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 2 

Summary 30 

Studies of disease incidence have identified thousands of genetic loci 31 
associated with complex traits. However, many diseases occur in combinations 32 
that can point to systemic dysregulation of underlying processes that affect 33 
multiple traits. We have developed a data-driven method for identifying such 34 
multimorbidities from routine healthcare data that combines topic modelling 35 
through Bayesian binary non-negative matrix factorization with an informative 36 
prior derived from the hierarchical ICD10 coding system. Through simulation 37 
we show that the method, treeLFA, typically outperforms both Latent Dirichlet 38 
Allocation (LDA) and topic modelling with uninformative priors in terms of 39 
inference accuracy and generalisation to test data, and is robust to moderate 40 
deviation between the prior and reality. By applying treeLFA to data from UK 41 
Biobank we identify a range of multimorbidity clusters in the form of disease 42 
topics ranging from well-established combinations relating to metabolic 43 
syndrome, arthropathies and cancers, to other less well-known ones, and a 44 
disease-free topic. Through genetic association analysis of inferred topic 45 
weights (topic-GWAS) and single diseases we find that topic-GWAS typically 46 
finds a much smaller, but only partially-overlapping, set of variants compared to 47 
GWAS of constituent disease codes. We validate the genetic loci (only) 48 
associated with topics through a range of approaches. Particularly, with the 49 
construction of PRS for topics, we find that compared to LDA, treeLFA 50 
achieves better prediction performance on independent test data. Overall, our 51 
findings indicate that topic models are well suited to characterising 52 
multimorbidity patterns, and different topic models have their own unique 53 
strengths. Moreover, genetic analysis of multimorbidity patterns can provide 54 
insight into the aetiology of complex traits that cannot be determined from the 55 
analysis of constituent traits alone. 56 
 57 
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 61 

Introduction 62 

Multimorbidity, defined as the co-existence of multiple chronic conditions, is a major challenge 63 
for modern healthcare systems. Its prevalence has increased because of a worldwide increase 64 
in life expectancy 1–3, and it is associated with substantially lower quality of life 3,4, worse clinical 65 
outcomes 3, and increased healthcare expenditure 5. The management of multimorbidity is 66 
challenging given that most guidelines and research are still targeted at single diseases. As a 67 
result, the negative impact of multimorbidity is often greater than the additive effects of 68 
individual diseases 6.  69 

Several common multimorbidity patterns, such as a cluster composed of cardiovascular and 70 
mental health disorders, and a musculoskeletal disease cluster, have been identified from 71 
literature reviews 3,7. In recent years, the widespread adoption of electronic health records 72 
(EHR) has enabled the systematic study of multimorbidity, and a variety of approaches have 73 
been employed for this purpose, including factor analysis 8, clustering 9, graph or network 74 
based methods 10,11, and statistical models such as latent class analysis 12–14. These 75 
approaches have both validated the previously identified multimorbidity patterns 12,14,15 and, 76 
through the inclusion of a wider range of diseases, identified additional multimorbidity patterns 77 
14,16. In addition, downstream analyses enabled by these approaches have helped to identify 78 
the clinical events and outcomes associated with specific multimorbidity patterns 13,17, which 79 
may provide insights about early intervention and risk stratification for patients.  80 

The existence of common multimorbidity patterns raises the question of their etiology. One 81 
way to approach this question is to analyse multimorbidity patterns together with appropriate 82 
-omics data to determine the biological pathways involved. These analyses have been made 83 
possible with the establishment of biobanks linking individuals’ biological samples and genetic 84 
information to their EHR 18–20. A recent study investigating genome-wide association studies 85 
(GWAS) of 439 common diseases recorded in UK biobank (UKB) hospital inpatient data found 86 
that 46% multimorbidity disease pairs have evidence for shared genetics 11, suggesting that 87 
this may be a fruitful approach.  88 

Intrinsic to the study of multimorbidity is the joint analysis of multiple disease phenotypes. To 89 
enable this, various multi-trait GWAS methods have been developed which promise to better 90 
exploit the deep phenotype data available for individuals in biobanks. These methods can be 91 
subdivided based on their analytical approaches. Univariate methods combine signals from 92 
single-trait GWAS 21–27, while multivariate methods offer improved power by directly modelling 93 
the individual level genotype and phenotype data 28–33. Several of these methods use 94 
transformations such as principal components analysis (PCA) on the original traits before 95 
association analysis so that very large numbers of traits can be handled. Topic models such 96 
as Latent Dirichlet Allocation (LDA) and Non-negative Matrix Factorization (NMF) were 97 
dimension reduction algorithms developed to model word occurrence in text documents, and 98 
have subsequently found application in biological studies to extract complex patterns from 99 
high-dimensional data 34–36. They can be used to find multimorbidity clusters from diagnostic 100 
data, by viewing individuals as “documents” and diseases as “words”. The topics learnt by 101 
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these models then are mathematical representations of groups of diseases that tend to co-102 
occur within the same individual 37. Earlier studies have shown that joining single diseases 103 
into topics increases statistical power for genetic discovery, and helps to disentangle the 104 
pleiotropic effects of several known genetic loci 38–40. 105 

Despite these advances, existing methods all have limitations. First, diagnostic data is often 106 
binary in nature, with zeros and ones representing the absence and presence of diseases, yet 107 
topic models like LDA and NMF were designed for count data, while algorithms designed for 108 
binary data 41 have not found wide application in biomedical studies. Second, biobank data is 109 
often sparse and, particularly for less common diseases, inclusion of prior domain knowledge 110 
may well improve results. Domain knowledge has been used successfully in topic models 42,43, 111 
and, for example, medical ontologies like the ICD-10 disease classification system could serve 112 
as prior for disease co-occurrence, as they encode the complex relationships of diseases as 113 
a hierarchical structure which is amenable to mathematical analysis 44–46. Third, while for 114 
statistical models, such as LDA, principled approaches exist for selecting the number of 115 
clusters and optimising other hyperparameters 47–51, this is often not true for other methods, 116 
and these choices can strongly impact the final results 9,52. In addition, methods not based on 117 
statistical foundations typically lack estimates of uncertainty in the inferred clusters, which 118 
makes interpretation difficult. 119 

Here, we develop and validate an analytic framework for the study of multimorbidity using topic 120 
models and multi-trait GWAS on biobank datasets. Central to our approach is “treeLFA” (latent 121 
factor allocation with a tree-structured prior), a statistical model to identify multimorbidity 122 
clusters of common diseases based on co-occurrence patterns and an informed prior derived 123 
from a tree-structured disease ontology. Applying treeLFA to Hospital Episode Statistics (HES) 124 
data extracted from UKB we gain insights about the relationships of diseases and their shared 125 
genetic components. We identify multimorbidity clusters in the form of disease “topics” and 126 
show that these agree with accepted medical understanding. Performing a series of GWAS 127 
on the quantitative traits defined by individuals’ weights for these topics (topic-GWAS), we 128 
show that the approach identifies novel loci that correlate in expected ways with several 129 
genomic annotations. We validate the topic-GWAS results using test data, and show that 130 
topic-GWAS can improve genetic risk prediction for multiple disorders, in particular immune 131 
disorders, and those for which currently few associated loci are known.  132 
  133 
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 134 

Results 135 

Overview of treeLFA 136 
treeLFA is a topic model designed to identify multimorbidity clusters from binary disease 137 
diagnosis data. We describe the model in terms of the associated generative process. To 138 
generate data, first topic vectors 𝜙! containing disease probabilities, and a topic weight vector 139 
𝜃" for each individual d are sampled from a prior distribution. An individual’s disease 140 
probabilities are given by a mixture of different topic vectors, with the topic weights (𝜃") acting 141 
as mixing proportions. The model can equivalently be defined by the likelihood for 142 
observations, which involves factoring a latent matrix of disease probabilities: 143 

P(W|θ,Φ) =,Bernoulli5W#,%6[θ	Φ]#,%)
#,%

 144 

Here, W is the binary input matrix recording individuals’ diagnosed diseases, with rows 145 
representing individuals and columns representing disease codes; P(Wd,s=1) is the 146 
probability of disease s being 1 (diagnosed) for individual d. 𝜙 is the topic-disease matrix 147 
(each row a topic and each column a disease), and 𝜃 the topic weights matrix (each row an 148 
individual and each column a topic). The occurrence of disease s for individual d is modelled 149 
with a Bernoulli distribution parameterized by the corresponding entry in the product of 150 
matrices 𝜃 and 𝜙: [𝜃	𝛷]",&. This model differs from LDA in three ways. First, LDA samples 151 
diseases (or words) according to a multinomial distribution, so that diseases can occur 152 
multiple times, while treeLFA only allows presence or absence. Second, LDA conditions on 153 
the number of observed diseases, whereas for treeLFA the number of diseases is 154 
informative. Third, treeLFA uses an informative prior on topic vectors 𝜙! guided by a tree-155 
structured ontology such as ICD-10 (Figure 1 in the analytic note). This prior has the 156 
property that diseases that are closely related on the tree tend to have correlated 157 
probabilities. Inference on the treeLFA model is performed using partially collapsed Gibbs 158 
sampling 53, integrating out the topic weight variable. See the analytic note for more details, 159 
including on hyperparameter optimization.  160 
 161 

Validation of treeLFA; Comparison with related topic models 162 

We assessed treeLFA’s performance in a simulation experiment, comparing it to the same 163 
model but without an informative tree prior (flatLFA; Fig 2a), and to LDA. We designed the 164 
simulation to test the model with respect to the degree of multimorbidity in the data; the size 165 
of the data; and the correctness of the prior. The degree of multimorbidity was governed by α, 166 
the concentration parameter of the Dirichlet prior for the topic weight variable θ, with large 167 
values corresponding to the presence of several multimorbidity clusters in individuals, and 168 
small values resulting in individuals mainly presenting diseases from a single cluster. To test 169 
the influence of prior misspecification we used two sets of topics for simulation. In one set 170 
(“correct tree prior”) the active disease codes in topics were aligned with the tree structure of 171 
disease codes, resulting in a high likelihood under the prior, which specifies that child nodes 172 
on the tree tend to (though not exclusively) have the same activity as their parent nodes (Fig 173 
2b,c). In the other setting (“incorrect tree prior”) the pattern of active disease codes in topics 174 
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was possible but unlikely under the prior (Supplementary Fig 1a,b). For each set of topics we 175 
considered four combinations of D and α, resulting in eight parameter combinations in total 176 
(Supplementary Table 1). For each of these we generated 20 data sets. To evaluate the 177 
performance of treeLFA, flatLFA and LDA we used two metrics: the accuracy of the inferred 178 
topic (𝛥𝜙, average absolute per-disease difference in probability between aligned true and 179 
inferred topics; see Methods for details), and Rpl, the ratio of the average per-individual 180 
predictive test likelihood for treeLFA and flatLFA.  181 

Both metrics indicate that on data simulated using the correct tree prior, treeLFA performs 182 
better than flatLFA, which does not have the benefit of an informative prior (Figures 2d-g, 183 
Supplementary Table 2).  This is most pronounced for small datasets with strong 184 
multimorbidity (Figure 2d; 𝛥𝜙 0.012±0.004 (treeLFA) and 0.025±0.010 (flatLFA); Rpl 185 
1.003±0.002), while for larger datasets, the two models show similar performance and the 186 
prior has less influence (Figure 2e; 𝛥𝜙 0.009±0.006 (treeLFA) and 0.011±0.005 (flatLFA)). 187 
treeLFA outperforms LDA except for large data sets with weak multimorbidity (Figure 2g; 𝛥𝜙 188 
0.0100±0.0009 (treeLFA) and 0.0084±0.0021 (LDA)) where both models gave accurate 189 
inference. For simulation using incorrect tree priors, flatLFA gave results comparable to 190 
simulation with correct priors, and the performance of flatLFA and treeLFA is similar across 191 
the four parameter combinations (Supplementary Figure 1), indicating that treeLFA is robust 192 
against prior misspecification. Overall, these results indicate that both treeLFA and flatLFA 193 
give accurate results when sufficient training data is available, even if treeLFA’s informative 194 
prior is inaccurate; but when the tree prior is correct, treeLFA performs better than flatLFA, 195 
particularly when training data is limited. Even in larger real-world data sets, low-frequency 196 
topics will have limited training data, hence this suggests that treeLFA could add power to the 197 
analysis of multimorbidity in biobank data. 198 
 199 

Topics of ICD-10 codes inferred from UK Biobank data 200 

To investigate the properties of treeLFA on real-world data, we built an exploratory data set 201 
using the HES data in UKB from 502,413 individuals, consisting of the 100 most frequent 202 
codes from chapters 1-13 of the ICD-10 coding system (top-100 UKB dataset, Supplementary 203 
Table 3). We split these data randomly into training (80%) and testing (20%) datasets, and 204 
trained treeLFA with an initial K=11 topics (There is a discussion of the optimal number of 205 
topics below).  206 

The inferred topics include an “empty” topic, in which all codes have near-zero probability of 207 
occurring (Figure 3a, Supplementary Table 4). Its associated entry in the optimal Dirichlet prior 208 
parameter 𝛼 is very large (0.585) compared to that of other topics (0.016-0.06), indicating that 209 
the empty topic is frequently assigned to an individuals’ disease profile. The remaining topics 210 
all contain active codes. Most topics are sparse (8 topics contain fewer than 10 high-probability 211 
(>0.2) codes), but the model also infers dense topics, such as topics 8 and 10 which include 212 
41 and 43 high-probability codes respectively. To assess whether codes tend to be specific to 213 
a topic, we normalised their probabilities across topics to make the largest probability 1. We 214 
found that, in general, codes are typically specific to topics: most (87/100) are active 215 
(normalised probability>0.5) in 3 or fewer topics. However, some codes are active in many 216 
topics, such as I10 (essential hypertension, active in 6 topics) and C44 (other malignant 217 
neoplasms of skin, active in 8 topics) (Figure 3a), suggesting that they have both large 218 
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prevalence and a large number of multimorbidity partners belonging to different disease 219 
clusters. The top disease codes (i.e. the five with the largest probabilities) in the 10 non-empty 220 
topics are consistent with known disease mechanisms (Figure 3b), and are most frequently 221 
drawn from two (6/10) of the ICD-10 chapters. Specifically, in Topic 5, codes E78 (disorders 222 
of lipoprotein metabolism and other lipidemias) and I10 (essential hypertension) are 223 
components of the metabolic syndrome 54, which is associated with increased risk for 224 
cardiovascular diseases (CVD) 55, an association supported by the other three inferred top 225 
codes for this topic (I20, I21 and I25, all heart diseases). Another example is Topic 11, whose 226 
top codes include four spondylopathy subtypes, while the remaining one is G55 (nerve root 227 
and plexus compressions), a common complication of intervertebral disk disorders.   228 

In addition to defining topic vectors, the model also infers individuals’ weights for all topics 229 
(shown for 2,000 individuals in Figure 3c, Supplementary Table 5). As expected, most 230 
individuals have substantial weight for the empty topic, and this weight was strongly and 231 
negatively associated (Pearson correlation: -0.853) with the total number of diagnoses. 232 
Individuals that were not diagnosed with any of the top-100 ICD-10 codes (629/2,000) have a 233 
weight near 1 for the empty topic, while the majority of other individuals (1056/1371) have 234 
large weight (>0.1) for less than two disease (non-empty) topic, as expected from the sparsity 235 
of the data. 236 

To compare the performance of treeLFA with flatLFA and LDA, we used the same input data 237 
to train the flatLFA model with 11 topics and the LDA model with 10 topics (no empty topic 238 
would be inferred by LDA, so it was trained with one fewer topic). Topics inferred by treeLFA 239 
and flatLFA were almost identical (Supplementary Figure 2a), indicating that the input data 240 
was large enough to make the impact of the informative prior minimal. Most topics inferred by 241 
LDA also had a high level of similarity to the non-empty topics inferred by treeLFA, except for 242 
two topics, for which the cosine similarities were 0.685 and 0.853 (Supplementary Figure 2b). 243 
Overall, these results indicate that the three topic models captured the same multimorbidity 244 
pattern from the top-100 UKB dataset.  245 
 246 

GWAS on topic weights 247 

We next investigated whether the quantitative traits defined by the topic weights can be used 248 
to identify genetic variants that are associated with an individual’s risk for developing 249 
multimorbidities represented by the topics. We performed GWAS on individuals’ weights for 250 
the 11 topics inferred by treeLFA (topic-GWAS), and identified associations that reached 251 
genome-wide significance (p<5×10-8; non-lead SNPs with r2>0.1 were removed). For 252 
comparison, we also performed standard binary GWAS for the 100 ICD-10 codes and the 296 253 
Phecodes mapped from these ICD-10 codes (see Methods for details).  254 

We found 128 independent loci associated with at least one of the 11 topics, while 812 255 
independent loci were associated with at least one of the 100 ICD-10 codes; 82 loci were 256 
shared between the sets (Figure 4a). Phecode GWAS showed similar patterns 257 
(Supplementary Figure 3a,b). Breaking this down by topic, we find that unique loci found by 258 
topic-GWAS were highly non-randomly distributed (Figure 4b, Supplementary Table 6). Most 259 
unique loci were associated with the empty topic (20/36), followed by Topic 8 (17/28) which 260 
contains a large number (41) of high probability codes (>0.2) from Chapter 11 (Diseases of 261 
the digestive system, 12 codes) and 13 (Diseases of the musculoskeletal system and 262 
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connective tissue, 13 codes). In contrast, four sparse topics showed no unique loci. Topics 5 263 
(metabolic and heart diseases) and 6 (joint diseases) had many associated loci (50 and 17 264 
respectively) and also a substantial number of unique loci (5 and 7 respectively), suggesting 265 
that active codes in these topics include shared genetic components. The identification of 266 
novel loci indicates that topic-GWAS provides additional power for discovery. For example, 267 
Figure 4c (Supplementary Table 7) compares P-values of lead SNPs from the topic-GWAS 268 
for Topic 5, and P-values for association of the same loci with the top five active codes in Topic 269 
5 (E78, I10, I20, I21, I25) from the single code GWAS. For most topic-associated lead SNPs, 270 
P-values given by topic-GWAS are smaller than those given by the corresponding single code 271 
GWAS, indicating increased power for these examples. This also explains some loci uniquely 272 
found by topic-GWAS, including some loci that show single-code P-values well below genome-273 
wide significance (see Figure 4d for two example loci). Despite the limited numbers of topic-274 
associated loci, the genomic control inflation factor and LD score regression (LDSC) indicate 275 
that most topics are in fact highly polygenic traits, with the exception of the empty topic and 276 
Topic 8, for which LDSC analysis suggests that uncontrolled confounding factors exist 277 
(Supplementary Table 8; age, sex and the first 10 PCs were controlled for in topic-GWAS).  278 

We next asked whether topic-GWAS simply identify associations with disease groups 279 
(categories) represented by internal nodes of the ICD-10 or the Phecode ontology tree, which 280 
correspond to expert-led disease clusters and provide a useful contrast to our data-driven 281 
multimorbidity clusters. To answer this we performed GWAS on groups of ICD-10 codes or 282 
Phecodes corresponding to internal nodes in the respective classification systems. We found 283 
634 loci associated with the 68 internal ICD-10 codes and 296 loci associated with the 136 284 
internal Phecodes. Of the 128 topic-associated loci, 41 were not associated with any of the 285 
internal or terminal ICD-10 codes; and for Phecodes the corresponding number was 56 286 
(Supplementary Figure 3c-f). This indicates that topic modelling provides insights into the 287 
relationships of diseases beyond those provided by expert-driven disease groupings encoded 288 
in ontologies. For example, Topic-8 has the majority of its active codes coming from Chapter 289 
11 (Diseases of the digestive system) and 13 (Diseases of the musculoskeletal system and 290 
connective tissue), and a similar multimorbidity cluster was also identified by a recent study 291 
on UK Biobank 11. Interestingly, this cluster has many unique loci found by topic-GWAS, 292 
possibly indicating that these two categories of diseases share some underlying biology. 293 

We then compared the topic-GWAS results for topics inferred by treeLFA, flatLFA and LDA. 294 
As expected from the similarity of topics inferred by treeLFA and flatLFA, similar numbers of 295 
associated loci were identified (128 and 126; Supplementary Figure 4a), compared to LDA, 296 
which identified many fewer (65; Supplementary Figure 4b), of which 44 overlap with the 297 
treeLFA loci. This difference in numbers of associated loci is mostly due to treeLFA’s empty 298 
topic (associated with 36 loci), which is not identified by LDA, and also due to differences in 299 
the dense Topic 8 (treeLFA, 28 loci; LDA, 4 loci), and topics 5 and 6 (Supplementary Figure 300 
4c). One reason for the relatively poor performance of LDA may be that LDA-derived topic 301 
weights are negatively correlated with each other, as they must sum to one, while treeLDA’s 302 
topic weights are only negatively correlated with the empty topic weight, but are otherwise 303 
almost independent of each other (Supplementary Figure 5).  304 

Validation of topic-GWAS results 305 

To exclude the possibility that the unique topic-GWAS associations were driven largely by 306 
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technical biases or population stratification, we validated the results in three ways. First we 307 
considered overlap with previously identified loci reported in the GWAS catalogue 56. We find 308 
that 114/128 (89.1%) of all topic-associated loci and 36/46 (78.3%) of unique associations 309 
have records in the GWAS catalogue, and this overlap is consistent across topics 310 
(Supplementary Figure 6a). Second, we looked at enrichment of topic-associated loci in 311 
functional genomic regions. To do this we defined three groups of SNPs, including lead SNPs 312 
for all loci associated with ICD-10 codes, a random selection of 10,000 GWAS tag SNPs 313 
(controls) and topic-associated lead SNPs that were not found by single code GWAS, and 314 
then compared the proportions of them that have different functional properties (two-proportion 315 
Z-test, adjusted P-value<0.05, Bonferroni correction). We find that compared to random SNPs, 316 
a significantly larger proportion of topic-associated SNPs are in genomic regions with strong 317 
transcription activity (using chromHMM-predicted chromatin states as proxy 57). In addition, 318 
the proportions of SNPs that are QTLs and have chromatin interactions (CI) in at least one 319 
tissue in the first and third groups are similar (0.83 and 0.77 are eQTL, 0.90 and 0.98 have 320 
CI), and larger than the corresponding proportions in the control group (0.50 and 0.65 for eQTL 321 
and CI), indicating that loci associated with single codes and topics have comparable 322 
functional properties which are different from those for controls. (Supplementary Figure 6b-d). 323 

Third, we made use of the test data to validate topic-GWAS results. We reasoned that if topics 324 
and their associated loci represent true biological processes, then topic-GWAS results should 325 
enable us to predict the risks of individual diseases with an accuracy comparable to that 326 
achieved using single code GWAS. To do this we first constructed PRS for topic weights using 327 
topic-GWAS results on training data. We found that they all show significant association with 328 
inferred topic weights on test data (Supplementary Table 9, see Methods for details). We then 329 
used these PRS for topics to construct PRS for the 100 ICD-10 codes, by adding individuals’ 330 
PRS for the ten disease topics weighted by the probability of the ICD-10 code of interest in 331 
each topic. For comparison, we also constructed PRS for all ICD-10 codes directly using the 332 
single-code GWAS results in the standard way. Each pair of PRS for an ICD-10 code was 333 
used to predict individuals’ corresponding diagnosed disease in the test data, and their 334 
performance was evaluated using the area under the receiver-operator curve (AUC) statistic. 335 
For 65 ICD-10 codes, topic-PRS AUCs are larger than single-code PRS AUC (Figure 4f, 336 
Supplementary Table 10), with increases ranging from 1% to 5%. This increase was seen 337 
most for ICD-10 codes from chapters 5 (Mental and behavioural disorders, 75% (3/4) showing 338 
increased AUC), 11 (Diseases of the digestive system, 86% (18/21)) and 13 (Diseases of the 339 
musculoskeletal system and connective tissue, 70% (14/20)). By contrast, single-code PRS 340 
performed well for codes that have a relatively large number of associated loci found by single 341 
code GWAS (>10 associated loci; 18/22 disease codes show larger AUC for single-code PRS 342 
than topic-PRS; Supplementary Figure 7a,b). Finally, to make an objective comparison of the 343 
topic-GWAS for treeLFA and LDA, we constructed PRS for ICD-10 codes from LDA’s topic-344 
GWAS using the same approach, and found that in the majority of cases (99/100) the PRS 345 
based on treeLFA’s results have larger AUC (Supplementary Figure 7c), indicating treeLFA’s 346 
topic-GWAS is more informative. Taken together, the three complementary approaches 347 
indicate that topic-GWAS associations broadly represent true genetic associations with 348 
biological phenotypes. 349 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.10.28.22281623doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.28.22281623
http://creativecommons.org/licenses/by/4.0/


 10 

Inference and topic-GWAS results across models 350 

Before applying treeLFA to a larger data set containing more diseases, we considered how to 351 
select the number of topics (K), a fundamental problem for topic models. We trained treeLFA 352 
models with different numbers of topics (K=2-20, 50, 100) on the top-100 data set, and found 353 
that for larger K topic vectors were frequently duplicated, therefore we performed clustering 354 
on the posterior samples of topics (see Methods for more details). The resulting topics always 355 
included an empty topic, and as K increased the topics tended to become more sparse, 356 
although some dense topics always remained (Figure 5a, Supplementary Table 11). As K 357 
increased, topics tended to split into sub-topics, which we visualised in a tree by connecting 358 
each topic to its most similar topic (measured by Pearson correlation of topic vectors) in the 359 
layer above, and we observed that the topics split in a stable way (Figure 5b, Supplementary 360 
Table 12). These observations indicate that topic-GWAS loci and associated effect sizes 361 
should also be stably identified. We verified this for many loci (examples in Supplementary 362 
Figure 8), and Figure 5b illustrates this for a single variant. On the top-100 UKB dataset, the 363 
number of distinct topics remaining after clustering is saturated at 25-30 topics 364 
(Supplementary Figure 9a). Similarly, the total number of topic-GWAS loci, the number of 365 
unique such loci, and the predictive likelihood on the test data all began to saturate beyond 366 
K=20 (Figure 5b; Supplementary Figure 9b). We do note that for models with K=50 or K=100, 367 
we infer several near-empty topics after clustering, which are unlikely to be stable 368 
multimorbidity patterns and are challenging to interpret. Taken together, these results indicate 369 
that selecting a sufficiently large value for K, combined with post-hoc clustering of topics, is a 370 
computationally efficient strategy for producing a stable and comprehensive set of topics.  371 

Results on a larger UKB dataset  372 

We next defined a larger data set consisting of the 436 ICD-10 codes from chapters 1-14 with 373 
a prevalence exceeding 0.001 in UKB (top-436 UKB dataset, Supplementary Table 13), and 374 
again randomly split this 80/20 into training and testing datasets. Training treeLFA/flatLFA 375 
models with 100 topics, we identified about 40 distinct topics after clustering of posterior 376 
samples. Therefore, we kept 40 topics for both models (for the convenience of an objective 377 
comparison of predictive likelihood), and collapsed the remaining near-empty topics into the 378 
empty topic.  379 

Since the inference results (topics) given by different treeLFA/flatLFA chains were not exactly 380 
the same, we used the result given by the chain with the largest predictive likelihood on the 381 
test data for the downstream analyses. Among the 40 inferred topics, 29 were found by all 382 
three treeLFA chains, and five were found by two treeLFA chains, suggesting most topics 383 
were stably identified from the data (Figure 6a, Supplementary Table 14). The 40 topics again 384 
include several dense topics, with topics 1-5 including more than 40 active codes (having a 385 
normalised probability>0.5 in a topic). The set includes many sparse topics, with most 386 
including active codes enriched (Fisher exact test, adjusted P values<0.05, FDR corrected) 387 
for 1-2 ICD-10 chapters, and again a single empty topic (Figure 6a-b; Supplementary Table 388 
14,15). The top active codes in topics (defined as having an unnormalized probability>0.3) are 389 
shown in Table 1, where topics are annotated based on the categories of these top active 390 
codes. For most topics, their top active codes represent similar diseases, such as diseases 391 
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affecting the same physiological system or having the same pathological mechanism. 392 
Comparing topics identified by treeLFA and flatLFA, we found that 32 topics were identified 393 
by both models (cosine similarity>0.9; Supplementary Figure 10a), while the remaining topics 394 
have substantial differences. Overall, the predictive likelihood of treeLFA chains was better 395 
than that of flatLFA, and has a smaller range (Supplementary Figure 10b), indicating that the 396 
tree-based prior is indeed helpful in extracting meaningful patterns from the data.  397 

We then performed topic-GWAS on the 40 treeLFA and flatLFA topics we kept. We found 278 398 
treeLFA and 260 flatFLA genome-wide significant loci, with the majority (207) found in both 399 
sets and associated with corresponding topics (Supplementary Figure 10c-d, Supplementary 400 
Table 16). We also performed single-code GWAS on the 436 ICD-10 codes and found 1,093 401 
associated loci, among them 198 were also associated with treeLFA topics. Lead SNPs for 402 
loci only associated with treeLFA topics (80 unique loci) had smaller effect sizes (median 403 
absolute effect size: 0.021) compared to loci supported by both topics and single codes (0.024) 404 
(Figure 6d, Supplementary Table 17), indicating that topic-GWAS enabled the discovery of 405 
variants with small effects on multiple related diseases. Unique loci were not uniformly 406 
distributed across topics; as in the top-100 dataset, many were associated with the empty 407 
topic (21). Topics 3 and 30 also have large proportions of unique loci (81.5% and 83.3%), and 408 
most of their active codes are from Chapter 13 (Diseases of the musculoskeletal system and 409 
connective tissue) (Figure 6e, Supplementary Table 18). Other topics that are associated with 410 
substantial numbers of unique loci are shown in the Supplementary Table 19.  411 

We validated the topic-associated loci for the larger dataset using the same approach as used 412 
with the top-100 dataset. Overall, 89.2% (248/278) of topic-associated loci and 78.9% (63/80) 413 
of unique associations have records in the GWAS catalogue. The functional validation results 414 
were also similar to that on the top-100 dataset, with unique topic-associated loci and single 415 
code associated loci exhibiting similar profiles (Supplementary Figure 11). The two types of 416 
PRS for single codes were also constructed using single code and topic-GWAS results. For 417 
130 in 436 (30%) ICD-10 codes, PRS based on topic-GWAS resulted in larger AUC on the 418 
test data. These codes were mainly from Chapter 3 (Diseases of the blood and blood-forming 419 
organs and certain disorders involving the immune mechanism, 5/12), Chapter 9 (Diseases of 420 
the circulatory system, 21/48) and Chapter 13 (Diseases of the musculoskeletal system and 421 
connective tissue, 24/52). In contrast, for most (93 of 109) ICD-10 codes with more than 5 422 
associated loci, PRS based on single code GWAS resulted in better performance 423 
(Supplementary Table 20). To compare treeLFA and flatLFA, we also constructed PRS for 424 
single codes based on flatLFA results, and compared their AUC on the test data to that of 425 
treeLFA. For 231 in 436 codes (53%), PRS based on treeLFA showed better performance. 426 
Supplementary Figure 10e compares the density plots for the AUC of PRS for all codes given 427 
by the two methods, where treeFLA shows a minor advantage.  428 

  429 
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Discussion  430 

Multimorbidity is a major challenge for today’s healthcare systems, yet our understanding of it 431 
remains limited 58. The establishment of biobanks linked to electronic health records presents 432 
an opportunity for a more systematic study of multimorbidity, and highlights the need for 433 
reliable and powerful analytic tools to enable the identification of major multimorbidity clusters 434 
and downstream analyses of paired phenotype and -omics data.  435 

Here we developed treeLFA, a topic model inspired by Latent Dirichlet Allocation (LDA) that 436 
admits a prior for topics constructed on existing tree-structured medical ontologies. We 437 
compared it to flatLFA and LDA on both simulated and UKB data, and found that the prior was 438 
effective at extracting relevant topics from limited input data, such as data involving rare 439 
diseases. We also found that the novel model structure better fits the binary input data, 440 
resulting in the identification of an empty (“healthy”) topic, and ensuring that topic weights for 441 
the remaining disease topics were largely uncorrelated, improving power for downstream 442 
topic-GWAS. We implemented algorithms to optimise hyperparameters of the model, and 443 
developed a computationally efficient approach to determine the number of meaningful topics 444 
to be inferred.  445 

By applying treeLFA to HES data for 436 common diseases recorded in UKB, we identified 40 446 
topics reflecting combinations of diseases that tend to co-occur. These topics varied in density 447 
and include a single empty topic, many sparse topics that each include a small number of 448 
active disease codes, and several dense topics. We found that the inferred topics were largely 449 
consistent with the current disease classification system (ICD-10), yet treeLFA also combines 450 
diseases distant on the tree structure into the same topic, indicating the utility of supplementing 451 
expert-led knowledge systems with data-driven methods. By comparing the topics inferred by 452 
treeLFA and LDA, and topics inferred by different treeLFA models, we found that 453 
multimorbidity clusters were consistently inferred, indicating the existence of stable 454 
multimorbidity clusters, and that topic modelling of cross-sectional diagnosis data is an 455 
informative method of finding them.  456 

Most inferred topics likely reflect underlying aetiology, as indicated by the fact that the large 457 
majority (34/40) show genome-wide significant associations with genetic markers, while 20 458 
topics are associated with 80 novel loci that do not reach genome wide significance in GWAS 459 
for single ICD-10 codes, and show evidence of functionality using multiple methods. The active 460 
ICD-10 codes in the topics with the most novel associations are mainly from Chapter 13 461 
(Diseases of the musculoskeletal system and connective tissue), with substantial contributions 462 
also from Chapters 4 (Endocrine, nutritional and metabolic diseases), 9 (Diseases of the 463 
circulatory system) and 14 (Diseases of genito-urinary system), suggesting that diseases in 464 
these chapters share genetic risk factors.  465 

With topic-GWAS results, we explored constructing PRS for a single code as the sum of PRS 466 
for all topics weighted by the probabilities of the code in topics. We found that for certain codes, 467 
especially codes with very few GWAS hits from Chapter 13, this new type of PRS outperforms 468 
the standard PRS based on single code GWAS results. This improvement in prediction might 469 
result from better estimation of effect sizes of variants by topic-GWAS. This is because 470 
although treeLFA factorises the input matrix in a linear way, it achieves a dimension reduction 471 
by mapping from the disease space to the topic space. This results in fewer traits and therefore 472 
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more ‘cases’ for each one, which is especially beneficial for the study of the highly polygenic 473 
traits (topic weights), where there are a large number of SNPs with small effects.   474 

In contrast to topic-GWAS, single-code GWAS on the 463 common diseases resulted in 1,093 475 
significant associations, of which the vast majority (895) were not associated with any topic. 476 
Taken together, these genetic analyses indicate that the majority of genetic associations are 477 
driven through links to individual diseases. Meanwhile, most multimorbidity clusters also have 478 
genetic bases, which are mainly composed of pleiotropic genetic variants affecting risks of 479 
multiple active diseases in the cluster. Besides, there are also a substantial number of 480 
associations for topics that are difficult to identify by single code GWAS due to the lack of 481 
power. From a biological perspective, they might reflect the complex connections between 482 
upstream pathways that are distant to individual diseases, or variants with direct yet small 483 
effects across multiple diseases. Overall, these observations are a helpful starting point for 484 
our pursuit of a deeper understanding of the mechanisms underlying multimorbidity clusters.  485 

We consistently identified an “empty” topic, which reflects individuals’ overall disease burden, 486 
since their weights for the “empty” topic are negatively correlated with their total number of 487 
diagnosed diseases. Perhaps surprisingly we found that this topic showed many genetic 488 
associations, many of which (21/35) had not been identified before. An enrichment analysis 489 
for topic-associated genes (Methods) indicated several lifestyle-associated factors, such as 490 
gym attendance and religious observance, suggesting that this topic may be related to 491 
individuals’ health behaviour, which in part is genetically determined. In contrast, for most 492 
sparse disease topics, the enriched gene sets are usually directly related to the active codes 493 
in the topic (Supplementary Table 21).  494 

There have been many studies aiming at identifying multimorbidity patterns using various  495 
methods 12,13,16,17,59. Most of these studies focus on dozens of diseases that in addition varied 496 
from study to study, making comparisons difficult. We compared the topics identified by 497 
treeLFA with multimorbidity networks (which are interpretable at the level of genetic loci) found 498 
by a recent study using the HES data for 439 common diseases in UKB (433 of these are 499 
included in the top-436 UKB dataset in our study) 11. For most of the disease networks, there 500 
are specific corresponding disease topics identified by treeLFA (Supplementary Table 22). 501 
However, the overlap of active codes in treeLFA inferred topics and the disease networks is 502 
limited, suggesting significant differences in the details of the inference results. This 503 
discrepancy could be caused by the fundamental differences between the two methods, since 504 
treeLFA analyses all diseases simultaneously, while multimorbidity networks were constructed 505 
based on pairs of diseases that tend to co-occur. One limitation of topic models is that they 506 
cannot determine the relationships between active diseases in the same topic. In contrast, an 507 
advantage of topic models is that they make direct use of individual level data for the genetic 508 
analyses, and allows for making predictions on the test data, which provides an objective way 509 
to compare different methods. 510 

Our work represents real progress in the understanding of multimorbidity, yet also reveals 511 
important and unsolved challenges. For instance, while we showed that taken together the 512 
novel genetic associations likely represent true biology, we have not performed individual 513 
replication of the findings in this study in independent data sets and this may be challenging 514 
unless the data sources and methods of data collection are comparable to UK Biobank. The 515 
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problem of inferring disease topics that are stable, tractable and biologically meaningful across 516 
geographies and healthcare systems represents a major challenge for future research.  517 
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Figures  539 

 540 
Figure 1 Schematic for topic modelling of the diagnosis data in UKB with treeLFA.  541 
The presence and absence of S disease codes for D individuals in the biobank is modelled 542 
with D×S	Bernoulli distributions. The matrix of Bernoulli probabilities is factored into the 543 
product of a topic matrix and a topic weight matrix. Individuals’ weights for topics are 544 
modelled with categorical distributions with a Dirichlet prior. Each topic is composed of S 545 
probability variables with Beta priors to parameterize the Bernoulli distributions for disease 546 
codes. Disease codes can be either active or inactive in topics. Active disease codes have 547 
large probability while inactive ones have near zero probability. A prior for topics (specifies 548 
the likelihood of different disease codes to be active in topics) is constructed on the tree 549 
structure of disease codes specified by a medical ontology (such as the ICD-10 coding 550 
system). The path from the root node to active leaf nodes (corresponding to all active 551 
disease codes in a topic) are highlighted on a three-layered tree structure for 13 disease 552 
codes in 4 topics.  553 
  554 
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 555 
Figure 2 Comparison of three related topic models (treeLFA, flatLFA and LDA) on 556 
simulated datasets. 557 
a, The informative and non-informative tree structures used by treeLFA and flatLFA. 558 
b, The tree structure of the 20 disease codes used for simulation. Red nodes on the tree correspond to 559 
all active disease codes in Topic 4 used for simulation (in Figure 2c).  560 
c, The four topics used for simulation. The heatmap shows the probabilities of diseases in topics. Each 561 
row corresponds to a disease code, each column corresponds to a topic. Inactive disease codes in 562 
topics have zero probability. All active disease codes in each of the first three topics come from the 563 
same branch of the tree in Figure 2b. Active codes in the last topic come from the last two branches of 564 
the tree in Figure 2b. 565 
d-g, Comparison of three topic models on simulated datasets. The performance of three topic models 566 
(treeLFA, flatLFA and LDA) on four groups of simulated datasets are shown. The four groups of datasets 567 
were generated using the same topics (Figure 2c), and different values for D (number of individuals in 568 
the training dataset) and α (the concentration parameter of the Dirichlet prior for individuals’ topic 569 
weights). For each combination of D and α, 20 datasets (including both training and testing datasets) 570 
were simulated. Inference accuracy of topic models is evaluated using the averaged per disease 571 
difference between true and inferred probability of all diseases in all 4 topics (box plots). Each dot in a 572 
box plot is the result of one model on one dataset, and dots for different models on the same dataset 573 
are connected with grey lines. For treeLFA and flatLFA, the predictive likelihood on the testing datasets 574 
were calculated using topics inferred on the training data. Each dot in the point plot represents the 575 
treeLFA to flatLFA ratio of per individual averaged predictive likelihood for one dataset. d, Results on 576 
datasets simulated using D=2500 and α=1. e, Results on datasets simulated using D=5000 and α=1. f, 577 
Results on datasets simulated using D=300 and α=0.1. g, Results on datasets simulated using D=1000 578 
and α=0.1.  579 
  580 
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 581 
Figure 3 Inference results given by treeLFA on the top 100 UKB dataset. 582 
a, 11 topics inferred by treeLFA from the top-100 UKB dataset. The heatmap shows the probabilities 583 
of 100 ICD-10 codes in the 11 treeLFA topics, in which each row is an ICD-10 code and each column 584 
is a topic. Topics are arranged in a descending order of their corresponding entries in the optimised α 585 
vector (the single-row heatmap on the top). The tree structure for the 100 ICD-10 codes is shown to 586 
the left of the heatmap. Codes from different chapters of the ICD-10 coding system are colored 587 
differently. The barplot below the heatmap shows the numbers of ICD-10 codes with a probability of at 588 
least 0.2 in topics. The barplot on the right side of the heatmap shows the number of topics in which 589 
an ICD-10 code is active (with a normalised probability of at least 0.5).  590 
b, The top 5 codes with the largest probability in the 10 non-empty treeLFA topics (topics 2-11 in 591 
Figure 3a). Numbers in the brackets show the probabilities of disease codes in topics. 592 
c, Inferred weights for the 11 topics for 2000 random individuals. Each row in the heatmap is a topic, 593 
and each column is an individual. 594 
  595 
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 596 
Figure 4 topic-GWAS result for the 11 topics inferred by treeLFA. 597 
a, The total numbers of significant loci found by topic-GWAS for the 11 treeLFA topics and single code 598 
GWAS for the 100 ICD-10 codes, and the overlap of these two sets of loci. 599 
b, The numbers of significant loci found by both single code/topic-GWAS, and the numbers of loci only 600 
found by topic-GWAS for the 11 treeLFA topics.  601 
c, Comparison of P-values given by topic-GWAS for all lead SNPs for Topic 5 and P-values for the 602 
same SNPs given by single code GWAS for the top 5 active codes (E78, I10, I20, I21, I25) in Topic 5.  603 
d, The Manhattan plot for Topic 5, and the regional Manhattan plots for single code/topic-GWAS results 604 
for two example lead SNPs of Topic 5.  605 
e, Comparison of two types of PRS for the 100 ICD-10 codes. One type of PRS is directly constructed 606 
using the single code GWAS results. Another type of PRS for ICD-10 codes is constructed as the sum 607 
of PRS for topics weighted by the probabilities of an ICD-10 code in all topics. The AUC of these two 608 
types of PRS on the test dataset are plotted. 609 
  610 
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 611 
Figure 5 Inference and topic-GWAS results across treeLFA models set with different 612 
numbers of topics.  613 
a, Averaged inferred topics given by the treeLFA models set with 2, 5, 20 and 100 topics. For each 614 
treeLFA model, ten Gibbs chains were trained, and 50 posterior samples of topics were collected from 615 
each chain. Posterior samples of topics from different chains are mixed and clustered, and the mean 616 
topic vectors are then calculated for each cluster. 617 
b, Relationship of topics inferred by different models. All topics inferred by all treeLFA models are 618 
organised into a tree structure. Each node on the tree is a topic inferred by a model, and all nodes on 619 
the same layer (level) of the tree are all topics inferred by the same treeLFA model (set with a certain 620 
number of topics). Each topic in the tree is connected to its most similar topic (measured with the 621 
Pearson correlation) in the layer above. Topics associated with the SNP rs143384 are colored 622 
according to the –log10(P-value) for the SNP in the corresponding linear regression. Most of the 623 
associated topics are in the same branch of the tree, so all topics in this branch are plotted in the 624 
heatmap on the right side of the tree, with names of topics (model.topic-index) associated with 625 
rs143384 highlighted in red. In the barplot below the heatmap, effect sizes and standard errors of 626 
rs143384 given by topic-GWAS for the above topics are plotted. The line plot to the left of the tree 627 
shows the total numbers of topic-associated loci and the numbers of topic-associated loci that are not 628 
found by single code GWAS for different treeLFA models. 629 
  630 
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 631 
Figure 6 Inference and topic-GWAS results for the 40 topics inferred by treeLFA from 632 
the top-436 UKB dataset. 633 
a, The 40 topics inferred by the treeLFA model set with 100 topics. Topics are ordered according to 634 
their density (the sum of the probability of all codes in the topic). The tree structure of the 436 ICD-10 635 
codes is plotted to the left of the heatmap. The colour bar on top shows for each topic the number of 636 
treeLFA chains which inferred it.   637 
b, The numbers of active codes (with a normalised probability of at least 0.5) in different topics coming 638 
from different ICD-10 chapters. Enriched chapters among active codes in topics are highlighted with 639 
shades in the cells (Fisher exact test, FDR<0.05).  640 
c, The total numbers of loci associated with the 40 treeLFA topics and the 436 ICD-10 codes, and the 641 
overlap of these two sets of loci. 642 
d, Distribution of effect sizes given by topic-GWAS for lead SNPs associated with only topic and lead 643 
SNPs associated with both topic and single code. 644 
e, The total numbers of loci associated with different topics (in the same order as topics in Figure 6a), 645 
and the numbers of topic-associated loci that are not found by single code GWAS (red). 646 
  647 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.10.28.22281623doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.28.22281623
http://creativecommons.org/licenses/by/4.0/


 21 

Tables 648 

Table 1 Names and top active codes of the 40 topics inferred by treeLFA on the 649 
top-436 UKB dataset.  650 
Top ICD-10 codes (with an unnormalized probability of at least 0.3) in the 40 topics inferred by treeLFA 651 
on the top-436 UKB dataset are shown. Topics are named using the ICD-10 chapters which make major 652 
contributions to their top active codes (different chapters are connected with “-” in the names). Words 653 
after colons in the names of topics give further summary of the top active codes from a specific chapter. 654 
Topic 1 and 2 are not named since they are very dense, and there is no obvious pattern in their top 655 
active codes. 656 

Topic Name Top active codes 

1 - - 

2 - - 

3 Musculoskeletal:joint-1 M19,I10,M17,M25,M13,M54,K21,E78,M47,M23,K44,E66,M15,M
79,J45,K29,M16,M75,K57,G56,F32,E11,M51,M65 

4 
Neoplasm-Digestive 

C78,C18,C77,I10,K56,D64,K63,C79,K59,K57,K66,C20,J90,K91,
N39,K62,J18,K52,E87,N17,D12,B96,K43,K29,E86,A41 

5 
Neoplasm-Respiratory-Blood 

C79,C78,D70,C77,J18,A41,J90,C34,I10,D64,J22,K59,C50,E87,
N17,N39,A09,C80,J98,K52 

6 
Digestive-Circulatory 

I10,I25,E78,K29,I20,K44,K57,K21,E11,K62,K63,I84,D12,K22,D5
0,J45,D64,K20,K92,J44,K31,I48 

7 
Nervous:cerebrovascular 

I10,I63,E78,G81,I67,N39,I69,G40,F32,I48,J18,K59,E87,H53,B96
,G45,J22,G93 

8 
Respiratory-Mental J44,J18,F17,F32,J45,I10,F10,J22,F41,J43,J98,J47,J96,E87 

9 
Circulatory:heart-Metabolic-1 

I10,I25,I48,I50,E78,I51,I20,I44,I34,I21,I08,I47,I35,J90,J18,I49,I42
,E11 

10 
Urinary:male-1 I10,N32,N40,N39,E78,C67,N30,N35,N13,E11,N20,C61,K57 

11 
Metabolic:diabetes-Eye E11,I10,E78,E10,H26,H36,E14,I25,H25,E66 

12 
Musculoskeletal:spine M51,M54,G55,M47,M48,I10,M79,M43,M50 

13 
Reproductive:female-1 D25,N83,N92,N80,N73,N94 

14 
Skin:infection L03,I10,L40,B95,L02 
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15 
Musculoskeletal:joint-2 M19,M20,M25,I10,M75,M16 

16 
Reproductive:female-2 N95,N84,N85,I10,D25,N81 

17 
Eye-1 H26,H25,I10,H35,H40,H33,H52 

18 
Circulatory:heart-Metabolic-2 I25,I10,E78,I20,I21 

19 
Digestive:lower GI-1 K52,K51,K62,K63,K50,K57,I84,A09 

20 
Digestive:lower GI-2 K57,D12,K63,K62,I84,I10 

21 
Digestive:upper GI K44,K29,K21,K22,K20,K31,I10 

22 
Digestive:hepatobiliary K80,I10,K81,K82,K85 

23 
Urinary:female N39,N81,N32 

24 
Neoplasm:skin-Skin C44,D22,L57,L98,L82,I10,C43 

25 
Urinary:male-2 N40,N32,I10,C61,K40 

26 
Metabolic I10,E78,I48,E11 

27 
Renal:kidney N20,I10,N23,N13 

28 
Respiratory:upper J34,J33,J32,J45 

29 
Ear:hearing H72,H91,H90,H65,I10 

30 
Musculoskeletal:knee M23,M17,I10 

31 
Neoplasm:breast C50,C77,D05 

32 
Digestive:lower GI-3 I84,K62,K57 

33 
Reproductive:female-4 N92,D25,N84 
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34 Circulatory:peripheral 
vascular I80,M79,I83,I26 

35 
Digestive:teeth K02,K08,K01,K04 

36 
Reproductive:female-5 N87,N84,N95 

37 
Eye:appendicle H02,H04 

38 
Eye-2 H26,H33 

39 
Digestive:hernia K40 

40 
Healthy Empty  

  657 
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Methods 658 

Full technical details for treeLFA are given in the analytical note in the supplemental data. 659 

Validation of treeLFA with simulated data 660 

The simulation study served two purposes. Firstly, we aimed to verify that treeLFA can 661 
accurately infer latent topics from the diagnosis data encoded as binary variables. Secondly, 662 
we aimed to compare the performance of the three topic models (treeLFA, flatLFA and LDA) 663 
discussed in the next section, such that the influence of model structure and treeLFA’s 664 
informative prior for topics on the inference can be assessed. 665 

Overview of the three related topic models 666 

1. treeLFA 667 
treeLFA (“latent factor allocation with a tree structured prior for topics”) is a topic model 668 
designed for binary diagnosis data in biobanks based on the Bayesian mean-parameterized 669 
binary non-negative matrix factorization 41. It models the presence and absence of S disease 670 
codes for D individuals with D×S Bernoulli distributions, and the matrix of Bernoulli probability 671 
for all disease variables is factored into the topic matrix (ϕ) and the topic weight matrix (θ). 672 
The loading of disease code s in topic t (ϕts) is its corresponding Bernoulli probability in the 673 
topic, and the Bernoulli probability of the disease variable for individual d and disease code 674 
s is a mixture of the Bernoulli probability of code s in all topics, with the mixing coefficients 675 
specified by the topic weights for individual d. treeLFA also incorporates an informative prior 676 
for topics constructed by running a Markov process on a tree structure of individual words, 677 
which assumes that disease codes on the same subtree are likely to have similar Bernoulli 678 
probability in the same topics (see the details in the analytic note).  679 

2. flatLFA 680 
flatLFA has the same model space as treeLFA, with the only difference being that flatLFA 681 
uses a non-informative prior for topics, which is constructed on a tree structure where all 682 
nodes (representing all disease codes in a topic) are placed directly under the common root 683 
node. By comparing the performance treeLFA and flatLFA, the contribution of treeLFA’s 684 
informative prior for topics to the inference can be assessed. 685 

3. LDA 686 
Latent Dirichlet Allocation (LDA 60)’s model configuration is different from treeLFA. LDA only 687 
models the disease codes that are diagnosed for individuals with categorical distributions. 688 
For LDA, each topic is a categorical distribution (or a Multinomial distribution if the input data 689 
is viewed as a count matrix) across the S disease codes, and a Dirichlet prior distribution is 690 
used to generate these topics. By contrast, for treeLFA each topic is a sequence of Bernoulli 691 
probability for the S disease codes, and S Beta distributions are used to generate the topics.  692 

Description of simulated data 693 

We simulate multiple data sets using different topics and hyperparameters to assess the 694 
performance of the three topic models (treeLFA, flatLFA and LDA) in different situations. We 695 
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simulate the input data sets in two steps. Firstly, we build a tree structure for 20 disease 696 
codes (Figure 2B). The tree structure has three layers. The first layer is the root node; the 697 
second layer contains five nodes, and each of them has three children nodes in the third 698 
layer. Secondly, we generate topics of disease codes using the tree structure above. A 699 
Markov process on the tree structure is used to do this (see the analytic note), and the 700 
rationale for choosing the parameter of the Markov process is explained below.  701 

The Markov process chooses active disease codes (disease codes having large probability 702 
in a topic) for each topic by generating binary indicator variables for disease codes (with 1 703 
represents active codes, and 0 represent inactive codes in a topic) (see the analytic note). 704 
The Markov process has two transition probabilities, ρ01 and ρ11, which control the sparsity of 705 
topics (ρ01 = P(I = 1|Iparent = 0), ρ11 = P(I = 1|Iparent = 1)). Small values for both ρ01 and ρ11 give 706 
rise to sparse topics (because most codes in a topic will be inactive), while large values for 707 
both generate dense topics. ρ11 also controls the clustering of active codes in topics. With a 708 
large ρ11, most children codes of an active parent code will be active. As a result, active codes 709 
in a topic will gather on the same branch of the tree. By contrast, if ρ11 is small, active codes 710 
will spread across the entire tree. For our simulation, we use topics resembling those 711 
generated with small ρ01 and large ρ11. This reflects our belief that in the real world most topics 712 
of disease codes should be sparse (thus we chose small ρ01), and that active disease codes 713 
in the same topic tend to come from the same subtree (thus we chose large ρ11).  714 

For our simulation, we construct two sets of topics manually. The first set of topics are likely 715 
to be generated using a Markov process with small ρ01 and large ρ11 (hyperparameter setting 716 
used for inference on the simulated dataset), while the second set of topics are unlikely to be 717 
generated by this Markov process. The first set of topics are used to test if the tree structure 718 
of codes improves inference accuracy, and the second set of topics are to test the robustness 719 
of treeLFA’s inference when the tree structure of codes is wrongly specified. We manually 720 
specified the topics to ensure that they are completely distinct from each other and have 721 
strong patterns with respect to the clustering of active codes. 722 

Figure 2B shows the first set of topics. For the first three topics, all codes on one branch of 723 
the tree are active, and the remaining codes are inactive. In the last topic, all codes from two 724 
branches of the tree are active. These topics are likely to be generated using a Markov 725 
process with small ρ01 and large ρ11, since a parent code and all its children codes are always 726 
in the same state (either active or inactive). In the second simulation setting, active diseases 727 
in topics are not generated according to their adjacency on the tree (Supplementary Figure 728 
1B). We construct these topics by switching a fraction of active codes between topics in the 729 
first simulation setting. As a result, active parent codes always have inactive children codes, 730 
and inactive parent codes always have active children codes. 731 

We simulate disease data using the topics described above and the generative process of 732 
treeLFA. For each dataset, we split the data into training and testing data of the same size. 733 
To evaluate the topic models in different situations in each topic setting, we use four 734 
combinations of two hyperparameters to simulate data: α (the concentration parameter of the 735 
Dirichlet prior for topic weights θ) and D (the number of individuals in the training dataset). A 736 
large value for α means that most individuals will have large topic weights spread across 737 
topics. By contrast, a small value for α will make topic weights for each individual more 738 
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concentrated on a single topic. A large α makes the inference difficult, since most individuals 739 
are a mixture of multiple topics. Therefore, data sets simulated using large α require larger D 740 
for accurate inference. For each hyperparameter and topic setting, we simulate 20 datasets. 741 
Supplementary Table 1 summarises the hyperparameter and topic settings. 742 

Implementation of the inference procedure 743 

LDA is implemented using the R package “topicmodels”, and collapsed Gibbs sampling is 744 
used to do the inference. treeLFA and flatLFA are implemented from scratch by us using the 745 
R package “RcppParallel” and “Rcpp”. 746 

For the hyperparameters of treeLFA and flatLFA, we provide the true value of α to train the 747 
three models. Beta priors for the probability of active and inactive disease codes in topics (ϕ) 748 
are Beta(2,4) and Beta(0.3,80). Beta priors for the transition probability (ρ01 and ρ11) of the 749 
Markov process are Beta(4.8,20) and Beta(20,4.8) (treeLFA). For flatLFA only ρ01 will be used 750 
on the tree, and its prior is Beta(7,20), resulting in approximately the same expected number 751 
of active codes in topics as treeLFA. For LDA we try a few different values (0.01,0.1,1) for η, 752 
the concentration parameter of the Dirichlet prior for topics. We find that with η = 0.01 LDA 753 
has the best performance evaluated by the inference accuracy. 754 

For the initialization of hidden variables for treeLFA and flatLFA, we initialised all indicator 755 
variables (I) as 0, and then simulate all probability variables (ϕ) using the Beta prior for 756 
inactive disease codes. Topic assignment variables (Z) are randomly sampled for all 757 
individuals. 758 
For each simulation scenario, ten Gibbs chains were sampled, and 20 posterior samples of 759 
hidden variables were collected from each Gibbs chain with an interval of 100 iterations after 760 
15,000 burn-in iterations. 761 

Evaluation and comparison of topic models on simulated datasets 762 

Two metrics are used to evaluate the models in simulations. The first metric is the inference 763 
accuracy, measured with the averaged per disease difference between true and inferred 764 

topic loadings:	Δϕ	 = 	
∑ ∑ ()!"

#$%&*)!"
'()&$(*

"+,
-
!+,

+	×	.
, where ϕks is the Bernoulli probability of disease 765 

code s in topic k. To reorder the inferred topics as the true topics, we match each inferred 766 
topic to the true topic that has the highest cosine similarity, in a greedy procedure (i.e. once 767 
a true topic is matched, it is removed from the matching of the next inferred topic). The 768 
pairwise t-test is used to test for statistical difference between two different models. The 769 
second metric is the predictive likelihood on the test data (see the analytic note for more 770 
details). For each posterior sample of topics, 200 Monte-carlo samples of topic weight θ are 771 
used to approximate the predictive likelihood. A sensitivity analysis is done to ensure the 772 
number of samples for θ is enough to have a stable estimate of the predictive likelihood. 773 
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Inference on the top-100 UK Biobank dataset 774 

The input data for treeLFA 775 

The input to treeLFA includes the diagnosis data for individuals in the UK Biobank, and the 776 
tree structure for disease codes. The diagnosis dataset is constructed from the Hospital 777 
Episode Statistics (HES) data in the UK Biobank, which is coded using the five-layered 778 
hierarchical ICD-10 billing system. The first layer of the ICD-10 tree structure is the root node; 779 
the second layer is composed of chapters of diseases coded using capital English letters; the 780 
third layer contains blocks of disease categories; the fourth layer contains single disease 781 
categories; and lastly, the bottom layer contains sub-categories of diseases, which can be, 782 
for instance, the same disease occurring at different sites of human body, or subtypes of the 783 
same disease. In UK Biobank, most of the diagnosed diseases are encoded using codes on 784 
the bottom layer (fifth layer) of the tree. We use the fourth layer of encoding as diagnoses, 785 
where we replace all diagnoses with their parental code in the fourth layer.  786 

The top 100 most frequent ICD-10 codes in UK Biobank from the first 13 chapters of the ICD-787 
10 coding system are chosen to construct the dataset. This selection of chapters provides a 788 
balance between breadth of phenotype and depth within any one chapter so that the potential 789 
benefits of treeLFA can be explored. The diagnosis data is a binary matrix, with each row 790 
represents an individual, and each column a disease code. Zeros and ones in the matrix are 791 
used to represent the absence and presence of diagnosed ICD-10 codes for individuals. If 792 
an individual is diagnosed with the same disease code several times, we keep only one 793 
record to avoid bias of repeated diagnoses. The full dataset is randomly split into a training 794 
dataset and a testing dataset, containing the diagnosis record for 80% and 20% individuals. 795 

The tree structure of disease codes is encoded in a table with 2 columns: the first column 796 
contains all the ICD-10 codes on the tree, and the second column records the parent codes 797 
of the corresponding codes in the first column (Supplementary Table 3). 798 

Implementation of treeLFA 799 

Training strategy for treeLFA 800 

The Gibbs-EM algorithm is firstly used to optimise α in two stages. In the first stage we run 801 
2,000 iterations of the Gibbs-EM algorithm. In the E-step of each iteration, we run the Gibbs 802 
sampler for treeLFA for 20 iterations and collect one posterior sample of Z (19 burn-in Gibbs 803 
sampling iterations before the collection of the posterior sample). In the M-step, α is optimised 804 
using this single posterior sample of Z collected in the E-step. In the second stage we continue 805 
to run the Gibbs-EM algorithm for 200 iterations. In the E-step of each iteration, we run the 806 
Gibbs sampler for treeLFA for 200 iterations and collect ten posterior samples of Z in total (19 807 
burn-in Gibbs sampling iterations before the collection of each posterior sample). The reason 808 
to have two stages of training is to balance the computational speed with the inference 809 
accuracy. In the first stage, we optimise α more frequently and quickly get close to its optimal 810 
value. In the second stage, α is more accurately optimised based on multiple posterior 811 
samples of Z. 812 
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After optimising α, we use collapsed Gibbs sampler to simulate posterior distributions of all 813 
hidden variables (Z, I, ϕ, ρ), with α fixed at and hidden variables initialised at the values 814 
provided by the last iteration of the Gibbs-EM algorithm. 5,000 burn-in iterations are run before 815 
the collection of posterior samples of hidden variables. For each topic model, ten Gibbs chains 816 
are constructed, and 50 posterior samples are collected with an interval of 100 iterations from 817 
each chain. 818 

Choices of hyperparameters and initialization of hidden variables 819 
To shorten the training with the Gibbs-EM algorithm, we initialise α as (1,0.1,...,0.1). The first 820 
entry in α is much larger than the others, and it corresponds to the empty topic that will always 821 
be inferred from real-world diagnosis data. We also initialise α in other ways, such as using 822 
(1,...1), and we find that model converge to the same results regardless of the ways of 823 
initialization of α, and the optimised α is usually more close to (1,0.1,...,0.1) than other 824 
choices. For topic assignment variable Z, we assign the empty topic (topic 1, corresponds to 825 
the first entry in α) to all disease variables for individuals without any diagnosed disease 826 
codes. For individuals with at least one diagnosed disease code, all topics are randomly 827 
assigned to all disease variables. For topics, all indicator variable I are initialised as 0, and 828 
probability variable ϕ are randomly sampled from Beta(1,5,000,000). Beta(0.3,80) and 829 
Beta(2,4) are used as the prior for ϕ of inactive and active codes. Beta(3,20) and Beta(3,3) 830 
are used as the prior for transition probability ρ01 and ρ11 of the Markov process on the tree. 831 
The hyperparameters for flatLFA are set in the same way as treeLFA. For LDA, the 832 
concentration parameters of the Dirichlet priors for topic weights (α) and topics (η) are both 833 
initialised as a vector of 0.1. α is not optimised since we find that this has negligible influence 834 
on the inference result (inferred topics) and downstream analyses (topic-GWAS). 835 

Post-processing of inference result 836 

Approximation of topic weights 837 

The topic weight variable θ is integrated out during the collapsed Gibbs sampling, therefore 838 
their posterior samples need to be approximated using posterior samples of Z and α. θ can 839 
be computed as in Griffiths and Steyvers 53: 𝜃"/ =

0./1	2/
0.1∑ 201

0+,
, where Ndt is the total number of 840 

disease variables assigned with topic t for individual d, and Nd is the total number of disease 841 
variables. 842 

Combining inference results from different Gibbs chains 843 

To combine the inference results given by different Gibbs chains, the “identifiability” issue 844 
needs to be addressed, since the order of topics in different posterior samples from different 845 
chains may not be the same.  846 
We combine all posterior samples of topics from all chains together, and cluster topics before 847 
taking the average within each cluster. To cluster topics from all samples, we firstly construct 848 
a shared nearest neighbour (SNN) graph using the R package “scran” 61. With the SNN graph, 849 
we use the “Louvain” algorithm 62, a community detection algorithm implemented in the R 850 
package “igraph”, to assign topics into clusters. After clustering, similar topics coming from 851 
different chains or posterior samples will be put into the same cluster. In addition to topics 852 
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(ϕ), we also assign posterior samples of other hidden variables (I, ρ and α) to the 853 
corresponding clusters according to the clustering result for topics. 854 
The Louvain algorithm doesn’t allow us to directly specify the total number of clusters 855 
(communities) to be found. Instead, the number of clusters is decided by the hyperparameter 856 
k (the number of nearest neighbours to consider) for the construction of the SNN graph. A 857 
large k will result in a small number of clusters, while a small k gives rise to a large number 858 
of clusters, though some clusters might be alike. Empirically, we choose 𝑘 = 𝑁34	 ×

023
5

, where 859 
Nch is the number of Gibbs chains for the same treeLFA model, and Nps is the total number of 860 
posterior samples taken from each chain. This choice is to balance the total number of 861 
clusters found by the algorithm and the uniqueness of different clusters. 862 

Post-processing inference results from models with a large number of topics 863 

For models set with a very large number of topics which far exceed the actual number needed 864 
to explain the data (for instance, the treeLFA models set with 50 or 100 topics), multiple near-865 
empty topics (topics with few active codes having very small probability) will be inferred. 866 
Although the small differences between these near-empty topics are not meaningful, they are 867 
usually assigned to different clusters by the Louvain algorithm. To collapse these near-empty 868 
topics into a single empty topic, we further apply hierarchical clustering on topics averaged 869 
from different clusters given by the Louvain algorithm. During the hierarchical clustering, 870 
similar topics are kept being combined until all the remaining topics are significantly different 871 
from each other. By visualising the inferred topics using heatmap, one can roughly decide 872 
the number of distinct meaningful topics (topics that are not empty or near-empty) to keep, 873 
and then set the number of clusters (topics) to keep for the hierarchical clustering.  874 

Genetic analyses 875 

topic-GWAS and single code GWAS 876 

To find genetic variants influencing individuals’ risks for topics of diseases, we perform GWAS 877 
using inferred topic weights as continuous traits (topic-GWAS). Since topic weights are real 878 
numbers in the range of 0 to 1, the basic assumptions of linear regression do not hold. We 879 
apply a logit transformation on topic weights to address this issue before fitting the standard 880 
linear model for GWAS. We validate that using logit transformation gives better results than 881 
using rank based inverse normal transformation and using no transformation on topic 882 
weights. The validation is done by comparing the number of significant loci found by different 883 
methods, and the predictive performance of PRS for single codes based on topic-GWAS 884 
results (see section below). For topic-GWAS, we only include common SNPs (SNPs with a 885 
minor allele frequency (MAF) larger than 0.01 in the UK Biobank) and individuals who self-886 
report having British ancestry in the training dataset (343,006 individuals in total). Sex, age 887 
and the first ten principal components (PCs) of genomic variation are controlled for. 888 
For comparison, we also perform GWAS (logistic regression) using the presence and 889 
absence of single ICD-10 codes as binary traits (single code GWAS). The inclusion criterion 890 
for individuals, SNPs and covariates are the same as topic-GWAS. In addition to ICD-10 891 
codes, we also use terminal Phecodes mapped from the top 100 ICD-10 codes as traits for 892 
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single code GWAS. Phecodes are defined by systematically grouping terminal ICD-10 codes 893 
into more applicable medical terms based on the judgements of clinicians and researchers 894 
63, which reduces the granularity of terminal ICD-10 codes. Similar to ICD-10 codes, there is 895 
also a hierarchical coding system for Phecodes. To map the ICD-10 codes used in the top-896 
100 UKB dataset to phecodes, we firstly extract all terminal ICD-10 codes (on the fifth layer 897 
of the ICD-10 tree) that are children codes of the 100 level-4 ICD-10 codes, and then retrieve 898 
their corresponding Phecodes according to the Phecode map 899 
(https://phewascatalog.org/phecodes) In total, there are 296 terminal Phecodes mapped from 900 
the 100 ICD-10 codes. 901 

Inflation in P-values given by topic-GWAS 902 

Inflation in P-values are observed for the topic-GWAS results given by all three topic models. 903 
The inflation can either be resulted from true polygenicity of the traits (topic weights), or 904 
stratification in the population. To differentiate these two possibilities, we carry out the LD 905 
score regression (LDSC) 64,65 using the summary statistics of topic-GWAS for all topics. Pre-906 
computed LD scores (based on 1000 Genomes European data) are downloaded and used 907 
in the analyses as recommended 65. The genomic control inflation factor λGC and the intercept 908 
of LDSC are output by the algorithm, and compared with each other. A large λGC and small 909 
intercept for the same trait suggest true polygenicity causing the inflation in P-values, while 910 
large values for both λGC and intercept suggest stratification in the population. 911 

Processing GWAS results 912 

To define genomic loci from significant SNPs (P<5×10−8) found by GWAS, we use the 913 
clumping function implemented in PLINK-1.9. r2>0.1 is used as the threshold for clumping 914 
SNPs in linkage disequilibrium (LD). We define a loci to be an association for both topic-915 
GWAS and single code GWAS as follows: the significant lead SNP found by one GWAS 916 
method can be clumped with a significant lead SNP found by the other method. 917 

GWAS on internal disease codes on the tree 918 

In addition to grouping disease codes via topic modelling, we also group disease codes 919 
completely following the medical ontologies (ICD-10 and Phecode systems). In other words, 920 
we use internal codes (such as blocks of categories of diseases and chapters of disease, 921 
corresponding to the nodes in the third and second layers of the ICD-10 coding system) of 922 
the two disease classification systems as binary traits for single code GWAS. For instance, if 923 
both disease codes A and B are under a common parent code C on the tree, then C will be 924 
used as the trait for GWAS, and individuals who are diagnosed with either A or B will be used 925 
as cases for the single code GWAS for code C. For the 100 ICD-10 codes there are 68 926 
internal codes, and for the 296 Phecodes there are 136 internal codes. 927 

Comparison of topic-GWAS results for the three topic models 928 

In addition to topics inferred by treeLFA, topic-GWAS for flatLFA and LDA inferred topics are 929 
also performed. For LDA, only individuals with at least one diagnosed disease code are used 930 
as input for inference. For topic-GWAS, there are two options to deal with the individuals 931 
without any diagnosis. We can either exclude them or include them and give them small 932 
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random weights for all disease topics. We experiment with both methods, and find that 933 
excluding the completely healthy individuals results in a larger power for topic-GWAS. 934 

Validation of topic-associated loci 935 

Validation using the GWAS Catalogue 936 
We check the GWAS Catalogue 56 to see if topic-associated loci were also found by previous 937 
GWAS as significant. We download the full GWAS Catalogue 66, and clump all SNPs in it to 938 
topic-associated lead SNPs (r2>0.5 as threshold). If a topic-associated lead SNP found by us 939 
can be clumped, it means that a SNP in LD with it was found by a previous GWAS as 940 
significant. 941 

Validation using functional genomic resources 942 
Integrated analysis of GWAS results and functional genomic datasets has gained popularity 943 
in recent years 56,67. Checking the enrichment of genomic annotations among topic-944 
associated loci (lead SNPs) is another angle of validation. We obtain various genomic 945 
annotations for topic-associated loci using the software “FUMA” 68,69. Since most topics only 946 
have a small number of associated loci, we combine all loci (lead SNPs) that are associated 947 
with at least one topic and perform analyses on them as a whole. Meanwhile, we also perform 948 
the same analyses on all single code associated lead SNPs and 10,000 random SNPs 949 
sampled from all SNPs used in the GWAS (the distribution of their MAF are matched to all 950 
topic-associated SNPs) for comparison. The assumption made here is that if topic-GWAS 951 
find true associations, then the significant SNPs should have an enrichment profile that is 952 
similar to single code associated SNPs (positive control) and different from randomly selected 953 
SNPs (negative control). 954 
Three types of functional annotations are used for the validation of topic-associated lead 955 
SNPs. Firstly, the three groups of loci (lead SNPs) are annotated using the 15-core chromatin 956 
states predicted by the chromHMM algorithm 57. Since the predicted chromatin states in the 957 
127 available types of tissues are different, for each genomic locus we use the smallest 958 
chromatin state across all tissues. Secondly, we calculate the proportions of lead SNPs in 959 
the three groups that are eQTL (expression quantitative trait loci) in different tissues using 960 
the eQTL mapping function implemented in FUMA, based on the GTEv8 dataset 70,71. Thirdly, 961 
we calculate the proportions of lead SNPs having chromatin interactions with other genomic 962 
regions in different tissues, based on the HiC data from the GSE87112 dataset 70. The default 963 
setting of FUMA for parameters is used in all the analyses. The two proportion z-test is used 964 
to test for significant differences between the proportions of two groups. 965 

Genetic risk prediction based on topic-GWAS results 966 

PRS for topics 967 

Another way to validate topic-GWAS results is to use them for prediction tasks on the test 968 
data. Because individual variants’ effects on traits of interest are usually small, polygenic risk 969 
scores (PRS) are constructed to aggregate the effects of tens of thousands of variants. With 970 
topic-GWAS carried out on the training data, PRS for topic weights (traits of topic-GWAS) are 971 
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constructed using the software “PRSice-2” 72, which uses a “C+T” (clumping and 972 
thresholding) method. No threshold for P-values is manually set for the inclusion of SNPs. 973 
We use the test data to evaluate PRS for topics constructed on the training data. Topic 974 
weights for individuals in the testing dataset are inferred by running the Gibbs sampler for 975 
treeLFA on them, with ϕ and α fixed at values learnt from the training data (averaged from all 976 
posterior samples from all Gibbs chains). Ten Gibbs chains are simulated to infer topic 977 
weights for individuals in the testing dataset, and 50 posterior samples are collected from 978 
each chain, and their average is used in the subsequent analyses. With inferred topic 979 
weights, linear models are fit to evaluate the associations of PRS for topics and the 980 
corresponding topic weights, using the logit transformed topic weights as response variables, 981 
and PRS for topics as independent variables. The heritabilities of topic weights are estimated 982 
using LDSC as a reference. 983 

PRS for single codes based on topic-GWAS results 984 

To evaluate topic-GWAS results using single code GWAS results as reference, and to 985 
compare the topic-GWAS results for different topics models (such as treeLFA and LDA) 986 
under a common criterion, we construct two types of PRS for single ICD-10 codes using 987 
single code and topic-GWAS results, respectively. PRS based on single code GWAS are 988 
constructed in the standard way. As for PRS based on topic-GWAS, for code s we extract its 989 
probabilities in all topics (ϕts), and calculate an individual’s PRS for it as:	PRS% =990 
∑ (PRS6 × ϕ6%)7
689 , where PRSt is the individual’s PRS for topic t (constructed using the topic-991 

GWAS result for topic t). The area under the receiver-operator curve (AUC) is used to 992 
evaluate the predictive performance of PRS on the test data. 993 

Analyses on the larger UKB dataset 994 

The input data 995 
The larger UKB dataset (top-436 dataset) is constructed in the same way as the top-100 UKB 996 
dataset, and contains the diagnostic records of the top 436 most frequent ICD-10 codes from 997 
the first 14 chapters of the ICD-10 coding system for all individuals in UKB. These codes are 998 
all the ones in UK Biobank with a prevalence of at least 0.001 at the date of selection 999 
(continued data collection means that prevalence will tend to increase over time), 1000 
corresponding to approximately 500 cases. The prevalence threshold of 0.001 is chosen both 1001 
for computational reasons (this is roughly the limit of what can be performed using available 1002 
computing resources) and because there must be sufficient occurrences of diseases from 1003 
which to discover multi-morbidity clusters. As with the top-100 dataset, we partition the full 1004 
top-436 dataset into training (80%) and testing (20%) datasets. The top-436 and the top-100 1005 
datasets use different partitions for the training and testing datasets. 1006 

Inference on the top-436 UKB dataset 1007 

Training strategy for the top-436 dataset 1008 

The top-436 dataset is more than three times larger than the top-100 dataset, increasing the 1009 
computational requirements for training topic models. On the top-100 dataset, treeLFA 1010 
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models with different numbers of topics are trained and compared. We find that when we set 1011 
an excess number of topics for the model, both inferred topics and topic-GWAS results are 1012 
stable across different models (Figure 5). Therefore, on the top-436 dataset, instead of 1013 
training many models with different numbers of topics, we train treeLFA and flatLFA models 1014 
with 100 topics, and cluster and collapse the inferred topics to combine all near-empty topics 1015 
into a single one. 1016 
For the optimization of α, the two-stage training strategy with the GibbsEM algorithm is used 1017 
again. 1,500 iterations are run in the first stage (with a single posterior sample of Z collected 1018 
in the E-step), and 350 iterations are run in the second stage (with 10 posterior samples of Z 1019 
collected in the E-step). 50 posterior samples of hidden variables are collected during the last 1020 
50 iterations for Gibbs-EM (with an interval of 200 iterations for the Gibbs sampling). For both 1021 
treeLFA and flatLFA, three Gibbs chains are simulated. 1022 

Choice of hyperparameters and initialization of hidden variables 1023 

α is initialised as (1,0.1,...,0.1). Beta(0.1,3000) and Beta(1.2,3) are used as the prior for ϕ of 1024 
inactive and active codes to account for diseases with small prevalence. The rest hidden 1025 
variables and hyperparameters are set in the same way as for the top-100 dataset. 1026 

Processing inference result 1027 

We find that different Gibbs chains for treeLFA and flatLFA give slightly different inference 1028 
results on the top-436 UKB dataset, while different posterior samples from the same chain 1029 
have a very high level of consistency. Considering the variability among the inference results 1030 
given by different chains, instead of clustering posterior samples of topics from all chains 1031 
altogether, we cluster posterior samples from different chains separately. With the averaged 1032 
ϕ and α for different chains, we calculate their predictive likelihood on the test data, and for 1033 
both treeLFA and flatLFA we retain the chain which has the largest predictive likelihood, and 1034 
use its inference result as the input for downstream analyses. For each topic inferred by the 1035 
chain with the largest predictive likelihood, we check the inference results of the other chains, 1036 
and annotate the topic with the number of chains that infer them to give a reference of its 1037 
reliability.  1038 

Genetic analyses  1039 
topic-GWAS for the larger UKB dataset 1040 
Since the top-436 dataset is much larger than the top100 dataset, to increase the inference 1041 
accuracy for topic weights, after the training with Gibbs-EM algorithm we use Gibbs sampling 1042 
to re-estimate individuals’ topic weights, which is observed to increase the power of topic-1043 
GWAS. ϕ and α are fixed at values averaged from all posterior samples from the chain with 1044 
the largest predictive likelihood. As a result, there is no longer an identifiability issue, so the 1045 
results given by different chains (for the re-estimation of topic weights) can be combined 1046 
directly. For both treeLFA and flatLFA, ten Gibbs chains are used to re-estimate topic 1047 
weights, and 50 posterior samples are collected from each chain. Topic weights averaged 1048 
from these chains are used as the input for topic-GWAS. 1049 

Gene-set enrichment analysis for topic-associated SNPs 1050 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.10.28.22281623doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.28.22281623
http://creativecommons.org/licenses/by/4.0/


 34 

The software FUMA can find genes that are close to the significant SNPs found by GWAS 1051 
on the genome (the physical mapping function of FUMA). With the mapped genes, further 1052 
analyses can be performed. Gene-set enrichment analysis (GSEA) tests for the enrichment 1053 
of different gene sets among a group of genes. We choose genes that are associated with 1054 
different traits in the GWAS catalogue as the reference gene sets to carry out GSEA for 1055 
genes mapped from topic associated SNPs. By doing this, we can summarise the major 1056 
associations of topic-associated SNPs found by previous GWAS. The default setting for 1057 
FUMA is used in all the analyses in this section. 1058 

Resource availability  1059 

Lead Contact  1060 

Further information and requests for resources should be directed to and will be fulfilled by 1061 
the lead contact, Gil McVean (gil.mcvean@bdi.ox.ac.uk). 1062 

Materials availability  1063 

The key inference results (inferred topics) of the topic models and the topic-GWAS results 1064 
are included in the supplementary material of the paper. The remaining results will be made 1065 
available via the UK BioBank data return and linked to UK Biobank application 1066 
number: 12788. 1067 

Data and Code Availability  1068 

This research has been conducted using the UK Biobank Resource: application number 1069 
12788. The genotype data used for GWAS in this study comes from data field “22418” in UK 1070 
Biobank. The diagnosis data used for topic modelling comes from data fields “41202” and 1071 
“41204” in UK Biobank.  1072 
The code for the treeLFA algorithm and a demo for using it on example data is available at:  1073 
https://github.com/zhangyd10/treeLFA-demo or https://doi.org/10.5281/zenodo.7420615.  1074 
  1075 
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 1076 

Supplementary Information 1077 

Description of Supplementary Data 1078 

Supplementary information includes 11 figures, 39 tables, and the analytical note.  1079 

Supplementary Figures  1080 

 1081 
Supplementary Figure 1 Comparison of three related topic models (treeLFA, flatLFA 1082 
and LDA) on simulated datasets. 1083 
a, The tree structure of 20 diseases. Red nodes correspond to the active codes in Topic 4 in panel b.  1084 
b, The four topics used for simulation. Active codes in these topics are unlikely to be generated by a 1085 
Markov process with small probability of transforming from inactive to active and large probability of 1086 
staying active while going from the parent node to its children nodes, since an active parent code always 1087 
has inactive children codes, while active children codes always have inactive parent code. 1088 
c-f Comparison of three topic models on simulated datasets. The Parameter setting and metrics are the 1089 
same as those in Figure 2. c, Results on datasets simulated using D=2500 and α=1. d, Results on 1090 
datasets simulated using D=5000 and α=1. e, Results on datasets simulated using D=300 and α=0.1. 1091 
f, Results on datasets simulated using D=1000 and α=0.1. The numeric results are in Supplementary 1092 
Table 23.  1093 
  1094 
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 1095 
Supplementary Figure 2 Comparison of topics inferred by three topic models on the 1096 
top-100 UKB dataset. 1097 
a, Comparison of the 11 topics inferred by treeLFA and flatLFA. The same topics inferred by the two 1098 
models are placed next to each other. Cosine similarity was used to measure the similarity of topics 1099 
inferred by the two models (point plot below the heatmap). The numeric results are in Supplementary 1100 
Table 4,24.  1101 
b, Comparison of the 10 topics inferred by LDA and the 10 non-empty topics inferred by treeLFA. Topics 1102 
inferred by treeLFA are normalised such that probabilities of the 100 ICD-10 codes add up to 1 in any 1103 
topic. The same topics inferred by the two models are placed next to each other. Cosine similarity was 1104 
used to measure the similarity of topics inferred by the two models (point plot below the heatmap). The 1105 
numeric results are in Supplementary Table 4,25.  1106 
  1107 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.10.28.22281623doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.28.22281623
http://creativecommons.org/licenses/by/4.0/


 37 

 1108 
Supplementary Figure 3 Overlap of significant loci found by GWAS for different traits. 1109 
a, The total numbers of loci associated with any of the 296 Phecodes mapped from the 100 ICD-10 1110 
codes and any of the 11 treeLFA topics, and their overlap. 1111 
b, The total numbers of loci associated with any of the 296 Phecodes or the 100 ICD-10 codes and 1112 
any of the 11 treeLFA topics, and their overlap. 1113 
c, The total numbers of loci associated with any of the 68 internal ICD-10 codes and any of the 11 1114 
treeLFA topics, and their overlap. 1115 
d, The total numbers of loci associated with any of the 136 internal Phecodes and any of the 11 1116 
treeLFA topics, and their overlap. 1117 
e, The total numbers of loci associated with any of the internal or terminal ICD-10 codes and any of 1118 
the 11 treeLFA topics, and their overlap. 1119 
f, The total numbers of loci associated with any of the internal or terminal Phecodes and any of the 11 1120 
treeLFA topics, and their overlap. 1121 
  1122 
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 1123 
Supplementary Figure 4 Comparison of the topic-GWAS results for three topic 1124 
models. 1125 
a, The total numbers of loci associated with any of the 11 topics inferred by treeLFA and flatLFA, and 1126 
their overlap. 1127 
b, The total numbers of loci associated with any of the 11 topics inferred by treeLFA and any of the 10 1128 
topics inferred by LDA, and their overlap.  1129 
c, The numbers of loci associated with each of the 11 topics inferred by treeLFA and flatLFA, and 1130 
each of the 10 topics inferred by LDA. The first topic is the empty topic, and is only inferred by 1131 
treeLFA and flatLFA. 1132 
  1133 
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 1134 
Supplementary Figure 5 Correlation of topic weights for topics inferred by treeLFA 1135 
and LDA. 1136 
a, The correlation matrix for individuals’ weights for the 11 topics inferred by treeLFA. The first topic is 1137 
the empty topic. 1138 
b, The correlation matrix for individuals’ weights for the 10 topics inferred by LDA. The matrix uses the 1139 
same colour scheme as the matrix in panel a. 1140 
  1141 
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 1142 
Supplementary Figure 6 Validation of topic associated loci. 1143 
a, The proportions of topic-associated loci recorded in the GWAS catalogue. Red bars show the 1144 
results for all topic-associated loci, and green bars show the results for loci that are associated with 1145 
topics but not any single code. 1146 
b, Proportions of three groups of SNPs that are in different chromHMM states. Meanings of different 1147 
chromHMM states are shown in the right table. The first group contains lead SNPs associated with at 1148 
least one ICD-10 code; the second group contains 10,000 random SNPs whose allele frequency is 1149 
matched with that of topic-associated lead SNPs; The third group contains lead SNPs associated with 1150 
at least one of the 11 topics but not any single code. The proportions of the first and third groups are 1151 
compared with the second group respectively, and significant differences in proportions (two-1152 
proportion Z-test, adjusted P-value<0.05, Bonferroni correction) are marked with asterisks between 1153 
the corresponding bars (purple asterisks between red and green bars mean significant differences 1154 
between the first and second groups, black asterisks between blue and green bars mean significant 1155 
differences between the third and second groups). The numeric results are in Supplementary Table 1156 
26.  1157 
c, Proportions of the three groups of SNPs in panel b that are eQTL in different tissues. The numeric 1158 
results are in Supplementary Table 27.  1159 
d, Proportions of the three groups of SNPs in panel b that have chromatin interaction with genes in 1160 
different tissues. The numeric results are in Supplementary Table 28.  1161 
  1162 
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 1163 
Supplementary Figure 7 PRS for ICD-10 codes based on topic-GWAS results. 1164 
a, Comparison of the AUC of two types of PRS for the 100 ICD-10 codes on the test data. One type of 1165 
PRS is constructed using the topic-GWAS result for treeLFA, and the other type of PRS is constructed 1166 
using single code GWAS result. Bars are colored according to the relative performance of the two 1167 
types of PRS. The numeric results are in Supplementary Table 10.  1168 
b, The numbers of loci associated with each of the 100 ICD-10 codes. Bars are colored the same way 1169 
as in panel a. Codes are colored according to the ICD-10 chapters they belong to. The numeric 1170 
results are in Supplementary Table 29.  1171 
c, Comparison of the AUC of PRS constructed using the topic-GWAS results for treeLFA and LDA. 1172 
Bars are colored according to the relative performance of the two types of PRS. The numeric results 1173 
are in Supplementary Table 30. 1174 
  1175 
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 1176 
Supplementary Figure 8 Association of SNPs and topics from different treeLFA 1177 
models. 1178 
The associations of a few example SNPs and topics inferred by different treeLFA models are 1179 
visualised on the tree structure of topics. The tree structure of topics is the same as the one in Figure 1180 
5b. Topics significantly associated with 7 different SNPs are highlighted with different colours on the 1181 
tree structure. The numeric results are in Supplementary Table 31.  1182 
  1183 
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 1184 
Supplementary Figure 9 Summary statistics for models with different numbers of 1185 
topics. 1186 
a, The predictive likelihood on the test data for the ten Gibbs chains for treeLFA models set with 1187 
different numbers of topics. For each chain, the standard deviation of the likelihood calculated using 1188 
different posterior samples of topics were shown. The numeric results are in Supplementary Table 32.  1189 
b, Numbers of distinct topics remained after clustering for treeLFA models set with different numbers 1190 
of topics.  1191 
  1192 
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 1193 
Supplementary figure 10 Comparison of the inference and topic-GWAS results for 1194 
treeLFA and flatLFA on the top-436 UKB dataset. 1195 
a, 40 topics inferred by treeLFA and flatLFA models set with 100 topics. The same topics inferred by 1196 
treeLFA and flatLFA are placed next to each other. Topics inferred by both models are shown first, 1197 
followed by topics inferred by only one model. For each model, the inferred topics are numbered 1198 
according to their density. The tree structure of the 436 ICD-10 codes is shown to the left of the 1199 
heatmap, and codes from different ICD-10 chapters are colored differently. For each topic, the 1200 
number of chains that inferred it is shown with the colour bar on top of the heatmap. The numeric 1201 
results are in Supplementary Table 33.  1202 
b, The predictive likelihood on the test data for the three treeLFA and flatLFA chains. The calculation 1203 
of predictive likelihood was repeated ten times for each chain to get the standard deviation. The 1204 
numeric results are in Supplementary Table 34.  1205 
c, The total numbers of loci associated with any of the topics inferred by treeLFA and flatLFA, and 1206 
their overlap. 1207 
d, The numbers of loci associated with each of the treeLFA and flatLDA topics. Topics have the same 1208 
order as those in panel a. The numeric results are in Supplementary Table 35.  1209 
e, Density plots for the AUC of PRS for the 436 ICD-10 codes on the test data based on the topic-1210 
GWAS results for treeLFA and flatLFA. The numeric results are in Supplementary Table 36.  1211 
  1212 
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 1213 
Supplementary figure 11 Validation of topic associated loci for the top-436 UKB 1214 
dataset. 1215 
All settings are the same as those in Supplementary Figure 6.  1216 
a, The proportions of topic-associated loci recorded in the GWAS catalogue.  1217 
b, Proportions of the three groups of SNPs that are in different chromHMM states. The numeric 1218 
results are in Supplementary Table 37.  1219 
c, Proportions of the three groups of SNPs in panel b that are eQTL in different tissues. The numeric 1220 
results are in Supplementary Table 38. 1221 
d, Proportions of the three groups of SNPs in panel b that have chromatin interaction with genes in 1222 
different tissues. The numeric results are in Supplementary Table 39. 1223 
  1224 
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 1225 

Supplementary Tables 1226 

Supplementary Table 1. Parameter setting for all simulated datasets. 8 groups of 1227 
datasets are simulated using different combinations of three parameters: the concentration 1228 
parameter (𝛼) of the Dirichlet prior for topic weight variable 𝜃,	the number of individuals in 1229 
the training dataset (D), and the tree structure of diseases. Correct tree structure means that 1230 
the topics used for simulation are likely to be constructed by running a Markov process with 1231 
small 𝜌01 and large 𝜌11 (see Methods) on the tree structure.  1232 

Supplementary Table 2. Comparison of 3 topic models on the 4 groups of datasets 1233 
simulated using correct tree structure of diseases. Each group contains 20 datasets 1234 
simulated using the same topics and hyperparameters (Supplementary Table 1). 1235 
Phi_diff_ave: the averaged per disease difference in probability (Phi) between true and 1236 
inferred topics. I_diff_ave: the averaged per disease difference in the values of indicator 1237 
variables (I) between true and inferred topics. Predictive likelihood: predictive likelihood on 1238 
the corresponding test data, which is calculated using the topics inferred from the training 1239 
data.  1240 

Supplementary Table 3. Tree structure of the top-100 most frequent ICD-10 codes from 1241 
chapters 1-13 of the ICD-10 coding system in UK Biobank. In the first column both internal 1242 
and terminal nodes of the tree structure of the top-100 most frequent ICD-10 codes are 1243 
listed (ordered according to the layers of nodes on the tree and the names of nodes). In the 1244 
second column the parent nodes of the nodes in the first column are shown.  1245 

Supplementary Table 4. The 11 topics inferred by treeLFA on the top-100 UKB dataset. 1246 
The probability of the 100 ICD-10 codes in the 11 topics inferred by the treeLFA model set 1247 
with 11 topics on the top-100 UKB dataset is shown.  1248 

Supplementary Table 5. Topic weights for the 11 topics inferred by treeLFA for 2,000 1249 
randomly selected individuals in UKB.  1250 

Supplementary Table 6. Number of loci associated with individuals’ weights for the 11 1251 
topics inferred by treeLFA on the top-100 UKB dataset.  1252 

Supplementary Table 7. Comparison of -log10 (P-value) for lead SNPs of Topic 5 given 1253 
by single code GWAS for the top five active codes in Topic 5 and topic-GWAS for 1254 
Topic 5.   1255 

Supplementary Table 8. Inflation in P-values given by topic-GWAS for the 11 topics 1256 
inferred by treeLFA on the top-100 UKB dataset. Both the intercept and 𝜆GC are given by 1257 
LDSC software (see Methods). 𝜆GC: genomic control inflation factor.  1258 

Supplementary Table 9. Performance of PRS for topics constructed using topic-1259 
GWAS results on the test data. R2: phenotypic variance of topic weights explained by the 1260 
PRS for topics. P: P-value of model fit on the testing data. Heritability: heritabilities of topic 1261 
weights calculated using the LD score regression and summary statistics of topic-GWAS. 1262 
NUM_SNP: numbers of SNPs used by the software “PRSice-2” to construct the PRS for 1263 
topics. Threshold: threshold for P-values of SNPs used by “PRSice-2” to construct the PRS 1264 
for topics.  1265 
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Supplementary Table 10. Comparison of the performance of two types of PRS for the 1266 
100 ICD10 codes. One type of PRS for ICD-10 codes is constructed using topic-GWAS 1267 
results (see Methods), and the other type of PRS is constructed using single code GWAS 1268 
results. AUC: the area under the receiver-operator curve of the PRS on the test data.  1269 

Supplementary Table 11. Topics inferred by treeLFA models set with different 1270 
numbers of topics on the top-100 UKB dataset. The probability of the 100 ICD-10 codes 1271 
in topics inferred by treeLFA models set with different numbers of topics on the top-100 UKB 1272 
dataset is shown. 1273 

Supplementary Table 12. topic-GWAS results for the example SNP "rs143384" and all 1274 
topics inferred by all treeLFA models on the top-100 UKB dataset. Topics are named 1275 
using the number of topics set for the corresponding treeLFA model, and the index of the 1276 
inferred topic for that model. For instance, topic “10.10” means the 10th topic inferred by the 1277 
treeLFA model set with 10 topics. P: the P-value of the SNP given by the linear regression 1278 
for the topic weight. BETA: estimated effect size of the SNP. SE: standard error of the 1279 
estimated effect size.  1280 

Supplementary Table 13. Tree structure of the top-436 most frequent ICD-10 codes 1281 
from chapters 1-14 of the ICD-10 coding system in UKB. In the first column both internal 1282 
and terminal nodes of the tree structure of the top-436 most frequent ICD-10 codes are 1283 
listed (ordered according to the layers of nodes on the tree and the names of nodes). In the 1284 
second column the parent nodes of the nodes in the first column are shown.  1285 

Supplementary Table 14. The 40 topics inferred by treeLFA on the top-436 UKB 1286 
dataset. The probability of the 436 ICD-10 codes in the 40 topics inferred by treeLFA on the 1287 
top-436 UKB dataset is shown (see Methods).  1288 

Supplementary Table 15. Numbers of active codes from different ICD10 chapters in 1289 
the 40 topics inferred by treeLFA on the top-436 UKB dataset (see Methods).  1290 

Supplementary Table 16. Significant SNPs found by topic-GWAS for the 40 treeLFA 1291 
inferred topics. CHR: chromosome. BP: physical position (base pair) of SNP. BETA: 1292 
estimated effect size (regression coefficient). SE: standard error of the estimated effect size. 1293 
Topic: the index of the inferred topic for the corresponding treeLFA model. Model: the 1294 
number of topics set for the treeLFA model.  1295 

Supplementary Table 17. Effect sizes of lead SNPs associated with the 40 treeLFA 1296 
inferred topics.  1297 

Supplementary Table 18. Numbers of associated loci for the 40 topics inferred by 1298 
treeLFA on the top-436 UKB dataset.  1299 

Supplementary Table 19. treeLFA inferred topics with a substantial number of novel 1300 
loci found by topic-GWAS. Dominant ICD10 chapter: the ICD-10 chapter which contributes 1301 
the majority of active codes in the corresponding topic.  1302 

Supplementary Table 20. Comparison of the performance of two types of PRS for the 1303 
436 ICD10 codes. One type of PRS for ICD-10 codes is constructed using topic-GWAS 1304 
results (see Methods), and the other type of PRS is constructed using single code GWAS 1305 
results. AUC: the area under the receiver-operator curve of the PRS on the test data.  1306 

Supplementary Table 21. Enriched gene sets in the GWAS catalogue among genes 1307 
associated with the 40 treeLFA topics. GeneSet: names of gene sets in the GWAS 1308 
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catalogue. N: the total numbers of genes in the gene sets. n: the numbers of genes in the 1309 
gene sets that are associated with the treeLFA topics. P-value: P-values of the enrichment 1310 
analyses. adjusted-P: adjusted P-values of the enrichment analyses. Genes: genes in the 1311 
enriched gene sets that are associated with the topics. This table is the output of the “SNP-1312 
to-gene” function of the software “FUMA” 1313 

Supplementary Table 22. The correspondence between treeLFA inferred topics and 1314 
loci level genetically interpretable multimorbidity networks found by the study “A 1315 
global overview of genetically interpretable multimorbidities among common 1316 
diseases in the UK Biobank”. The information of the 9 loci level genetically interpretable 1317 
multimorbidity networks found by a previous study using the diagnostic data in UKB is 1318 
shown, together with their corresponding topics inferred by treeLFA on the top-436 UKB 1319 
dataset. The first 5 columns come from the supplementary results of the paper "A global 1320 
overview of genetically interpretable multimorbidities among common diseases in the UK 1321 
Biobank".  1322 

Supplementary Table 23. Comparison of 3 topic models on the 4 groups of datasets 1323 
simulated using wrong tree structure of diseases. Each group contains 20 datasets 1324 
simulated using the same topics and hyperparameters (Supplementary Table 1). 1325 
Phi_diff_ave: the averaged per disease difference in probability (Phi) between true and 1326 
inferred topics. I_diff_ave: the averaged per disease difference in the values of indicator 1327 
variables (I) between true and inferred topics. Predictive likelihood: predictive likelihood on 1328 
the corresponding test data, which is calculated using the topics inferred from the training 1329 
data.  1330 

Supplementary Table 24. The 11 topics inferred by flatLFA on the top100 UKB dataset. 1331 
The probability of the 100 ICD-10 codes in the 11 topics inferred by the flatLFA model set 1332 
with 11 topics on the top-100 UKB dataset is shown.  1333 

Supplementary Table 25. The 10 topics inferred by LDA on the top100 UKB dataset. 1334 
The probability of the 100 ICD-10 codes in the 10 topics inferred by the LDA model set with 1335 
10 topics on the top-100 UKB dataset is shown.  1336 

Supplementary Table 26. Proportions of SNPs in different chromHMM states for the 3 1337 
groups of SNPs on the top-100 UKB dataset. P(random/single code): P-values for the 1338 
comparison of proportions for random/single code-associated SNPs. P(random/topic): P-1339 
values for the comparison of proportions for random/topic-associated SNPs. 1340 

Supplementary Table 27. Proportions of SNPs that are eQTL in different tissues for 1341 
the 3 groups of SNPs on the top-100 UKB dataset. P(random/single code): P-values for 1342 
the comparison of proportions for random/single code-associated SNPs. P(random/topic): P-1343 
values for the comparison of proportions for random/topic-associated SNPs. 1344 

Supplementary Table 28. Proportions of SNPs with chromatin mapping in different 1345 
tissues for the 3 groups of SNPs on the top-100 UKB dataset. P(random/single code): P-1346 
values for the comparison of proportions for random/single code-associated SNPs. 1347 
P(random/topic): P-values for the comparison of proportions for random/topic-associated 1348 
SNPs.  1349 

Supplementary Table 29. Numbers of significant loci given by single code GWAS for 1350 
the 100 ICD10 codes.  1351 

Supplementary Table 30. Comparison of the performance of PRS for the 100 ICD-10 1352 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.10.28.22281623doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.28.22281623
http://creativecommons.org/licenses/by/4.0/


 49 

codes based on topic-GWAS results for treeLFA/LDA inferred topics on the top-100 1353 
UKB dataset. AUC: the area under the receiver-operator curve of the PRS on the test data. 1354 

Supplementary Table 31. topic-GWAS results for 7 example SNPs and all topics 1355 
inferred by treeLFA models set with different numbers of topics on the top-100 UKB 1356 
dataset. P-values given by topic-GWAS for the examples SNPs are shown. Topics (in the 1357 
first column) are named using the number of topics set for the corresponding treeLFA model, 1358 
and the index of the inferred topic for that model. For instance, topic “10.10” means the 10th 1359 
topic inferred by the treeLFA model set with 10 topics.  1360 

Supplementary Table 32. Predictive likelihood for treeLFA models set with different 1361 
numbers of topics on the top-100 UKB dataset. For each treeLFA model, 10 Gibbs 1362 
chains are trained, and 50 posterior samples of topics are collected from each chain. The 1363 
predictive likelihood on the test data is calculated using each posterior sample of topics, and 1364 
standard error of predictive likelihood is calculated for each chain.  1365 

Supplementary Table 33. The 40 topics inferred by treeLFA and flatLFA on the top-436 1366 
UKB dataset. The probability of the 436 ICD-10 codes in the 40 topics inferred by treeLFA 1367 
and flatLFA is shown. 1368 

Supplementary Table 34. Predictive likelihood on the test data for three treeLFA and 1369 
flatLFA chains on the top-436 dataset. For each chain, the predictive likelihood is 1370 
calculated 10 times.  1371 

Supplementary Table 35. Numbers of associated loci for the 40 treeLFA and flatLFA 1372 
topics on the top-436 UKB dataset. Topics are named according to their order in 1373 
Supplementary Table 33.  1374 

Supplementary Table 36. Comparison of the performance of PRS for the 436 ICD10 1375 
codes based on topic-GWAS results for treeLFA and flatLFA topics. AUC: the area 1376 
under the receiver-operator curve of the PRS on the test data.  1377 

Supplementary Table 37. Proportions of SNPs in different chromHMM states for the 3 1378 
groups of SNPs on the top-436 UKB dataset. P(random/single code): P-values for the 1379 
comparison of proportions for random/single code-associated SNPs. P(random/topic): P-1380 
values for the comparison of proportions for random/topic-associated SNPs. 1381 

Supplementary Table 38. Proportions of SNPs that are eQTL in different tissues for 1382 
the 3 groups of SNPs on the top-436 UKB dataset. P(random/single code): P-values for 1383 
the comparison of proportions for random/single code-associated SNPs. P(random/topic): P-1384 
values for the comparison of proportions for random/topic-associated SNPs. 1385 

Supplementary Table 39. Proportions of SNPs with chromatin mapping in different 1386 
tissues for the 3 groups of SNPs on the top-436 UKB dataset. P(random/single code): P-1387 
values for the comparison of proportions for random/single code-associated SNPs. 1388 
P(random/topic): P-values for the comparison of proportions for random/topic-associated 1389 
SNPs. 1390 
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