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Aim: To review and appraise the quality of studies that present models for causal inference of time-

varying treatment effects in the adult intensive care unit (ICU) and give recommendations to improve 

future research practice. 

Methods: We searched Embase, MEDLINE ALL, Web of Science Core Collection, Google Scholar, 

medRxiv, and bioRxiv up to March 2, 2022. Studies that present models for causal inference that deal 

with time-varying treatments in adult ICU patients were included. From the included studies, data was 

extracted about the study setting and applied methodology. Quality of reporting (QOR) of target trial 

components and causal assumptions (ie, conditional exchangeability, positivity and consistency) were 

assessed. 

Results: 1,714 titles were screened and 60 studies were included, of which 36 (60%) were published in 

the last 5 years. G methods were the most commonly used (n=40/60, 67%), further divided into inverse-

probability-of-treatment weighting (n=36/40, 90%) and the parametric G formula (n=4/40, 10%). The 

remaining studies (n=20/60, 33%) used reinforcement learning methods. Overall, most studies 

(n=36/60, 60%) considered static treatment regimes. Only ten (17%) studies fully reported all five target 

trial components (ie, eligibility criteria, treatment strategies, follow-up period, outcome and analysis 

plan). The ‘treatment strategies’ and ‘analysis plan’ components were not (fully) reported in 38% and 

48% of the studies, respectively. The ‘causal assumptions’ (ie, conditional exchangeability, positivity and 

consistency) remained unmentioned in 35%, 68% and 88% of the studies, respectively. All three causal 

assumptions were mentioned (or a check for potential violations was reported) in only six (10%) studies. 

Sixteen studies (27%) estimated the treatment effect both by adjusting for baseline confounding and by 

adjusting for baseline and treatment-affected time-varying confounding, which often led to substantial 

changes in treatment effect estimates. 

 

Conclusions: Studies that present models for causal inference in the ICU were found to have incomplete 

or missing reporting of target trial components and causal assumptions. To achieve actionable artificial 

intelligence in the ICU, we advocate careful consideration of the causal question of interest, the use of 

target trial emulation, usage of appropriate causal inference methods and acknowledgement (and 

ideally examination of potential violations) of the causal assumptions. 

 

Systematic review registration: PROSPERO (CRD42022324014) 
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Introduction 

Many treatment choices in the intensive care unit (ICU) are made quickly, based on patient 

characteristics that are changing and monitored in real-time. Given this dynamic and data-rich 

environment, the ICU is pre-eminently a place where artificial intelligence (AI) holds the 

promise to aid clinical decision making.1–3 So far, however, most AI models developed for the 

ICU remain within the prototyping phase.4,5 One explanation for this may be that most models 

in the ICU are built for the task of prediction, ie, mapping input data to (future) patient 

outcomes.6 However, even a very accurate prediction of, for instance, sepsis,7 does not tell a 

physician what to do in order to treat or prevent it. In other words, prediction models are 

seldom actionable. For AI that assists clinicians in what to do, ie, ‘actionable AI’, models need to 

take into account cause and effect.  

Causal inference (CI) represents the task of estimating causal effects by comparing patient 

outcomes under multiple counterfactual treatments.6,8 The most widely used method for CI is a 

randomized controlled trial (RCT). Through randomization (coupled with full compliance), the 

difference in outcome between treatment groups can be interpreted as a causal treatment 

effect. Because carrying out RCTs may be infeasible due to cost, time, and ethical constraints, 

observational studies are sometimes the only alternative. CI using observational data can be 

seen as an attempt to emulate the RCT that would have answered the question of interest (ie, 

the ‘target trial’).9 With such an approach, however, treatment is not assigned randomly and 

extra adjustment for confounding is required. In the simple situation of a time-fixed (or ‘point’) 

treatment (figure 1, panel 1),10,11 this can be achieved by ‘standard methods’ like regression or 

propensity-score (PS) analyses.12 However, ICU physicians are typically confronted with 
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treatment decisions which occur at multiple time-points, ie, time-varying treatments (figure 1, 

panel 1).10,11 Estimating the effect of time-varying treatments using observational data is often 

complicated by treatment-confounder feedback,13 leading to ‘treatment-affected time-varying 

confounding’ (TTC, panel 1)11,14,15. Usage of standard methods in the presence of TTC leads to 

bias.16,17 Inverse-probability-of-treatment weighting (IPTW), the parametric G formula and G 

estimation (collectively known as ‘G methods’, panel 1) were introduced by Robins18 to 

estimate causal effects in the presence of TTC, making them well-suited for CI in the ICU. Time-

varying treatments can be further subdivided into static (STRs) and dynamic treatment regimes 

(DTRs, figure 1, panel 1). The latter type is most common in the ICU, as treatment choices are 

typically dynamically re-evaluated based on the evolving patient state. For example, rather than 

deciding upon admission to administer vasopressors daily, an ICU physician reconsiders giving 

this treatment throughout the ICU stay based on the patient’s response. Hence, the practical 

question of interest often requires a comparison of DTRs. Reinforcement learning (RL)19 is 

another class of methods which, like G methods, can be used to estimate optimal DTRs and 

have been increasingly applied to ICU data.20 Partly due to the different language used to 

describe similar concepts (table S1), studies applying G methods and RL may appear as 

completely separate disciplines. However, they show great similarities and can be used to build 

actionable AI models. 

To move towards actionable AI in the ICU, our review provides an overview of CI studies 

concerning time-varying treatments in the ICU, discusses quality of reporting and gives 

recommendations to improve future research practice. 
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Panel 1: Glossary 

Time-fixed treatment: a treatment that only occurs at the start of follow-up (eg, one shot 

antibiotics at ICU admission), or does not change over time (eg, genotype). 

 Time-varying treatment: any treatment that is not time-fixed. Time-varying treatments can be 

sub-divided in static and dynamic treatment regimes. 

 Static treatment regime (STR): a treatment regime that is not tailored to evolving patient 

characteristics (eg, ‘treat patient with daily antibiotics during ICU admission’). 

 Dynamic treatment regime (DTR): a treatment regime where the treatment decisions depend 

on changing patient characteristics and/or treatment history (eg, ‘treat patient with antibiotics 

until procalcitonin drops below 0.5 μg/L’). 

Treatment-affected time-varying confounding (TTC): time-varying confounding in which one or 

more time-varying confounders are affected by previous treatment. 

G methods: a class of methods proposed to appropriately adjust for TTC in the estimation of 

time-varying treatment effects, including inverse-probability-of-treatment weighting (IPTW), 

the parametric G formula, and G estimation. 

Reinforcement learning (RL): a class of methods that deals with the problem of sequential 

decision making which returns an optimized treatment regime, including (among others) Q-

learning and policy iteration. 

Off-policy evaluation (OPE): the task of estimating the value of an (optimized) treatment 

regime (or ‘policy’) using data from patients who received treatments not conform to this 

regime (eg, observational data). OPE methods fall into two main categories: importance-

sampling and model-based methods (doubly robust methods borrow ideas from both 
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importance-sampling and model-based methods). 

Causal assumptions: 

Conditional exchangeability: Exchangeability means that the risk of an outcome (eg, mortality) 

in the untreated group (eg, those who did not receive antibiotics) would have been the same as 

the risk in the treated group (eg, those who received antibiotics), had the patients in the 

untreated group received treatment. In observational data, exchangeability generally does not 

hold due to confounding and/or selection bias, and, therefore, CI requires the assumption that 

all confounders are measured and adjusted for to achieve exchangeability conditional on the 

measured confounders.  

Positivity: One can only estimate the causal effect of a treatment by comparing data of treated 

and untreated patients. Therefore, in all subgroups (or ‘strata’) defined by specific 

combinations of the confounder values, there must be treated and untreated patients. In other 

words, treatment should occur with some positive probability in all confounder strata (ie, the 

positivity assumption).  

Consistency: Consistency assumes that the outcome for a given treatment will be the same, 

irrespective of the way treatments are ‘assigned’. This is often plausible for medical treatments, 

but less obvious for treatments that are modifiable by a variety of means, such as body-mass 

index which could be caused by diet or a metabolic disorder. 
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Methods 

This systematic review was conducted in accordance with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analysis (PRISMA) guidelines,21 and the protocol was registered 

in the online PROSPERO database (CRD42022324014).22 

Search strategy 

Candidate articles were identified through a comprehensive search in Embase, MEDLINE ALL, 

Web of Science Core Collection, Google Scholar, medRxiv, and bioRxiv up to 2 March 2022, with 

no start date. We developed a search strategy that could be modified for each database 

(appendix A). Search terms included relevant controlled vocabulary terms and free text 

variations for CI, G methods, or common RL methods, combined with ICU related terms.  

Eligibility criteria 

We included any primary research article, conference proceedings or pre-print papers that 

present models for the task of CI concerning time-varying treatments in adult (≥ 17 years of 

age) patients admitted to the ICU. Articles were not eligible if data from an RCT was used 

(unless the treatment of interest was not the randomized treatment), it focused on the 

introduction of new methodology, or was an abstract-only, review, opinion, or survey. 

Duplicates and articles not written in English were also excluded. 

Study selection 

We used a two-stage approach for screening: first by title and abstract and then by full article 

text. One reviewer (JS) screened the titles and abstracts. Full text articles were then screened 

and selected. Studies for which uncertainty remained for eligibility were independently 
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screened in full-text by two other reviewers (JK and MvG), and conflicts were resolved by 

discussion between the three reviewers. For both title-abstract and full text screening, reasons 

for exclusion were recorded. 

Data extraction 

Data was extracted by using a standardised data extraction form. Uncertainties were resolved 

by discussion between three reviewers (JS, JK and JL). The items for extraction were based on 

the STROBE (STrengthening the Reporting of OBservational studies in Epidemiology) checklist,23 

supplemented by method-specific items. We extracted the following items from all included 

studies: details of study variables (ie, studied treatment and primary outcome), the number of 

included ICUs, usage of open-source database(s), number of participants included, studied 

treatment type (figure 1), and used CI method. In addition, we extracted the following method-

specific items: the usage of methods to reduce extreme weights (ie, weight stabilization24 and 

truncation25) for studies using IPTW and the off-policy evaluation26 (OPE, panel 1) method used 

for studies using RL. Finally, if a study estimated the treatment effect both by adjusting for 

baseline confounding and by adjusting for baseline confounding and TTC, we also collected 

these different estimates. 

Quality of reporting 

To assess the quality of reporting (QOR) of the included studies, we judged the reporting of the 

components of the target trial framework9 and the causal assumptions (panel 1). 
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Target trial components 

The ‘target trial framework’, introduced by Hernan and Robins9, consists of seven main 

components. We judged the reporting of five of these: eligibility criteria, treatment strategies, 

follow-up period, outcome and analysis plan (table 1). We scored the analysis plan component 

as ‘reported’ if one could reproduce the modelling given the required data. For studies using RL, 

we judged the ‘treatment strategies’ and ‘outcome’ components as ‘reported’ if the definitions 

of the used action space and reward were reported, respectively. We split the follow-up period 

component into three subcomponents: time-zero (or ‘index date’), end of follow-up, and time 

resolution (ie, the time steps in which the treatment level is considered the same).27 We split 

the analysis plan component into specific subcomponents depending on the CI method used 

(table S2). We scored the target trial components that are split in subcomponents as ‘reported, 

‘partially reported’ and ‘not reported’ if all, some, or none of the subcomponents were 

reported, respectively. Because (outside RCTs) ICU physicians are typically aware of the 

treatment patients receive, one cannot emulate target trials with blind assignment. Therefore, 

we did not consider the ‘assignment procedures’ component. Also, we did not consider the 

‘causal contrast of interest’ component because an intention-to-treat analysis based on 

observational data is rarely possible.9  

Causal assumptions 

The task of CI relies on strong assumptions, including conditional exchangeability, positivity and 

consistency (hereafter referred to as ‘causal assumptions’, panel 1).8 Violations of these 

assumptions lead to biased estimates and therefore, acknowledgement is important and 

ideally, potential violations are examined. We scored each study using three levels of 
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increasingly good reporting quality: (1) assumption not mentioned, (2) assumption mentioned, 

and (3) attempt to check for potential violations of the assumption reported. For the 

conditional exchangeability assumption, we distinguished two types of attempts to check for 

potential violations: ‘indirect approaches’9 and ‘bias analyses’.28 For the positivity assumption, 

we considered the examination of the distribution of the estimated (stabilized) inverse-

probability-of-treatment (IPT) weights as an attempt to check for potential violations.29 

Approaches to check potential violations of consistency do not exist and therefore, mentioning 

the consistency assumption (level 2) was considered as the highest level of reporting quality. 

Evidence synthesis 

We tabulated extracted study items for each study individually and grouped by CI method used. 

QOR results concerning the target trial components and the causal assumptions are 

summarised as percentages using bar charts, and QOR results for each study individually were 

tabulated. For the reporting of the target trial components, we made separate tables for each 

group of studies that used a specific CI method. The collected treatment effect estimates 

reported by studies that estimated the treatment effect both by adjusting for baseline 

confounding and by adjusting for baseline and TTC, were plotted as point estimates and 

corresponding 95% confidence intervals.  

Results 

Our search identified 1,714 unique articles, of which 1,605 were excluded based on title and 

abstract screening. We screened 109 full texts, 60 of which met the eligibility criteria and were 

included in the review (figure 2). The articles were published between 2005 and 2021 in 36 
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different journals and conference proceedings, with a steadily growing number of articles per 

year starting around 2010 (figure S1). A reference list of all included studies and the list with 

collected items per study can be found in appendix B and table S3, respectively. Most studies 

applied G methods (n=40, 67%), of which 36 (60%) used IPTW and four (7%) the parametric G 

formula. Twenty (33%) studies used RL methods (table 2). The three most frequently studied 

treatment categories were nosocomial infections (n=8, 13%), anti-inflammatory drugs (n=6, 

10%) and sedatives and analgesics (n=6, 10%). Most studies (n=32, 53%) considered mortality 

(at varying follow-up times) as the primary outcome. Thirty-one studies (52%) included data 

from at least two different ICUs. Studies that used RL generally included more patients than 

studies that used G methods, with a median of 7,513 (IQR 5,252 to 18,340) versus 1,451 

patients (IQR 421 to 2,914) and relied more often on open-source ICU databases (75% vs 15%). 

In total, 21 (35%) of the studies used one or more open-source ICU database, among which the 

Medical Information Mart for Intensive Care (MIMIC)-III database30 was the most frequently 

used (n=19, 32%). In contrast to RL studies (which inherently deal with DTRs), only three31–33 of 

the 40 studies (8%) that used G methods considered DTRs. 

Method-specific items 

Among the studies that used IPTW (n=36), 17 applied stabilized weights, one applied weight 

truncation, and eight studies applied both weight stabilization and truncation. Among studies 

that applied RL on real (ie, not simulated) patient data (n=16), seven studies used an 

importance-sampling based34, model-based35,36, a doubly robust OPE method37, or a 

combination of these. Eight studies used the so-called ‘U-curve method’38 (panel 1) and for six 
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of these, this was the only reported OPE method. In three studies, the OPE method was not 

reported (figure S2). 

Quality of reporting 

Target trial components 

The ‘eligibility criteria’ and ‘outcome’ components were reported in 58 (97%) and 59 (98%) of 

the studies, respectively (figure 3a). We scored the ’treatment strategies’, ‘follow-up period’ 

and ‘analysis plan’ components as partially or not reported in respectively 23 (38%), 16 (27%) 

and 29 (48%) of the studies. All five target trial components were fully reported in only ten 

(17%) studies.31,39–47 The reporting of the target trial components grouped by used CI method 

are summarized in figures S3-5 and tabulated for each individual study in tables S4-S6. 

Causal assumptions 

The conditional exchangeability assumption remained unmentioned in 21 (35%), was 

mentioned in 25 (42%), and an attempt to check for potential violations was reported in 14 

studies (23%, figure 3b). Among the studies that reported a check for potential violations, four 

studies48–51 performed a bias analysis. The positivity assumption remained unmentioned in 41 

(68%), was mentioned in three (5%), and a check for potential violations was reported in 16 

(27%) of the studies. The consistency assumption was mentioned in seven (12%) of the studies. 

All three assumptions were mentioned (or a check for potential violations was reported) in only 

six (10%) studies.31,33,42,43,51,52 The reporting of assumptions grouped by CI method used are 

summarised in figures S6-S8 and individual results for all studies are tabulated in table S7. In 

general, the causal assumptions remained unmentioned more often in studies that applied RL, 
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compared to those which applied G methods (figures S6-8). All studies that reported a check for 

potential violations of the conditional exchangeability assumption also mentioned this 

assumption, whereas for the positivity assumption, seven out of 16 studies that reported a 

check for potential violations did not explicitly mention positivity (table S7).  

Adjusting for TTC 

Eighteen studies (30%) estimated the treatment effect by adjusting for baseline confounding 

and by adjusting for baseline confounding and TTC. For most of these studies, the point 

estimates of the treatment effects varied substantially after adjusting for both baseline and 

TTC, moving the effect estimate towards or away from the null hypothesis, or even leading to 

opposite effect estimates (figure 4).   

Discussion 

Our review of 60 published studies found a wide variety of treatments being studied, with a 

predominant focus on STRs, despite DTRs being most relevant in the ICU setting. We found 

incomplete reporting of the target trial components in most studies, among which the 

‘treatment strategies’ and ‘analysis plan’ were incompletely reported most often. The causal 

assumptions often remained unmentioned, and this was especially noticeable in studies that 

applied RL methods.  

ROBINS-I53 is a tool developed for assessing the risk of bias (ROB) in CI studies using 

observational data. Instead of assessing the ROB using this tool, we chose to assess the QOR.  

First, to fairly assess the ROB, the emulated target trial needs to be well reported, which was 

often not the case in the included studies (figure 3a). Moreover, ROB assessment would require 
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expert knowledge of each specific treatment-outcome relationships studied in the included 

articles, which is beyond the scope of this review. 

G methods and RL methods are often perceived as separate disciplines, but show great 

similarities. For example, Q-learning54 (an RL method, used by many of the included 

studies46,47,55–57) is very similar -and under certain conditions even algebraically equivalent- to G 

estimation (a G method).58 An important difference is that G methods are used for modelling 

both STRs and DTRs, while RL methods typically deal with DTRs. As both G methods and RL 

methods perform the same CI task (ie, finding optimal treatment regimes), both rely on the 

same, strong causal assumptions which should be acknowledged. While the consistency 

assumption is often plausible for treatments in the ICU, violations of the conditional 

exchangeability and positivity assumption are more likely and should be examined. Prior to 

examining violations of the causal assumptions, one needs a research question that is truly of 

interest in the ICU, a clear description of the target trial, and usage of a CI method that is 

appropriate for the type of studied treatment. The results of our review have led to five 

recommendations to improve future CI research and move towards actionable AI in the ICU 

(panel 2). 

Recommendations for future research 

Ask the right research question 

Treatments of interest in the ICU are typically DTRs and, therefore, this type of treatments is 

expected to be the focus of CI research in the ICU. However, 93% of the studies that used G 

methods studied STRs. To illustrate that many of these studies are considering research 
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questions that are not truly of interest in the ICU, we will explore some examples. Zhang and 

colleagues[57] divided patients into two groups according to whether they received diuretics 

within the first two days of ICU admission or not. Thus, the emulated target trial answers the 

question whether or not to administer diuretics at the start of ICU admission. However, we 

argue that the question an ICU physician is really interested in is when to administer diuretics 

throughout the whole ICU stay, taking into account changing patient characteristics such as 

fluid balance (especially at later ICU stages). In addition, many of the included studies emulated 

target trials comparing ‘giving treatment sometime during follow-up’ versus ‘never giving 

treatment’. For example, Bailly and colleagues[52] studied the effect of systemic antifungal 

therapy, comparing a treated group (those who received antifungals during their ICU stay) with 

an untreated group (those who never received antifungals). As giving treatment ‘sometime 

during follow-up’ can be done in many ways, the estimated treatment effect is ill-defined and 

typically not truly of interest. In other words, both studies by Zhang[57] and Bailly[52] serve as 

examples of emulated RCTs that would never be conducted in the ICU.  

Describe the question as a target trial emulation 

To identify flaws in the relevance of a research question and correctness of the analysis, it is 

useful to describe the research question as a target trial emulation using the target trial 

framework9. Many of the included studies lacked a clear description of the ‘treatment 

strategies’ component of the target trial, that is, which treatment regimes are compared in the 

target trial. For example, Arabi and colleagues59 used IPTW to study the effect of corticosteroid 

therapy for ICU patients with Middle East Respiratory Syndrome. However, it remains unclear 

which treatment regimes (eg, ‘treat daily with corticosteroids’) are being compared. Moreover, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 29, 2022. ; https://doi.org/10.1101/2022.10.29.22281684doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.29.22281684
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

roughly half of the included studies lacked a complete description of the ‘analysis plan’ 

component and therefore, are not reproducible. We advocate detailed description which allows 

reproduction of the used methodology, ideally accompanied with code and (example) data.  

Use methods that suit the research question 

We excluded 227 studies that modelled time-fixed treatments (figure 2). As time-fixed 

treatments in the ICU are rare, we hypothesize that in many of these studies, the implicit 

treatment of interest is time-varying. Research questions concerning time-varying treatments 

may be reformulated into simplified, time-fixed versions, because standard methods are easier 

to implement or high-quality, longitudinal data is unavailable. One may argue that, if the bias 

introduced by TTC16,17 is negligible, standard methods suffice for CI in time-varying treatments 

as well. However, empirical results from studies included in this review suggest that adjusting 

for TTC can lead to substantial differences in effect estimates and sometimes even to opposite 

conclusions (figure 4). Hence, it is possible that many of the excluded studies that implicitly 

studied time-varying treatments but modelled these as if they are time-fixed, published biased 

effect estimates. We advocate adjustment for TTC in any CI study where the treatment of 

interest is time-varying. Modelling DTRs is slightly more complex than STRs (which may be a 

reason for the focus on STRs among the included studies) and therefore requires different 

approaches. Various methods exist to find optimal DTRs, either from a set of pre-specified 

regimes or directly from data (for an overview, we refer to the book by Chakraborty and 

Moodie60). Among the included studies in this review, for example, Shahn and colleagues31 

used ‘artificial censoring/IPW’60–62 to estimate the optimal fluid-limiting treatment regime for 

sepsis patients among a pre-specified set of DTRs (ie, ‘fluid caps’). Wang and colleagues33 used 
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the parametric G formula to estimate the per-protocol (PP) effect of ‘low tidal volume 

ventilation’, a pre-specified DTR that was compared with standard care in an earlier RCT.63 

Here, the target trial corresponds to the original RCT, but with full compliance. RL methods and 

G estimation can be used to approximate optimal DTRs without a pre-specified set of regimes. 

In RL studies, finding the optimal treatment regime (often referred to as the optimal ‘policy’, 

table S1) is typically followed by a validation step to quantify the value of the optimized regime 

(ie, OPE, panel 1). The ‘U-curve method’38 (a specific OPE method) is common among the 

included RL studies (figure S2) and is based on associating the difference between the 

(observed) clinician’s treatment regime and the (estimated) optimal treatment regime with 

patient outcome. As it completely ignores the potential effect of confounders, we recommend 

avoiding this method. We argue that G methods are essentially OPE methods and therefore, 

these could (and maybe should) be used to evaluate optimal treatment regimes found in RL 

studies.  

Mind the conditional exchangeability assumption 

Conditional exchangeability is never guaranteed using observational data as the absence of 

unmeasured confounders is not verifiable in the data. To think about residual confounding or 

selection bias, incorporation of subject-matter expertise is key. Causal diagrams (represented 

by directed acyclic graphs)64,65 are a visual way to represent this expert knowledge and can be 

useful to describe potential sources of bias. There are different approaches to quantify how 

potential violations of the conditional exchangeability would affect the study results.66 Indirect 

approaches consider, for instance, the effect of adding additional confounders.9 A ‘bias analysis’ 
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(or sensitivity analysis)28 examines the characteristics of potential unmeasured confounders and 

can be useful to quantify how much bias it would produce as a function of those characteristics.  

Mind the positivity assumption 

The positivity assumption -on the contrary- is verifiable, although this is rather complex for 

time-varying treatments29 and, given its dynamic nature, violations are expected in the ICU 

setting. The intuition for this assumption is that one can only study a treatment regime using 

data of patients who have received treatment that conform to this regime. The number of 

patient treatment histories that match the treatment regime of interest (ie, the ‘effective 

sample size’67) shrinks with the number of treatment decisions in the patient’s history (which 

tends to be high in the ICU). For example, Gottesman and colleagues38 applied RL to a dataset 

of 3,855 patients to find an optimal treatment regime for sepsis, but the effective sample size 

for this regime was only a few dozen. A small effective sample size makes positivity violations 

likely and leads to high uncertainties in estimated treatment effects. A straight-forward 

opportunity to tackle this challenge is increasing the sample size. Therefore, we advocate more 

usage (if appropriate) of the four currently available open-source ICU databases.68 However, 

increasing the sample size does not guarantee increasing the effective sample size, as the  

patients in the extra dataset may not be treated according to the regime of interest. Hence, 

another opportunity to increase the effective sample size is to minimize the mismatches 

between the treatment regime(s) of interest and those observed in the data, for instance, by 

avoiding modelling treatment regimes which differ greatly from the treatment protocol in 

place. 
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To detect (but not rule out) violations of the positivity assumption, examination of the 

distribution of the estimated (stabilized) IPT weights can be useful.29 This was common among 

the included studies that used IPTW (n=16/36, table S7), but is recommended in studies that 

use other CI methods as well. For RL studies that use an importance-sampling69 OPE method, it 

is recommended to examine the distribution of importance weights38 (which is closely related 

to examination of IPT weights).  

In studies using IPTW, weight stabilization and truncation can be used to limit high uncertainties 

in the effect estimates. Weight stabilization can improve the precision of effect estimates 

without the introduction of bias. However, a model based on stabilized weights results in a 

slightly different effect estimate compared to non-stabilized weights70 and should be 

interpreted carefully. Weight truncation also improves precision, but at the expense of bias. 

Examination of the influence of the introduced bias by checking the change of the effect 

estimates under progressive truncation of IP weights is recommended.25  

Study limitations 

First, whereas efforts were made to ensure that the literature search was comprehensive, we 

could have missed studies for different reasons. Some research may have used non-

conventional terminology to describe the used CI method, or used a CI method which was not 

included in our search strategy. For example, dynamic weighted ordinary least squares 

(dWOLS)71,72 is a relatively new method which has been used to model DTRs in the ICU setting 

in several studies.73,74 This method benefits from properties of both Q-learning (an RL method) 

and G-estimation (a G method) and may be an interesting direction for future research. Second, 
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only one reviewer (JS) performed title-abstract screening and item collection, although 

thorough discussions with the other reviewers (MvG, JK, JL) occurred in case of uncertainty. 

Third, items that were not collected could be of interest for future investigation. For example, 

we did not differentiate RL further into specific RL methods.  

Study strengths 

This systematic review stresses the importance of causality for actionable AI and provides a 

contemporary overview of CI research in the ICU literature. We describe shortcomings of the 

identified studies in terms of reporting and, furthermore, provide handles for improving future 

CI research. These recommendations are not limited to the ICU but apply to medical CI research 

as a whole. Unlike other systematic reviews on time-varying medical treatments,75–77 we did 

not limit our focus to either G methods or RL, but rather acknowledge that both these method 

classes can be used to perform CI tasks and therefore, hold the promise to bring actionable AI 

to the bedside. 

Conclusion 

Towards actionable AI in the ICU, we concur with the guidance of editors of critical care 

journals78,79 to change the focus of observational research in the ICU from prediction to CI. To 

unlock this potential in a trustworthy and responsible manner, we advocate development of 

models for CI focusing on clinically relevant treatments, using a description of the research 

question as a target trial emulation, choosing appropriate CI methods given the treatment of 

interest and acknowledging (and ideally examining potential violations) of the causal 

assumptions. 
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Panel 2: Summary of recommendations for future research 

Ask the right research question 

When developing a model for CI, consider clinically relevant treatments. In the ICU, treatment 

decisions typically occur at multiple time point during admission (ie, time-varying treatments) 

and often depend on the patient’s response to treatment (ie, dynamic treatment regimes).  

Describe the question as a target trial emulation 

To identify flaws in the relevance of a research question and correctness of the analysis, it is 

useful to imagine a randomized trial that would have answered the research question (ie, the 

target trial), describe its components using the target trial framework and emulate it to the 

extent possible.  

Use methods that suit the research question 

Standard methods (like regression) are easy to implement and suffice for time-fixed 

treatments, but lead to biased estimates when used for time-varying treatments. Therefore, 

adjustment for bias introduced by treatment-affected time-varying confounding is always 

recommended when dealing with time-varying treatments. Modelling of dynamic treatment 

regimes requires slightly different approaches compared to static treatment regimes. 

Mind the conditional exchangeability assumption 

CI is not possible based on data only, and incorporation of expert knowledge is key to think 

about the causal structure between the treatment and outcome of interest. Representing this 

expert knowledge in causal diagrams is useful to visualize potential sources of bias. Although 
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violations of this assumption can never be completely ruled out using observational data, 

several approaches exist to examine potential violations. For example, a bias analysis can be 

helpful to quantify how much bias unmeasured confounders could produce.  

Mind the positivity assumption 

This assumption is verifiable, but this is rather complex for time-varying treatments and 

violations are expected given the dynamic nature of the ICU. Violations could be minimized by 

increasing the sample size (eg, by more usage of open-source ICU databases) and studying 

treatment regimes that are similar to those observed in the data. Examination of estimated 

inverse-probability-of-treatment weights is useful to detect (but not rule out) positivity 

violations.  
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Tables 

Table 1: Components of the target trial framework included in the QOR assessment, including examples for the ICU 

setting.  

*The analysis plan component is subdivided in a specific set of subcomponents depending on the modelling 

strategy used, these are summarized in table S2.  

**This description would not be considered as sufficient reporting of the analysis plan component, but simply 

serves as an example. 

 

Component Subcomponent Included for 
QOR 
assessment 

ICU example 

Eligibility criteria - ✓ Individuals aged 65 years or older admitted to the ICU 
meeting Sepsis-3 criteria upon admission. 

Treatment strategies - ✓ 1. administration of 50-75 mL/kg of intravenous fluid 
boluses during the first several hours of treatment (ie, 
liberal fluid therapy80) 
2. Intravenous fluid boluses of 250–500 mL during ICU 
stay in the case of severe hypoperfusion (ie, 
restrictive fluid therapy81) 

Assignment procedures -   Unblinded random assignment to one of the 
treatment strategies. 

Follow-up period Start of follow-up ✓ Time of ICU admission. 
 

End of follow-up ✓ Death, ICU discharge, or loss to follow-up, whichever 
occurs first.  

Time resolution ✓ Hourly weights were applied to adjust for the impact 
of time-varying confounders on the hourly risk of 
adhering to one of the two treatment strategies. 

Outcome - ✓ All- cause mortality. 

Causal contrasts of 
interest 

-   Per-protocol effect. 

Analysis plan * ✓ Per-protocol effect will be estimated adjusting for 
pre- and postbaseline confounders by a marginal 
structural model using IPTW.** 
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Table 2: Characteristics of the reviewed studies, grouped by used causal inference method. 

*For the number of included ICUs and study size, the studies that used simulated patient data (n=4) are not taken 

into account and therefore, the number of studies add up to 16 and 56, respectively.  

 

  IPTW (N=36) 
No (%)  

Parametric G 
formula (N=4) 
No (%)  

RL (N=20*) 
No (%)  

All (N=60*) 
No (%)  

Studied treatment (categorized)         

Nosocomial infections 8 (22) 0 (0) 0 (0) 8 (13) 

Anti-inflammatory drugs 5 (14) 0 (0) 1 (5) 6 (10) 

Sedatives & analgesics 1 (3) 0 (0) 5 (25) 6 (10) 

Vasopressors & intra-venous fluids 0 (0) 0 (0) 5 (25) 5 (8) 

Antimicrobials 4 (11) 0 (0) 0 (0) 4 (7) 

Mechanical ventilation 0 (0) 1 (25) 2 (10) 3 (5) 

Anticoagulants 1 (3) 0 (0) 2 (10) 3 (5) 

Diuretics 3 (8) 0 (0) 0 (0) 3 (5) 

Renal replacement therapy 3 (8) 0 (0) 0 (0) 3 (5) 

Other 11 (31) 3 (75) 5 (25) 19 (32) 

Primary outcome (categorized)         

Mortality 25 (69) 1 (25) 6 (30) 32 (53) 

Combined 0 (0) 0 (0) 7 (35) 7 (12) 

Maintenance of clinical target value 0 (0) 0 (0) 5 (25) 5 (8) 

Nosocomial infections 1 (3) 2 (50) 0 (0) 3 (5) 

Need for mechanical ventilation 2 (6) 0 (0) 0 (0) 2 (3) 

Other 8 (22) 1 (25) 2 (10) 11 (18) 

Number of included ICUs         

1 14 (39) 2 (50) 13 (81) 29 (52) 

2-4 5 (14) 0 (0) 1 (6) 6 (11) 

5-10 4 (11) 0 (0) 0 (0) 4 (7) 

11-20 6 (17) 1 (25) 0 (0) 7 (12) 

21-100 2 (6) 1 (25) 0 (0) 3 (5) 

>100 5 (14) 0 (0) 2 (12) 7 (12) 

Utilised open source databases         

MIMIC-II 0 (0) 0 (0) 1 (5) 1 (2) 

MIMIC-III 6 (17) 0 (0) 13 (65) 19 (32) 

MIMIC-IV 0 (0) 0 (0) 1 (5) 1 (2) 

eICU 0 (0) 0 (0) 2 (10) 2 (3) 

AmsterdamUMCdb 0 (0) 0 (0) 1 (5) 1 (2) 

Study size (n patients)         

0-100 2 (6) 0 (0) 0 (0) 2 (4) 

100-500 8 (22) 1 (25) 0 (0) 9 (16) 

501-1000 6 (17) 0 (0) 0 (0) 6 (11) 

1001-5000 16 (44) 2 (50) 4 (25) 22 (39) 

>5000 4 (11) 1 (25) 12 (75) 17 (30) 

Type of treatment regime         

Static    34 (94) 3 (75) 0 (0) 37 (62) 

Dynamic 2 (6) 1 (25) 20 (100) 23 (38) 
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Figures 

Figure 1: Taxonomy of treatment types. Treatments can be time-fixed or time-varying, and time-varying 

treatments can be subdivided into static and dynamic treatment strategies. Appropriate methodology to estimate 

causal effects of treatment based on observational data depends on the treatment type. ICU=intensive care unit, 

IPTW=inverse-probability-of-treatment weighting, IPW=inverse-probability weighting, CRP=C-reactive protein.  

   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 29, 2022. ; https://doi.org/10.1101/2022.10.29.22281684doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.29.22281684
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

Figure 2: Flowchart of study selection. 
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Figure 3: QOR summary plots: reporting of (a) the target trial components and (b) causal assumptions. 
 
Figure 3a: Reporting of target trial components. *For the follow-up component, the studies that used simulated 
patient data (n=4) are not taken into account. 
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Figure 3b: Reporting of causal assumptions. Level 1=assumption not mentioned, level 2=assumption mentioned, 
level 3=attempt to check for potential violations of the assumption reported. 

   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 29, 2022. ; https://doi.org/10.1101/2022.10.29.22281684doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.29.22281684
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

 Figure 4: Difference in effect estimate in odds (ORs) or hazard ratios (HRs) by adjusting only for baseline 
confounding versus adjusting for baseline and treatment-affected time-varying confounding (TTC). In three studies 
(A), the point estimates moved to the opposite direction, in one (B) and seven (C) studies, the estimates moved 
away from and towards the null hypothesis, respectively. In six studies (D), there was a marginal difference in point 
estimates. Pouwels et al.42 estimated treatment effect on length-of-stay (expressed in days) by adjusting for 
baseline confounding and by adjusting for baseline confounding and TTC, and found a marginal difference in point 
estimates. 
*Khanal et al.82 compared prolonged intermittent renal replacement therapy with two different alternative 
treatments.  
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Appendix A: Embase search strategy 

Embase.com  

('causal inference'/de OR 'causal model'/de OR  'causal modeling'/de OR 'inverse probability weighting'/de OR 

((causal NEAR/3 (inferen* OR model*)) OR ((causal OR average-treatment* OR individuali*-treatment* OR 

personali*-treatment*) NEXT/1 (effect*)) OR time-vary*-confound* OR g-computation* OR g-estimation* OR g-

formula* OR doubly-robust OR counterfactual* OR (inverse-probabilit* NEAR/3 (weight* OR estimat*)) OR 

((marginal-structur* OR structural-nest* OR causal-effect* OR causal-graphic* OR causal-inferen* OR condition*-

outcome* OR sequen*-cox*) NEAR/3 (method* OR model*)) OR TAR-Net OR (Treatment*-Agnost* NEAR/3 

Representat* NEAR/3 Network*) OR double-machine-learning OR anchor*-regress* OR x-learner* OR t-learner* 

OR s-learner* OR q-learning OR q-network OR reinforcement*-learn* OR ((policy OR value) NEXT/1 iteration*) OR 

temporal-differen* OR actor-critic* OR (Markov NEAR/3 decision NEAR/3 process*)):ab,ti) AND ('intensive 

care'/exp OR 'intensive care unit'/exp OR 'critically ill patient'/de OR 'critical illness'/de OR 'artificial 

ventilation'/exp OR 'mechanical ventilator'/exp OR (intensive-care* OR critical-care* OR critical*-ill* OR icu OR 

((mechanic* OR artificial*) NEAR/3 ventilat*)):Ab,ti,jt) NOT [conference abstract]/lim AND [english]/lim  NOT 

('pediatric intensive care unit'/de OR 'neonatal intensive care unit'/de OR child/exp OR pediatrics/exp OR (nicu OR 

picu OR nicus OR picus OR infant* OR child* OR neonat* OR newborn* OR pediatr* OR paediatr*):ab,ti) 

Medline ALL  

(((caus* ADJ3 (inferen* OR model*)) OR ((causal OR average-treatment* OR individuali*-treatment* OR 

personali*-treatment*) ADJ (effect* OR method*)) OR time-vary*-confound* OR g-computation* OR g-estimation* 

OR g-formula* OR doubly-robust-estimation* OR counterfactual* OR (inverse-probabilit* ADJ3 (weight* OR 

estimat*)) OR ((marginal-structur* OR structural-nest* OR causal-effect* OR causal-graphic* OR causal-inferen* 

OR semi-paramet* OR semiparamet* OR fully-paramet*) ADJ3 (method* OR model*)) OR TAR-Net OR 

(Treatment*-Agnost* ADJ3 Representat* ADJ3 Network*) OR double-machine-learning OR anchor*-regress* OR x-

learner* OR t-learner* OR s-learner* OR q-learning OR q-network OR reinforcement*-learn* OR ((policy OR value) 

ADJ iteration*) OR temporal-differen* OR actor-critic* OR (Markov ADJ3 decision ADJ3 process*)).ab,ti. OR (RL OR 

IRL).ti.) AND (exp Intensive Care Units/ OR Critical Illness/ OR exp Respiration, Artificial/ OR exp Ventilators, 

Mechanical/ OR (intensive-care* OR critical-care* OR critical*-ill* OR icu OR ((mechanic* OR artificial*) ADJ3 

ventilat*)).ab,ti,jt) NOT (conference abstract) AND english.la. NOT (Intensive Care Units, Pediatric/de OR Intensive 

Care Units, Neonatal/de OR exp Child/ OR exp pediatrics/ OR (nicu OR picu OR nicus OR picus OR infant* OR child* 

OR neonat* OR newborn* OR pediatr* OR paediatr*).ti,ab) 

Web of Science Core Collection   

TS=(((causal NEAR/2 (inferen* OR model*)) OR ((causal OR average-treatment* OR individuali*-treatment* OR 

personali*-treatment*) NEAR/1 (effect*)) OR time-vary*-confound* OR g-computation* OR g-estimation* OR g-

formula* OR doubly-robust OR counterfactual* OR (inverse-probabilit* NEAR/2 (weight* OR estimat*)) OR 

((marginal-structur* OR structural-nest* OR causal-effect* OR causal-graphic* OR causal-inferen* OR condition*-

outcome* OR sequen*-cox*) NEAR/2 (method* OR model*)) OR TAR-Net OR (Treatment*-Agnost* NEAR/2 

Representat* NEAR/2 Network*) OR double-machine-learning OR anchor*-regress* OR x-learner* OR t-learner* 

OR s-learner* OR q-learning OR q-network OR reinforcement*-learn* OR ((policy OR value) NEAR/1 iteration*) OR 

temporal-differen* OR actor-critic* OR (Markov NEAR/2 decision NEAR/2 process*)) AND (intensive-care* OR 

critical-care* OR critical*-ill* OR icu OR ((mechanic* OR artificial*) NEAR/2 ventilat*))  NOT (nicu OR picu OR nicus 
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OR picus OR infant* OR child* OR neonat* OR newborn* OR pediatr* OR paediatr*)) AND DT=(Article OR Review 

OR Letter OR Early Access) 

Google Scholar  

Searched with 2 different queries: 

• "causal inference"|"marginal structural models"|"g-formula"|"structural nested models"|"reinforcement 

learning" "intensive|critical care" 

 

Only the first 200 results 

 

• "causal inference"|"marginal structural models"|"g-formula"|"structural nested models"|"reinforcement 

learning" intitle:"intensive|critical care" 

 

All 389 results 

MedRxiv and BioRxiv  

searched via Google with the following query: 

inurl:medrxiv|biorxiv filetype:pdf "causal inference"|"marginal structural models"|"g-formula"|"structural nested 

models"|"reinforcement learning" "intensive|critical care" 

 

When: 2 March 2022 

Settings: 

SafeSearch Filters turned on 

Auto-complete with trending searches: Show popular searches 

Region Settings: Current region (i.e. the Netherlands) 
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Appendix B: Reference list of all included studies 
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Appendix C: Supplementary figures 

Figure S1: Bar chart representing the number of published articles using the different modelling strategies over the 

years. 
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Figure S2: Nested pie chart representing the off-policy evaluation (OPE) methods used in the reinforcement 

learning studies that used real patient data (n=16). IS=Importance sampling, MB=Model-based, DR=Doubly robust. 
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Figure S3: Reporting of the target trial components in studies using IPTW (n=36).  

 

Figure S4: Reporting of the target trial components in studies using the parametric G formula (n=4).  
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Figure S5: Reporting of the target trial components in studies using RL (n=20). *For the follow-up component, the 
studies that used simulated patient data (n=4) are not taken into account. 
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Figure S6: Reporting of assumptions in the studies using IPTW (n=36). Level 1=assumption not mentioned, level 

2=assumption mentioned, level 3=attempt to check for potential violations of the assumption reported. 

 

Figure S7: Reporting of assumptions in the studies using the parametric G formula (n=4). Level 1=assumption not 

mentioned, level 2=assumption mentioned, level 3=attempt to check for potential violations of the assumption reported. 
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Figure S8: Reporting of assumptions in the studies using RL (n=20). Level 1=assumption not mentioned, level 

2=assumption mentioned, level 3=attempt to check for potential violations of the assumption reported. 
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Appendix D: Supplementary tables 

 

Table S1: Commonly used terms (not synonyms) to describe similar concepts typically used in research using G 
methods and RL methods. 

 

 

Table S2: Subcomponents of the analysis plan component specifically for each used CI method. 

IPTW Parametric G formula RL 

Propensity score 
estimator 

Outcome estimator Learning scheme 

Propensity score 
predictors 

Outcome predictors State space model 

 
Confounders estimators Environment 

model 
 

Confounders predictors Discount factor 

 
Method to evaluate the 

G formula 

 

 

  

G methods  Reinforcement learning Other commonly used terms 

Treatment Action Exposure, intervention 

Outcome Reward  

(Treatment) regime Policy strategy, regimen, decision rule, joint 
exposures, sustained strategy, plan, protocol 

Structural causal model Environment model World model 

(Conditional) 
exchangeability 

Unconfoundedness Ignorability, no unmeasured/residual 
confounding 

Positivity Feasibility Experimental treatment assignment, common 
support, overlap 

Observational data  Data collected under clinician’s 
policy 
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Table S3: List with collected items per study. NA=not applicable 

Reference Treatment of 
interest 

(categorized) 

Primary outcome 
(categorized) 

Number of 
included 

ICUs 

Usage of open 
source databases 

Study size  
(n patients) 

Treatment 
strategy type 

Modelling 
strategy 

Agodi 2017 Protocol 
compliance 

Nosocomial 
infections 

17 None 1840 Static    parametric G 
formula 

Althoff 2020 NIV Need for MV 682 None 53654 Static    IPTW 

Amer 2021 Anti-inflammatory 
drugs 

VFDs 168 None 860 Static    IPTW 

Arabi 2018 Anti-inflammatory 
drugs 

Mortality 14 None 309 Static    IPTW 

Arabi 2020 Antimicrobials Mortality 14 None 349 Static    IPTW 

Arnaud 2020 Antimicrobials AKI 1 MIMIC-III 26865 Static    IPTW 

Bailly 2015 Antimicrobials Mortality 5 None 1491 Static    IPTW 

Bekaert 2011 Nosocomial 
infections 

Mortality 17 None 4479 Static    IPTW 

Chen 2021 Anti-inflammatory 
drugs 

Mortality 1 None 428 Static    IPTW 

Cheng 2019 Ordering of labs Combined 1 MIMIC-III 6060 Dynamic RL 

De Bus 2020 Antimicrobials Clinical cure 152 None 1495 Static    IPTW 

Delaney 2016 Anti-inflammatory 
drugs 

Mortality 51 None 607 Static    IPTW 

Dupuis 2017 Blood transfusion Mortality 23 None 6016 Static    IPTW 

Eghbali 2021 Sedatives & 
analgesics 

Maintenance of 
clinical target 

value 

1 MIMIC-IV 1757 Dynamic RL 

Esperatti 2013 Multiple Mortality 6 None 335 Static    IPTW 

Frencken 2018 Bacterial 
colonization 

Nosocomial 
infections 

1 None 2066 Static    IPTW 

Jeter 2021 Vasopressors & IV 
fluids 

Combined 1 MIMIC-III 5366 Dynamic RL 

Khanal 2012 RRT Mortality 1 None 146 Static    IPTW 

Klouwenberg 
2014 

Nosocomial 
infections 

Mortality 1 None 1112 Static    IPTW 

Komorowski 
2018 

Vasopressors & IV 
fluids 

Mortality 209 MIMIC-III + eICU 96156 Dynamic RL 

Lal 2020 Vasopressors & IV 
fluids 

Other 1 None 29 Dynamic Digital Twin 

Lejarza 2021 Discharge from 
ICU 

Successful 
discharge 

1 MIMIC-III 19664 Dynamic RL 

Li 2019 gastric acid-
suppressing 

agents 

Nosocomial 
infections 

1 None 6133 Static    parametric G 
formula 

Li 2020 Anti-inflammatory 
drugs 

Mortality 10 None 294 Static    IPTW 

Libório 2020 Diuretics Mortality 1 MIMIC-III 14896 Static    IPTW 

Lin 2018 Anticoagulants Maintenance of 
clinical target 

value 

1 MIMIC-III 4908 Dynamic RL 

Liu 2016 Multiple Vital signs 1 None 300 Static parametric G 
formula 
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Lopez-Martinez 
2019 

Sedatives & 
analgesics 

Combined 1 MIMIC-III 6843 Dynamic RL 

Mecklenburg 
2021 

therapeutic 
hypothermia (TH) 

Major bleeding 1 None 66 Static    IPTW 

Muriel 2015 Sedatives & 
analgesics 

Need for MV 322 None 842 Static    IPTW 

Nemati 2016 Anticoagulants Maintenance of 
clinical target 

value 

1 MIMIC-II 4470 Dynamic RL 

Ohbe 2018 Nutrition Mortality 1200 None 1769 Static    IPTW 

Ong 2015 Nosocomial 
infections 

Mortality 2 None 3080 Static    IPTW 

Ong 2016 Nosocomial 
infections 

Mortality 2 None 399 Static    IPTW 

Padmanabhan 
2015 

Sedatives & 
analgesics 

Deviation from 
vital signs target 

value 

NA None NA Dynamic RL 

Padmanabhan 
2017 

Sedatives & 
analgesics 

Maintenance of 
clinical target 

value 

NA None NA Dynamic RL 

Parienti 2010 RRT Bacterial 
colonization 

12 None 736 Static    IPTW 

Peine 2021 MV Mortality 209 MIMIC-III + eICU 37029 Dynamic RL 

Petersen 2019 Anti-inflammatory 
drugs 

Mortality NA None NA Dynamic RL 

Pisani 2015 antipsychotic Delirium 1 None 93 Static    IPTW 

Pouwels 2017 Nosocomial 
infections 

Mortality 2 None 3411 Static    IPTW 

Pouwels 2018 Nosocomial 
infections 

Mortality 2 None 2914 Static    IPTW 

Pouwels 2020 Nosocomial 
infections 

ICU LOS 2 None 2914 Static    IPTW 

Prasad 2017 MV Combined 1 MIMIC-III 8182 Dynamic RL 

Raghu 2017 Vasopressors & IV 
fluids 

Combined 1 MIMIC-III 17898 Dynamic RL 

Raghu 2018 Vasopressors & IV 
fluids 

Combined 1 MIMIC-III 17898 Dynamic RL 

Roggeveen 
2021 

Vasopressors & IV 
fluids 

Mortality 2 MIMIC-III + 
AmsterdamUMCdb 

11382 Dynamic RL 

Shahn 2020 Vasopressors & IV 
fluids 

Mortality 1 MIMIC-III 1639 Dynamic IPTW 

Shahn 2021 Vasopressors & IV 
fluids 

Mortality 1 MIMIC-III 1639 Dynamic IPTW 

Shelhamer 
2021 

Prone positioning Mortality 1 None 335 Static    IPTW 

Sinzinger 2005 Sedatives & 
analgesics 

Maintenance of 
clinical target 

value 

NA None NA Dynamic RL 

Steen 2021 Nosocomial 
infections 

Mortality 1 None 2720 Static    IPTW 

Sun 2021 vital signs Combined 1 MIMIC-III 28840 Dynamic RL 

Tacquard 2021 Anticoagulants Thrombotic 
complications 

8 None 538 Static    IPTW 

Truche 2016 RRT Mortality 19 None 1360 Static    IPTW 

Wang 2011 MV Mortality 23 None 1410 Dynamic parametric G 
formula 
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Weng 2017 vital signs Mortality 1 MIMIC-III 5565 Dynamic RL 

Zhang, R. 2021 Diuretics Mortality 20 None 932 Static    IPTW 

Zhang, Z. 2018 Vasopressors & IV 
fluids 

Mortality 1 MIMIC-III 1718 Static    IPTW 

Zhang, Z. 2019 Vasopressors & IV 
fluids 

Mortality 1 MIMIC-III 3406 Static    IPTW 

Zheng 2021 NIV Mortality 1 None 1372 Dynamic RL 
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Table S4: Subcomponent-specific results of the quality of reporting assessment in the reproducibility domain,  
specifically for the studies using IPTW. 
 

Reference  Eligibility 
criteria 

Treatment 
strategies 

Outcome Follow-up Analysis plan 

        Time zero End of 
follow-up 

Time 
resolution 

Propensity score 
estimator 

Propensity score 
predictors 

Althoff 2020 ☺  ☺ ☺ ☺ ☺  ☺ 

Amer 2021 ☺  ☺ ☺ ☺ ☺  ☺ 

Arabi 2018 ☺  ☺ ☺ ☺ ☺  ☺ 

Arabi 2020 ☺  ☺ ☺ ☺ ☺  ☺ 

Arnaud 2020 ☺  ☺ ☺ ☺ ☺ ☺ ☺ 

Bailly 2015 ☺  ☺ ☺ ☺ ☺ ☺ ☺ 

Bekaert 2011 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Chen 2021 ☺  ☺ ☺ ☺ ☺  ☺ 

De Bus 2020 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Delaney 2016 ☺  ☺ ☺ ☺ ☺ ☺ ☺ 

Dupuis 2017 ☺  ☺ ☺ ☺ ☺ ☺ ☺ 

Esperatti 2013 ☺  ☺ ☺ ☺  ☺ ☺ 

Frencken 2018 ☺  ☺ ☺ ☺ ☺  ☺ 

Khanal 2012 ☺  ☺  ☺ ☺ ☺ ☺ 

Klouwenberg 2014 ☺ ☺ ☺   ☺ ☺ ☺ 

Li 2020 ☺  ☺   ☺   

Libório 2020 ☺  ☺ ☺ ☺ ☺ ☺ ☺ 

Mecklenburg 2021 ☺ ☺ ☺ ☺ ☺  ☺ ☺ 

Muriel 2015 ☺   ☺ ☺  ☺ ☺ 

Ohbe 2018 ☺ ☺ ☺   ☺ ☺ ☺ 

Ong 2015 ☺ ☺ ☺ ☺ ☺ ☺ ☺  

Ong 2016 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Parienti 2010 ☺  ☺      

Pisani 2015 ☺  ☺ ☺ ☺ ☺ ☺ ☺ 

Pouwels 2017 ☺  ☺   ☺ ☺ ☺ 

Pouwels 2018 ☺ ☺ ☺   ☺ ☺ ☺ 

Pouwels 2020 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Shahn 2020 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Shahn 2021 ☺ ☺ ☺ ☺  ☺ ☺ ☺ 

Shelhamer 2021 ☺  ☺ ☺     

Steen 2021 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Tacquard 2021 ☺  ☺ ☺ ☺    

Truche 2016 ☺  ☺ ☺  ☺ ☺ ☺ 

Zhang, R. 2021 ☺  ☺  ☺ ☺   

Zhang, Z. 2018 ☺  ☺   ☺  ☺ 

Zhang, Z. 2019 ☺  ☺   ☺ ☺ ☺ 
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Table S5: Subcomponent-specific results of the quality of reporting assessment in the reproducibility domain,  
specifically for the studies using the parametric G formula. 
 

Reference Eligibility 
criteria 

Treatment 
strategies 

Outcome Follow up Analysis plan 

        Time 
zero 

End of 
follow-

up 

Time 
resolution 

Outcome 
estimator 

Outcome 
predictors 

Confounders 
estimators 

Confounders 
predictors 

Method to 
evaluate 

the G 
formula 

Agodi 
2017 

☺  ☺ ☺ ☺  ☺    ☺ 

Li 2019 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Liu 2016 ☺  ☺ ☺ ☺ ☺ ☺     

Wang 
2011 

 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

 
Table S6: Subcomponent-specific results of the quality of reporting assessment in the reproducibility domain,  
specifically for the studies using RL. NA=not applicable 
 

Reference  Eligibility 
criteria 

Treatment 
strategies 

Outcome Follow-up Analysis plan 

        Time 
zero 

End of 
follow-up 

Time 
resolution 

Learning 
scheme 

State space 
model 

Environment 
model 

Discount 
factor 

Cheng 2019 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Eghbali 2021 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Jeter 2021 ☺ ☺ ☺ ☺ ☺ ☺ ☺  ☺  

Komorowski 
2018 

☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Lejarza 2021 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺  

Lin 2018 ☺ ☺ ☺    ☺  ☺  

Lopez-
Martinez 2019 

☺ ☺ ☺   ☺ ☺ ☺ ☺  

Nemati 2016 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺  

Padmanabhan 
2015 

☺ ☺ ☺ NA NA NA ☺ ☺ ☺  

Padmanabhan 
2017 

 ☺ ☺ NA NA NA ☺ ☺ ☺  

Peine 2021 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

Petersen 2019 ☺ ☺ ☺ NA NA NA ☺ ☺ ☺  

Prasad 2017 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺  

Raghu 2017 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺  

Raghu 2018 ☺ ☺ ☺ ☺ ☺ ☺ ☺  ☺  

Roggeveen 
2021 

☺ ☺ ☺ ☺ ☺ ☺ ☺  ☺  

Sinzinger 2005 ☺ ☺ ☺ NA NA NA ☺ ☺ ☺ ☺ 

Sun 2021 ☺ ☺ ☺ ☺ ☺ ☺ ☺  ☺ ☺ 

Weng 2017 ☺ ☺ ☺ ☺ ☺ ☺ ☺ ☺  ☺ 

Zheng 2021 ☺ ☺ ☺ ☺ ☺  ☺  ☺ ☺ 
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Table S7: reporting of assumptions assessment results per study. IPT=inverse probability of treatment 
 

  No unmeasured confounding Positivity Consistency 

Author Mentioned Check for potential violations reported Mentioned Check for potential 
violations reported 

Mentioned 

  Indirect method Bias analysis  Examination of IPT 
weights distribution 

 

Agodi 2017 ☺      

Althoff 2020 ☺  ☺    

Amer 2021 ☺      

Arabi 2018 ☺ ☺     

Arabi 2020 ☺ ☺     

Arnaud 2020 ☺    ☺  

Bailly 2015 ☺ ☺  ☺ ☺ ☺ 

Bekaert 2011 ☺      

Chen 2021 ☺ ☺   ☺  

Cheng 2019       

De Bus 2020 ☺ ☺  ☺ ☺  

Delaney 2016 ☺   ☺ ☺  

Dupuis 2017 ☺  ☺ ☺ ☺  

Eghbali 2021 ☺      

Esperatti 2013       

Frencken 2018 ☺      

Jeter 2021       

Khanal 2012 ☺   ☺   

Klouwenberg 2014 ☺ ☺     

Komorowski 2018       

Lejarza 2021       

Li 2019     ☺  

Li 2020 ☺      

Libório 2020 ☺   ☺ ☺  

Lin 2018       

Liu 2016 ☺     ☺ 

Lopez-Martinez 2019       

Mecklenburg 2021 ☺      

Muriel 2015 ☺      

Nemati 2016       

Ohbe 2018 ☺ ☺ ☺    

Ong 2015 ☺      

Ong 2016 ☺ ☺     

Padmanabhan 2015       

Padmanabhan 2017       

Parienti 2010       

Peine 2021 ☺      

Petersen 2019       

Pisani 2015 ☺      

Pouwels 2017 ☺    ☺  

Pouwels 2018 ☺    ☺  

Pouwels 2020 ☺ ☺  ☺ ☺ ☺ 

Prasad 2017       

Raghu 2017 ☺      

Raghu 2018 ☺      

Roggeveen 2021       

Shahn 2020 ☺ ☺  ☺  ☺ 

Shahn 2021 ☺   ☺ ☺  

Shelhamer 2021 ☺ ☺     

Sinzinger 2005       

Steen 2021 ☺   ☺ ☺ ☺ 

Sun 2021       

Tacquard 2021       

Truche 2016 ☺  ☺ ☺ ☺ ☺ 

Wang 2011 ☺   ☺  ☺ 

Weng 2017       

Zhang, R. 2021     ☺  

Zhang, Z. 2018 ☺      

Zhang, Z. 2019 ☺    ☺  

Zheng 2021       
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