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Abstract

Objectives

The aim of this observational retrospective study is to improve early risk stratification of

hospitalized Covid-19 patients by predicting in-hospital mortality, transfer to intensive care

unit (ICU) and mechanical ventilation from electronic health record data of the first 24

hours after admission.

Methods and Results

Our machine learning model predicts in-hospital mortality (AUC=0.918), transfer to ICU

(AUC=0.821) and the need for mechanical ventilation (AUC=0.654) from a few laboratory

data of the first 24 hours after admission. Models based on dichotomous features

indicating whether a laboratory values exceeds or falls below a threshold perform nearly as

good as models based on numerical features.

Conclusions

We devise completely data-driven and interpretable machine-learning models for the

prediction of in-hospital mortality, transfer to ICU and mechanical ventilation for

hospitalized Covid-19 patients within 24 hours after admission. Numerical values of

CRP and blood sugar and dichotomous indicators for increased partial thromboplastin time

(PTT) and glutamic oxaloacetic transaminase (GOT) are amongst the best predictors.
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Introduction

Beginning in late 2019 and lasting until now SARS-CoV-2 manifested as Covid-19 spread

all over the world and caused a worldwide pandemic. Infected patients develop a variety of

disease symptoms and differences in the hemogram resulting in a wide range of disease

severity from mild symptoms not requiring any medical intervention to mechanical

ventilation or a transfer to intensive care unit (ICU) or even death (Amin et al., 2021;

Palladino, 2021; Son et al., 2021). Several drugs for Covid-19 treatment have been

developed since the beginning of the pandemic, but most of them are linked to different

disease stages. For example, hospitalized patients with severe symptoms can be treated

with Remdesivir and Dexamethason, wheareas antibody-based therapy has to be

administered at an early disease stage before a patient has developed severe symptoms

(Han et al., 2021; Mechineni et al., 2021). For optimal patient care and treatment in

hospitals it is very important to detect patients with bad prospective disease progression

early. Hence, there is an urgent need for generalizable clinical prediction models to identify

patients with potentially severe disease courses.

Many existing predictive models of severe Covid-19 disease progression are based on

data from tertiary care hospitals like university hospitals or from clinical study data

repositories. Many scoring models incorporate non-standard laboratory values, which

renders their widespread application in daily clinical practice difficult (Sun et al., 2021;

Wollenstein-Betech et al., 2020). Here we present personalized and completely data-

driven machine-learning models for the prediction of (i) in-hospital mortality, (ii) transfer to

ICU and (iii) mechanical ventilation of hospitalized Covid-19 patients. Our models use
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standard clinical laboratory data from hospitals of medium level of care measured during

clinical routine in combination with biological sex and age as covariates. Our purely data-

driven approach avoids potential bias or the pure reproduction of well-known results

(Yarritu and Matute, 2015) and is an important addition to the landscape of expert

knowledge-based Covid-19 risk scores (Häger et al., 2022). We also present simplified

models using only dichotomous predictors indicating whether a laboratory value is below

or above reference threshold. These might better reflect the daily clinical practice than a

complex combination of numerical features. In addition, we report a comprehensive

analysis of laboratory values associated with a severe Covid-19 disease progression.

Methods and patients

Study population and inclusion criteria

For model development we conduct an observational retrospective cohort study using data

from a hospital of medium level of care located in the federal state of Rhineland-Palatinate

in the west of Germany (Table 1, FIigure 1). We include 520 patients with a positive RT-

PCR for SARS-CoV-2 identified by the ICD code U07.1 admitted from March 2020 until

December 2021 to the hospitals. Because of too many missing values, 12 patients were

excluded. No patient was transferred from an ICU of another hospital. For model

development, we use 80% of the data as training set and 20% as test set. The report is

based on the STROBE-statement (Vandenbroucke et al., 2007). Ethical approval was

obtained from the local ethics commission.

Study design and statistical analysis

We define three Covid-19 associated endpoints (see Supplemental Material for details):

1. Death during hospital stay, short “in-hospital mortality”

2. Admission to intensive care unit (ICU), short “transfer to ICU”
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3. Necessity for mechanical ventilation (all OPS beginning with “8-71“), short

“mechanical ventilation”

For the training of the prediction models we use the laboratory values obtained during the

first 48 hours after admission and average them over this time period. For prediction and

model testing, we restrict the time span to 24 hours after admission. For each endpoint we

divide the patient cohort into two distinct groups, depending on whether the endpoint

occurred or not. To check for differences in the laboratory values between these groups we

perform Wilcoxon-rank-sum tests with Bonferroni-Holm adjusted p-values. The p-values

are used as a measure of association strength between the laboratory value and the

endpoint and enable us to rank the features. We filter the top-10 laboratory values with an

adjusted p-value smaller than 5% and less than 10% missing values. These are combined

with biological sex and age to form potential features for the machine-learning models.

We compare three supervised classifiers: Logistic regression (LR), Random forest (RF)

and XGBoost. To select predictive features for each of these three model classes we

employ 5-fold cross validation. For LR we perform forward-backward selection. For the

random forest classifier or the XGBoost classifier we use the mean feature importance as

a criterion for feature selection and in addition also train these tree based classifiers using

the same features as identified for the LR models. The model (including selected features)

with the highest receiver operator characteristics area under the curve (ROC-AUC)

averaged over the cross validation folds from the training data set is selected as the final

model for the respective endpoint.

During model creation we observed that the cross validation performance using the

features from the first 48 hours is similar to the performance using the same features

observed during the first 24 hours only. Thus, we have trained our models on data from the

first 48 hours, but for prediction and testing we restrict to average laboratory values of the

first 24 hours.
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In addition to these models based on numerical laboratory values, we train models using

dichotomous features indicating whether a certain laboratory value exceeds or falls below

a predefined reference threshold. In these models, age is also replaced by a dichotomous

feature indicating whether the patient is older or younger than 60 years. These models are

easier to interpret and might support the need for rapid decision making by physicians in

daily clinical practice (see Supplemental Material for details). We exclude blood sugar from

the list of possible dichotomous predictors, because reference values depend on the time

gap to the last meal before the blood draw. Information about the last meal was not

available. The dichotomous models are more sensitive to these variations than the

numerical models.

Results

Study population

A total of 520 patients  (248 (47.7%) female) admitted to the hospital between March 2020

and December 2021 and diagnosed with SARS-CoV-2 are included in our study (see Table

1). From these, 87 patients (16.7%) deceased and 89 patients (17.1%) were transferred to

ICU during hospital stay. Due to DNR/DNI or palliative treatment just a subgroup of the

deceased patients were transferred to ICU. A mechanical ventilation was performed on 59

patients. The mean age of our cohort is 60.4 (45.0 – 82.0), which is expected given that

age is a well-known risk factor for severe disease progression (Romero Starke et al.,

2021).

For each of the three endpoints we divide the patients into two subgroups, depending on

whether the endpoint occurred or not. To identify laboratory values indicating differences

between the two respective subgroups we use Wilcoxon-rank-sum-tests with Bonferroni-

Holm adjustment. We restrict this to the first 48 hours of the hospital stay and use the

adjusted p-values to rank the laboratory values according to their association with the
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respective endpoint, see Fig. 2. All laboratory values with a p-value smaller than 0.05 are

considered to be strongly associated with the endpoint.

For the endpoint in-hospital mortality we find 23 laboratory values to be strongly

associated (Fig. 2a). This includes well-known biomarkers for a severe Covid-19

progression, e.g. lymphocytes (Lymph) and monocytes (Monoc) as hematological

biomarkers, CRP, lactatdehydrogenase (LDH) and procalcitonin (PCT) as inflammatory

biomarkers and N-terminal of the prohormona brain natriuretic peptide (NTpBNp), glutamic

oxaloacetic transaminase (GOT) as cardiac biomarkers, and calcium as minerals

(Samprathi and Jayashree, 2021). The laboratory values with the smallest p-values urea

and creatinine are known to have elevated levels at admission to hospitals in non-

survivors compared to survivors of Covid-19 patients (Wang et al., 2020). In accordance

with our findings, Covid-19 is sometimes associated with a coagulation dysfunction, which

could be indicated through the significant partial thromboplastin time (PTT), QUICK test

and INR values (Lin et al., 2021). We report significantly increased levels of the mean

corpuscular volume (MCV) and decreased levels of the mean corpuscular hemoglobin

concentration (MCHC) for Covid-19 patients who died during their hospital stay which are

known to be altered in Covid-19 patients (Grau et al., 2022).

For the endpoint transfer to ICU we identify 15 laboratory values (Fig. 2b), nine of them

overlapping with the strongly associated laboratory values for in-hospital mortality,

including blood sugar (Glucose), calcium and CRP. Interestingly, the two laboratory values

urea and creatinine with the smallest p-values for the endpoint in-hospital mortality are not

strongly associated with a transfer to ICU. We identify Neutrophil granulocytes (Neutro) to

be higher for patients referred to ICU, but not for patients who died in the hospital.

Neutrophil granulocytes were previously reported to play an important role in Covid-19-

associated thrombosis (Reusch et al., 2021; Zuo et al., 2021). Reduced levels of

Eosinophils (Eos) and an increase in segmented neutrophils (Seg) are also strongly
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associated with a transfer to ICU, but not with in-hospital mortality. Low ionized Calcium

(iCalcium) and calcium are known indicators of a severe Covid-19 disease progression

(Zhou et al., 2020).

We find 12 laboratory values to be strongly associated with the necessity for “Mechanical

Ventilation” (Fig. 2c). All of them are a subset of the laboratory values strongly associated

to transfer to ICU, which makes sense, because most of the patients, who received

mechanical ventilation were transferred to ICU – just seven of them were not transferred to

ICU.

Overall, it can be seen that just a fraction of the 85 to 90 tested laboratory values show a

strong association with the endpoints in our population. In agreement with previous reports

we find CRP, blood sugar (Glucose), LDH, and Lymph as markers for the occurrence of

either of the adverse events. However, it is interesting that urea and creatinine are the

laboratory values with the strongest associations to in-hospital mortality, but are not

strongly associated with the other two endpoints.

CRP and blood sugar are good predictors for the Covid-19 associated endpoints in-

hospital mortality, transfer to ICU and mechanical ventilation (Figure 3)

We devise prediction models for the occurrence of the endpoints based on biological sex,

age and the top-10 laboratory values with the strongest associations to the respective

endpoints from Figure 2. We perform 5-fold cross validation on the training data  (80%) to

select the models and their respective features with the highest ROC-AUC. In Fig. 3 we

present results (ROC-curves) for predictions of these selected best models on the test

data (20%) not used for training with violinplots of the predictors based on the entire

dataset. In-hospital mortality can be predicted from the combination of the three laboratory

values CRP, urea and blood sugar evaluated at the first 24 hours after admission

augmented by age (Romero Starke et al., 2021) with an AUC of 0.918 (95% CI: 0.857-
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0.979) using a logistic regression model (Fig. 3a). Urea as the top laboratory value

associated with in-hospital death (Fig. 2a) is chosen as a predictive feature, although it is

not strongly associated with the other endpoints (Figs 2 b,c).

A more complex nonlinear XGBoost model based on age and four laboratory values

predicts the transfer to ICU (Fig. 3b) with an AUC of 0.821 (95% CI: 0.688-0.954). Please

note the differences in the age distribution for this endpoint  by contrast with the deceased

patients in Fig. 3a. Compared to this endpoint, the laboratory values GOT and Ca are

chosen in addition to CRP and blood sugar as predictors for transfer to ICU, whereas urea

was eliminated by the feature selection procedure. Some patients exhibit extreme GOT

levels, as indicated by the violin plots.

Most patients who were transferred to the ICU also received mechanical ventilation.

Nevertheless, prediction of mechanical ventilation is more difficult (Fig. 3c). The best

model is a Random Forest based on calcium, CRP and blood sugar with a test AUC of

0.654 (95% CI: 0.498-0.81). These laboratory values are also in the set of predictors for

transfer to ICU.

Increased levels of CRP and blood sugar are strongly associated with and important

predictors for all three endpoints.

PTT and GOT are good dichotomous predictors for the Covid-19 associated endpoints in-

hospital mortality, transfer to ICU and mechanical ventilation (Figure 4)

The combination of numerical laboratory values and age might still not be simple enough

to guide medical decision making under stressful conditions in hospitals. Therefore, we

devise models based on dichotomous features indicating, whether the value is higher or

lower than a predefined critical threshold. In addition, we also use a dichotomous feature

for age, indicating whether the patient was younger than 60 years or not.

In hospital mortality can be predicted from dichotomous values for urea, PTT, GOT and

age by logistic regression with an AUC of 0.865 (95% CI: 0.787-0.943), see Fig. 4a. This is
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only slightly worse than the prediction from numerical features (compare Fig. 3a). Age and

urea are included as predictors in both the numerical and dichotomous model for this

endpoint.

Using only dichotomised features, transfer to the ICU can be predicted with an average

AUC of 0.748  (95% CI: 0.614 to 0.883), see Fig. 4b. This is nearly as accurate as the

prediction from numerical features (compare Fig. 3b). The selected logistic regression

model uses the laboratory values calcium, PTT and GOT in combination with biological

sex as predictors (Fig 4b). GOT and calcium are also part of the numerical model.

Predicting the necessity of mechanical ventilation using dichotomous features only (Fig.

4c) seems to be not less accurate (AUC of 0.73, 95% CI:0.565-0.896) than predictions

from numerical features (Fig. 3b). For this endpoint, the best performing model is again

XGBoost with calcium, CRP, PTT and GOT as predictors. Calcium and CRP is also

selected in the model with numerical features, whereas blood sugar is replaced by a

combination of PTT and GOT in the model with dichotomous features only. As for the

numerical features, neither age nor biological sex as additional features improve the

prediction (cross validation on the training data) of the need for mechanical ventilation.

The differences between the features selected for the numerical and dichotomous models

indicate that some laboratory values are more suitable for decisions based on

dichotomized values (“too high / too low”) than others. The reference range of the

laboratory values is defined such that 95% of a healthy reference population have values

lying within the reference range, which does not mean, that laboratory values lying outside

the reference range are automatically critical values (Boyd, 2010). For example, urea and

calcium seem to be robust against dichotomization, whereas the absolute level of the CRP

seems to be more informative than just an increase above the reference level. In contrast,

a too high a value of PTT seems to be informative even when the absolute level is not

considered.
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Summary and Conclusions

All in all, we devise purely data-driven generalizable predictive machine-learning models

for a severe Covid-19 outcome using a small and well interpretable number of standard

laboratory values combined with age and biological sex. The endpoints in-hospital

mortality and transfer to the ICU can be predicted with high or good accuracy within the

first 24 hours after admission. Predicting the need for mechanical ventilation is much more

difficult. For all three endpoints, models using only dichotomous features perform only

slightly worse than models based on a complex combination of numerical laboratory

values, sometimes complemented by age and/or biological sex. In particular, the models

based on dichotomous features are simple to interpret and easily applicable in a real life

hospital setting.

For some laboratory values including CRP and blood sugar the numerical values are

informative for prediction, whereas other laboratory values like PTT and GOT are suitable

as dichotomous features indicating values which are too high or too low. We observe that

many features including CRP, blood sugar, LDH and Lymph are strongly associated to all

of three endpoints. Intriguingly, urea and creatinine are the laboratory values most strongly

associated with in-hospital mortality, although they are not significantly associated with the

other two endpoints.

Please note that we also analyzed ICD codes for diagnosis as additional features.

Although significant differences between the frequency of diagnosis between the two

patient groups for each endpoint were observed (Supplemental Material Figure S1), we

have observed that inclusion of these diagnostic features did not improve the models

much. This suggests that laboratory values alone are sufficient to predict Covid-19

outcomes in hospitals. In addition, the time of diagnosis is often not available in our data.
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Limitations

In our study we include patients admitted to hospitals from the beginning of the pandemic

until the end of 2021. Due to the rapidly changing epidemiological circumstances of the

pandemic we were not able to test the generalizability of our models to a population,

where the Omicron mutation is the dominating virus mutation. From 2020 until December

2021 the Wildtype, Alpha, Beta and Delta mutations were the dominating Covid-19

variants in Germany (Boehm et al., 2021; Schilling et al., 2021). Unfortunately, we have no

opportunity to check the patient-level mutation status of the virus variant, but it is plausible

that these might be the dominating mutations in our dataset.

Furthermore, we have no data regarding the vaccination status of the patients, but we

assume that most patients until spring or summer 2021 were not completely vaccinated

against Covid-19, but after summer 2021 the majority of the patients should be completely

vaccinated based on the vaccination rate in Germany (Steffen, et al., 2022).

The inclusion of vital parameters and vaccination status could improve our models.

Outlook

To test how well our predictions generalize to other hospitals, we will evaluate the

performance of the trained models on a test set from a different patient cohort and different

hospitals. This will also include extensions to patient cohorts with other dominating virus

mutations. Further improvements include time dependent predictions allowing for an online

monitoring of patients
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Table 1 Characteristics of the (complete) cohort

Characteristics Number (%) or (Q1-Q3)

Study population 532 using only 520

In-hospital mortality 87 (0.167=87/520)

Transfer to intensive care unit (ICU) 89 (0.171)

Mechanical ventilation 59 (0.113)

Age 60.4 (45-82)

Female 248 (0.477)

Q1: first quartile, Q3: third quartile

Figure 1.  Venn diagram indicating the overlap of the three endpoints “In-hospital mortality”, “transfer to ICU”

and “mechanical ventilation” in our cohort from a hospital of medium level of care located in the federal state

of Rhineland-Palatinate in the west of Germany.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 30, 2022. ; https://doi.org/10.1101/2022.10.28.22281646doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.28.22281646
http://creativecommons.org/licenses/by-nc-nd/4.0/


15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 30, 2022. ; https://doi.org/10.1101/2022.10.28.22281646doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.28.22281646
http://creativecommons.org/licenses/by-nc-nd/4.0/


16

Figure 2. The association between laboratory values and the occurrence of the endpoints a) in-hospital

mortality, b) transfer to intensive care unit (ICU) and c) necessity for mechanical ventilation. The association

is given by log p-values multiplied by the sign of the association. Positive (negative) values indicate that

higher (lower) values of the laboratory values are associated with the endpoint. The p-values are obtained

from Wilcoxon rank sum tests for differences in laboratory values of the first 48 hours after admission to a

hospital between the two patient groups (Bonferroni-Holm correction for multiple testing). A list of the

abbreviations can be found in the Supplemental Material.
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Figure 3. ROC-curves (specificity and sensitivity) of the best predictive machine-learning models for the

endpoints a) in-hospital mortality (Logistic Regression), b) transfer to ICU (XGBoost), and c) mechanical

ventilation (Random Forest) with violinplots of their related predictors in the two patient groups. The ROC-

curves are based on the test data and the violinplots on the entire dataset. A list of abbreviations can be

found in the Supplemental Material.
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Figure 4. ROC-curves (specificity and sensitivity) of the best predictive machine-learning models based on

dichotomous predictors regarding the endpoints a) in-hospital mortality (Logistic Regression), b) transfer to

ICU (Logistic Regression), and c) mechanical ventilation (XGBoost) with violin plots of their respective

predictors. Biological sex describes the fraction of all male/female patients with Covid-19, who were

transferred to ICU. The ROC-curves are based on the test data and the violinplots on the entire dataset. A

list of abbreviations can be found in the Supplemental Material.
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