited an oscillating pattern. Similarly, 259 

in 2021, the Facebook movement constantly decreased ever since March whereas the 260 

NO2 level did not present a decreasing trend. Moreover, we observed an increase in 261 

NO2 over the months in regions including Bali, Jawa Barat, Lampung and Kalimantan 262 

Barat. Overall, the temporal variation of NO2 and Facebook movement did not 263 

present similarity. This result contradicts previous studies in which the reduction of 264 

mobility had led to a decrease in NO2 level (Sicard et al., 2020; Faridi et al., 2021). 265 

Therefore, we hypothesise that human movement volume may not be the single 266 

significant factor affecting air pollution. For instance, forest fires had occurred in 267 

Indonesia causing air pollution and dryness which pre-matured the onset of haze in 268 

early 2021 (Hicks, 2021). 269 
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 270 

Figure 5. Comparison of Facebook movement and NO2 level during the first wave 271 

(April 2020 – December 2020) of COVID-19 in Indonesia. 272 
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 273 

Figure 6. Comparison of Facebook movement and NO2 level during the second wave 274 

of COVID-19 (April 2021 – December 2021) in Indonesia. 275 

  276 
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3.2 Spatio-temporal evaluation of the association between NO2 and Facebook 277 

movement trends in SEA 278 

Subsequently, we conducted analysis using EHSA at a finer temporal scale (weekly) 279 

in all selected SEA countries. Due to insufficient Facebook movement data, the study 280 

period for this analysis was limited to 31st May 2021 and 26th February 2022. Figure 281 

7 shows the temporal changes in Log(NO2) and Log(Facebook movement) during the 282 

study period. Similar to previous findings, there was a consistent pattern of a slight 283 

decrease in Facebook movement throughout the 39-week study period with a sharp 284 

decrease approximately at the 25th week in all eight SEA countries (Figure 7). On the 285 

other hand, we found no consistent patterns in NO2 levels over time. Nonetheless, 286 

there was a slight increase in Log(NO2) approximately around the 20th week and the 287 

25th week in Thailand and Myanmar respectively.  288 

289 
Figure 7. Change in Log(facebook_movement) against Log(NO2) between June 2021 290 

and February 2022. Each circle in the figure corresponds to a grid in the country. 291 

The darker the circle, the lower the Log(NO2). 292 
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 293 

From the complete EHSA result derived from the NO2 level (Figure 8a), it is observed 294 

that hot spots were detected mainly in the northwest of SEA. In comparison, central 295 

and south of SEA, which were mainly covered by Malaysia and Indonesia, were 296 

dominated by cold spots. Several hot spot patterns were identified, including new, 297 

intensifying, persistent and diminishing hot spots (Figure 8b). In terms of the 298 

spatial-temporal patterns of NO2, the diminishing hot spots indicate decreasing 299 

clustering intensity of the NO2 space-time hotspots in a statistically significant trend 300 

over time. Contrastingly, the intensifying hot spots showed a statistically significant 301 

increase in clustering intensity over time. 302 
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 303 

 304 

Figure 8. (a) Complete result of NO2 EHSA result and (b) result of NO2 EHSA with 305 

only selected patterns of interest. 306 

  307 
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The complete result of Facebook movement EHSA (Figure 9) is different from that of 308 

NO2 EHSA (Figure 8a). The Facebook movement EHSA result showed substantially 309 

fewer observed patterns, where only diminishing, sporadic and historical hot spots but 310 

no cold spots were detected. In the context of Facebook movement, diminishing hot 311 

spots indicate that locations of statistically significant mobility hot spots exhibit 312 

decreasing clustering pattern. On the other hand, the sporadic hot spots indicate 313 

locations where statistically significant hot spots were only identified at some 314 

inconsistent time steps. Lastly, historical hot spots indicate locations where the level 315 

of mobility has been detected as statistically significant hot spots for the major time 316 

steps in the past. These hot spots are observed mostly in the major SEA cities such as 317 

Hanoi, Jakarta, Johor and Singapore, where lockdown restrictions would influence 318 

mobility more due to higher population and more intense economic activities (Heroy 319 

et al., 2021). This corroborates with the overall decrease in Facebook movement over 320 

the entire study period (Figure 7).  321 

 322 

 323 

Figure 9. Complete EHSA result of Facebook movement. 324 
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 325 

As this study seeks to examine the effect of mobility changes on NO2, we conducted 326 

correlation analyses on specific spatio-temporal patterns with reference to the EHSA 327 

results of NO2. While several types of NO2 spatio-temporal hot spots were identified 328 

using EHSA, the correlation between Log(NO2) and Log(Facebook movement) varied 329 

widely geographically from June 2021 to February 2022. Such variation was observed 330 

within a country and even within a city.  331 

 332 

In the case of the intensifying hot spots, while positive correlation between Log(NO2) 333 

and Log(Facebook movement) was observed in Chon Buri province, Thailand, a mix 334 

of positive and negative correlations were observed in the Rayong and Chanthaburi 335 

provinces, Thailand (Figure 10). This trend did not support the previous findings that 336 

the degree of movement restriction correlates positively with NO2 level. In fact, the 337 

same spatial cluster of NO2 intensifying hot spots in Chon Buri and Rayong were 338 

identified as diminishing hot spots or no pattern detected in the Facebook movement 339 

EHSA result (Figure 9). While NO2 levels at these locations became stronger hot 340 

spots over time, the corresponding mobility hot spots became less clustered. This 341 

contrasting observation further confirms that there is lack of evidence supporting a 342 

direct association between mobility and the resultant NO2 levels.  343 
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 344 

 345 
Figure 10. Correlation between Log(Facebook movement) and Log(NO2) in 346 

intensifying hot spots in Thailand. 347 

 348 

Variation in correlation was also observed among the persistent hot spots in the 349 

provinces around Ha Noi in Vietnam (Figure 11), and the new hot spots were found 350 

along the border between Thailand and Myanmar (Figure 12). While the persistent hot 351 

spots indicated statistically significant higher NO2 levels relative to their space-time 352 

neighbours over most of the 39 weeks without discernible trends, the new hot spots 353 

indicate a statistically significant space-time hotspot only in the last time step and not 354 

in any of the previous ones. Yet, the weak positive correlation and moderate negative 355 

correlations between Log(NO2) and Log(Facebook movement) show insubstantial 356 

evidence to attribute the changes in NO2 levels to the changes in mobility. Likewise, 357 

these locations were identified as the diminishing hot spots or absence of space-time 358 

pattern in the Facebook movement EHSA result (Figure 9). This similarly suggests 359 
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that while mobility hot spot intensity decreased in these points, the NO2 hot spot 360 

intensity stayed relatively constant over time.  361 

 362 

 363 
Figure 11. Correlation between Log(Facebook movement) and Log(NO2) in persistent 364 

hot spots in Vietnam.  365 

 366 
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 367 
Figure 12. Correlation between log (Facebook movement) and log (NO2) in new hot 368 

spots in Thailand and Myanmar.  369 

In the case of the diminishing hot spots, we detected two clusters of points in 370 

Indonesia (Figure 13) and Malaysia (Figure 14), which exhibit positive correlations 371 

between Log(NO2) and Log(Facebook movement). In addition, the corresponding 372 

points were also identified as the diminishing hot spots in the EHSA results of the 373 

Facebook movement. This suggests that both NO2 levels and Facebook movement 374 

decrease over time, validating the positive correlation between these two variables.  375 

 376 
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 377 
Figure 13. Correlation between Log(Facebook movement) and Log(NO2) in 378 

diminishing hot spots Indonesia.   379 
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 380 

 381 
Figure 14. Correlation between Log(Facebook movement) and Log(NO2) in 382 

diminishing hot spots in Malaysia.  383 

Overall, these spatially explicit exploration of the correlation between NO2 levels and 384 

mobility spatio-temporal trends revealed inconsistent patterns between June 2021 and 385 

February 2022, which approximates the period of the COVID-19 Delta and emerging 386 

Omicron variants. Further inspection of the correlation coefficients revealed that the 387 

observed correlations were only statistically significant for NO2 diminishing hot spots 388 

and the negatively correlated NO2 persistent and new hot spots. Therefore, we 389 

postulate that our SEA-wide EHSA results reinforce the findings from Li et al. (2022) 390 

where a national-scale spatial variability in correlations between NO2 levels and 391 

mobility was observed. This strongly indicates that mobility alone could not fully 392 

explain the resultant NO2 level changes over time and space. 393 

 394 
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3.3 NO2 prediction and its sensitivity to different influential factors 395 

The previous two sections suggest that mobility is not the single influencing factor on 396 

the NO2 variation over time. We further explored the association between NO2 and 397 

other potential factors using the MLP model. Firstly, the correlation coefficients 398 

between each pair of variables were calculated and plotted as a heatmap (Figure 15). 399 

Log(facebook_movement) is the variable that has the strongest correlation with both 400 

Log(NO2) and NO2 (i.e., the correlation coefficient of 0.45 and 0.42, respectively). In 401 

comparison, Apple driving and walking trends have a much weaker correlation with 402 

Log(NO2) (i.e., the correlation coefficient of -0.13 and -0.02, respectively). However, 403 

Apple driving trend is strongly correlated to Apple walking trend, with a correlation 404 

coefficient of 0.73. This shows that Apple driving and Apple walking trends are very 405 

likely to increase or decrease together. Apart from the three mobility factors, 406 

longitude, latitude and temperature also showed a relatively strong correlation with 407 

NO2 and Log(NO2). 408 

 409 

Figure 15. Correlation matrix between any pair of variables. 410 
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After calculating the coefficients, 15 features (Table 2) were used to predict the 411 

output NO2 in the MLP model. The model architecture consists of 18 hidden layers 412 

with a range of 8 to 64 nodes in each layer, and a total of 14,793 trainable parameters. 413 

Figure 16 plots the predicted and the measured ground-truth output values in both the 414 

training and testing datasets. A higher difference was observed at low Log(NO2) 415 

levels. Table 3 summarized the performance of both the training and testing datasets 416 

where the high similarity between their respective RMSE and MAE values suggests 417 

that no overfitting was found. 418 

419 

Figure 16. The predicted and measured Log(NO2) in the training (left) and testing 420 

(right) dataset. 421 

Table 3. Performance of the MLP model on training and testing dataset. 422 

 RMSE 

(NO2; 

mol/m2) 

RMSE 

(Log(NO2)) 

MAE 

(NO2; 

mol/m2) 

MAE 

(Log(NO2)) 

R2 

(NO2) 

R2 

(Log(NO2)) 

Train 1.03e-05 0.22 5.03e-06 0.16 0.49 0.52 

Test 1.02e-05 0.22 5.02e-06 0.16 0.49 0.52 

 423 

The prediction error was evaluated by calculating the difference between the 424 

predicted and measured ground truth values in the testing dataset. The histogram of 425 

prediction error shows that most errors fall between -0.5 and 0.5 (Figure 17). A 426 
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coloured distinction was used to differentiate observations with large prediction errors 427 

(> 0.5 or < -0.5) from those with small prediction errors (Figure 18). This distinction 428 

revealed that large errors concentrate at column densities lower than 1e-5.5 mol/m2 429 

(or log(NO2) < 1.5). A measured NO2 column density of 1e-5.5 mol/m2 could be 430 

overestimated as 1e-5 mol/m2. On the other hand, measurements also have uncertainty. 431 

By comparing with ground measurements, the uncertainty in measurement was about 432 

1e-5 mol/m2 (Tonion & Pirotti, 2022). While our prediction error occurred mostly at 433 

small NO2 column densities and was within the range of measurement uncertainty, 434 

this implies that the trained model performs well in predicting most of the NO2 levels 435 

and can generalise such prediction without overfitting the models. 436 

 437 
Figure 17. Histogram of prediction errors in the testing dataset. 438 

 439 
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 440 

Figure 18. The distribution of large errors in the measured Log(NO2) in the testing 441 

dataset. 442 

 443 

Subsequently, data records with high Log(NO2) were sliced as a new dataset to 444 

investigate its association with different parameters. This included 6362 Log(NO2) 445 

records ranging between 2.48 to 2.50 with small prediction error, representing a 446 

subset of data reliably predicted by the model. SHAP values were calculated for each 447 

parameter in each record representing the magnitude of impact each parameter has on 448 

the output Log(NO2).  449 

 450 

The spatial (i.e., lat and lon) and temporal information (i.e., day) had the highest 451 

impacts on the output Log(NO2) according to the global interpretation summary 452 

(Figure 19). This reinforces the importance of spatial and temporal information in 453 

predicting NO2 levels. Besides spatial and temporal parameters, the next highest 454 

contributing parameters were mobility factors (i.e., apple_walking, apple_driving and 455 

facebook_movement). Specifically, the Apple moving trends had higher impacts on 456 

NO2 as compared to the Facebook movement. As mentioned, Facebook movement 457 

data has higher spatial resolution than Apple’s. Although the latter is coarser in 458 
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resolution, it distinguished different travel modes (i.e., driving and walking). The 459 

comparatively higher impacts of Apple moving trends on Log(NO2) suggest that 460 

distinguishing different travel modes is important in predicting NO2. Additionally, 461 

other factors especially temperature also showed impacts to a certain extent on this 462 

model, although their impact is overall lower compared to spatio-temporal factors and 463 

most of the mobility factors.  464 

 465 
Figure 19. A summary plot of impacts of each parameter on Log(NO2). 466 

The dependence plot in Figure 20 shows that when Log(facebook_movement) is 467 

below the average value (normalised to 0), both facebook movement and apple 468 

moving trend hardly have any impact on NO2. In other words, the impact of change in 469 

mobility parameters on NO2 is more detectable at higher movement level. On the 470 

other hand, this impact on NO2 could be different at the same total movement level. 471 

For instance, when Log(facebook_movement) was above the mean value, the blue 472 

points (lower level of Apple driving trend) have lower SHAP values compared to the 473 

pink points (higher level of Apple driving trend). This suggests that when total 474 

mobility is contributed less by the driving trend, an increase in total mobility could be 475 

contributed more by the walking trend instead. Therefore, there tends to be a lower 476 

resultant impact on NO2 levels. 477 
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 478 

In addition, the impact of Apple walking trend on Log(NO2) in Figure 21 shows that 479 

there is a negative impact on Log(NO2) when the walking trend decreases. The 480 

different interactions of Apple driving and Apple walking indicated that this negative 481 

impact on Log(NO2) from a decreased walking trend could be attributed to the 482 

concurrent decrease in Apple driving trend (in blue colour). 483 

 484 

Figure 20. Impact of Log(facebook_movement) on Log(NO2) represented by the 485 

SHAP values at different Log(facebook_movement) values along the x-axis, and its 486 

interactions with Apple driving trend (in colour). 487 
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 488 

Figure 21. Impact of Apple walking trend on Log(NO2) represented by the SHAP 489 

values at different apple_walking values along the x-axis, and its interactions with 490 

Apple driving trend (in colour). 491 

 492 

4 Conclusions 493 

The various lockdowns and movement restrictions during the COVID-19 pandemic 494 

present an opportunity to study how air pollution varies along with the decrease of 495 

mobility. Although existing studies have conducted analysis during the lockdowns in 496 

early 2020 and observed a positive correlation between NO2 and mobility. Given that 497 

their study period was confined to a short time period, their observation may be 498 

subject to other under-examined factors. Therefore, we investigated the variability of 499 

NO2 at a very large spatial scale with diverse human movement patterns in a two-year 500 

study time period. We found that mobility showed decreasing trend during the 501 

COVID-19 pandemic in Indonesia. However, the decreased mobility did not generally 502 

result in concurrent decrease in NO2 during the two years. Our EHSA results revealed 503 

the spatio-temporal heterogeneity in NO2 levels and mobility in SEA during June 504 

2021 and February 2022. The variability in Pearson’s correlation coefficient further 505 

indicated the absence of a definitive correlation between NO2 and Facebook 506 
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movement. The subsequent MLP result suggests that mobility with distinguished 507 

travel modes substantially influenced the MLP model and NO2 prediction. Moreover, 508 

the impact of mobility on NO2 varies with mobility level. When mobility is below the 509 

average level, its impact on NO2 becomes negligible. This may be another reason why 510 

the decrease in mobility did not result in any expected correlated decrease in NO2 in 511 

general. 512 

 513 

Our findings denoted that the reduced mobility during COVID-19 pandemic did 514 

contribute to the variation of NO2. Nevertheless, other meteorological factors 515 

especially temperature also had considerable impacts and should be considered along 516 

with mobility when attempting to understand NO2 variation. Although SEA countries 517 

are gradually loosening movement and other restrictions to restore industry activities 518 

and economy (Luo et al., 2022), traffic control is still a recommended solution for 519 

regions suffering from poor air quality. Additionally, our model provides an accurate 520 

NO2 prediction method, which could be adopted as a health risk warning system in 521 

preventing possible exposure to high concentration of NO2. 522 

 523 

There are three main limitations in this study and further investigations are 524 

recommended. Firstly, our study mainly estimated the movement value in adjacent 525 

study grids, excluding long distance travels. Although daily commuting in adjacent 526 

grids accounts for most of the movement value (93.33 percent), this would cause 527 

some uncertainty in actual movement volume estimation. Future studies could adopt 528 

other datasets that include specific mobility trajectories to account for long distance 529 

travel patterns and reduce uncertainty. Secondly, as this study seeks to examine the 530 

spatio-temporal changes in NO2 levels, only specific patterns of hot spots (i.e., new, 531 

intensifying, persistent and diminishing hot spot) were selected for correlation 532 
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analyses. Other studies could examine the correlation between NO2 and mobility 533 

levels for other patterns of hot spots and even the cold spots to potentially elicit more 534 

insights. Finally, this study did not adopt a spatio-temporal machine learning model 535 

due to the discontinuous Facebook movement data (i.e., most countries have missing 536 

data before May 2021) during the two-year study period. Future studies are 537 

recommended to adopt a hybrid model (e.g., convolutional neural network (CNN) and 538 

long short-term memory (LSTM)) for NO2 prediction. Nonetheless, it presented 539 

timely and novel evidence that the spatial and temporal information were strong 540 

factors in explaining NO2 levels. Future scholars are recommended to adopt a hybrid 541 

model (e.g., convolutional neural network (CNN) and long short-term memory 542 

(LSTM)) in NO2 prediction to account for the interactions of NO2 with time and 543 

space.  544 

 545 

Source codes related to this study can be found on a public GitHub repository 546 

(https://github.com/liyangyang515/Spatio-Temporal-Patterns-of-NO2-and-Mobility-T547 

hrough-the-Variants-of-COVID-19-in-SEA).  548 
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Appendix 852 

Appendix A: Distribution and Temporal Variation of Facebook movement and NO2 in Indonesia, between Apr 2020 and Feb 2022. 853 
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