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Abstract 
Studies of disease incidence have identified thousands of genetic loci associated 
with complex traits. However, many diseases occur in combinations that can point 
to systemic dysregulation of underlying processes that affect multiple traits.  We 
have developed a data-driven method for identifying such multimorbidities from 
routine healthcare data that combines topic modelling through Bayesian non-
negative matrix factorization with an informative prior derived from the hierarchical 
ICD10 coding system. Through simulation we show that the method, treeLFA, 
typically outperforms both latent Dirichlet allocation (LDA) and topic modelling with 
uninformative priors in terms of inference accuracy and generalisation to test data, 
and is robust to moderate deviation between the prior and reality. By applying 
treeLFA to data from UK Biobank we identify a range of multimorbidity clusters in 
the form of disease topics ranging from well-established combinations relating to 
metabolic syndrome, arthropathies and cancers, to other less well-known ones, 
and a disease-free topic. Through genetic association analysis of inferred topic 
loadings (topic-GWAS) and single diseases we find that topic-GWAS typically 
finds a much smaller, but only partially-overlapping, set of variants compared to 
GWAS of constituent disease codes. We validate the genetic loci (only) 
associated with topics through a range of approaches. Particularly, with the 
construction of PRS for topics, we find that compared to LDA, treeLFA achieves 
better prediction performance on independent test data. Overall, our findings 
indicate that topic models are well suited to characterising multimorbidity patterns, 
and different topic models have their own unique strengths. Moreover, genetic 
analysis of multimorbidity patterns can provide insight into the aetiology of 
complex traits that cannot be determined from the analysis of constituent traits 
alone. 
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Introduction 

Multimorbidity, defined as the co-existence of multiple chronic conditions, is a major challenge for 
modern healthcare systems. Its prevalence has increased because of a worldwide increase in life 
expectancy [1–3], and it is associated with substantially lower quality of life [3,4], worse clinical 
outcomes [3], and increased healthcare expenditure [5]. The management of multimorbidity is 
challenging given that most guidelines and research are still targeted at single diseases. As a 
result, the negative impact of multimorbidity is often greater than the additive effects of individual 
diseases [6].  

Several common multimorbidity patterns, such as a cluster composed of cardiovascular and 
mental health disorders, and a musculoskeletal disease cluster, have been identified from 
literature reviews [3,7]. In recent years, the widespread adoption of electronic health records 
(EHR) has enabled the systematic study of multimorbidity, and a variety of approaches have been 
employed for this purpose, including factor analysis [8], clustering [9], graph or network based 
methods [10,11], and statistical models such as latent class analysis [12–14]. These approaches 
have both validated the previously identified multimorbidity patterns [12,14,15] and, through the 
inclusion of a wider range of diseases, identified additional multimorbidity patterns [14,16]. In 
addition, downstream analyses enabled by these approaches have helped to identify the clinical 
events and outcomes associated with specific multimorbidity patterns [13,17], which may provide 
insights about early intervention and risk stratification for patients.  

The existence of common multimorbidity patterns raises the question of their etiology. One way 
to approach this question is to analyse multimorbidity patterns together with appropriate -omics 
data to determine the biological pathways involved. These analyses have been made possible 
with the establishment of biobanks linking individuals’ biological samples and genetic information 
to their EHR [18–20]. A recent study investigating single-trait genome-wide association studies 
(GWAS) of 439 common diseases recorded in UK biobank (UKB) hospital inpatient data found 
that 46% disease pairs have evidence for shared genetics [11], suggesting that this may be a 
fruitful approach.  

Intrinsic to the study of multimorbidity is the joint analysis of multiple disease phenotypes. To 
enable this, various multi-trait GWAS methods have been developed which promise to better 
exploit the deep phenotype data available for individuals in biobanks. These methods can be 
subdivided based on their analytical approach. Univariate methods combine signals from single-
trait GWAS [21–27], while multivariate methods offer improved power by directly modelling the 
individual level genotype and phenotype data [28–33]. Several of these methods use 
transformations such as principal components analysis (PCA) on the original traits before 
association analysis so that very large numbers of traits can be handled. Topic models such as 
Latent Dirichlet Allocation (LDA) and Non-negative Matrix Factorization (NMF) were dimension 
reduction algorithms developed to model word occurrence in text documents, and have 
subsequently found application in biological studies to extract complex patterns from high-
dimensional data [34–36]. They can be used to find multimorbidity clusters from diagnosis data, 
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by viewing individuals as “documents” and diseases as “words”. The topics learnt by these models 
then are mathematical representations of groups of diseases that tend to co-occur within the same 
individual [37]. Earlier studies have shown that joining single diseases into topics increases 
statistical power for genetic discovery, and helps to disentangle the pleiotropic effects of several 
known genetic loci [38–40]. 

Despite these advances, existing methods all have limitations. First, diagnostic data is often 
binary in nature, with zeros and ones representing the absence and presence of disease, yet topic 
models like LDA and NMF were designed for count data, while algorithms designed for binary 
data [41] have not found wide application in biomedical studies. Second, biobank data is often 
sparse and, particularly for less common diseases, inclusion of prior domain knowledge may well 
improve results. Domain knowledge has been used successfully in topic models [42,43], and, for 
example, medical ontologies like the ICD-10 disease classification system  could serve as prior 
for disease co-occurrence, as they encode the complex relationships of diseases as a hierarchical 
structure which is amenable to mathematical analysis [44–46]. Third, while for statistical models, 
such as LDA, principled approaches exist for selecting the number of clusters and optimising 
other hyperparameters [47–51], this is often not true for other methods, and these choices can 
strongly impact the final results [9,52]. In addition, methods not based on statistical foundations 
typically lack estimates of uncertainty in the inferred clusters, which makes interpretation difficult. 
 
Here, we develop and validate an analytic framework for the study of multimorbidity using topic 
models and multi-trait GWAS on biobank datasets. Central to our approach is “treeLFA” (latent 
factor allocation with a tree-structured prior), a statistical model to identify multimorbidity clusters 
of common diseases based on co-occurrence patterns and an informed prior derived from a tree-
structured disease ontology. Applying treeLFA to Hospital Episode Statistics (HES) data extracted 
from UKB we gain insights about the relationships of diseases and their shared genetic 
components. We identify multimorbidity clusters in the form of disease “topics” and show that 
these agree with accepted medical understanding. Performing a series of GWAS on the 
quantitative traits defined by the loadings on these disease topics (topic-GWAS), we show that 
the approach identifies novel loci that correlate in expected ways with several genomic 
annotations. We validate the topic-GWAS results using test data, and show that topic-GWAS can 
improve genetic risk prediction for multiple disorders, in particular immune disorders, and those 
for which currently few associated loci are known. 
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Results 

Overview of treeLFA 
treeLFA is a topic model designed to identify multimorbidity clusters from binary disease diagnosis 
data. We describe the model in terms of the associated generative process. To generate data, 
first topic vectors 𝜙! containing disease probabilities, and a topic weight vector 𝜃" for each 
individual d are sampled from a prior distribution. An individual’s disease probabilities are given 
by a mixture of different topic vectors, with the topic weights (𝜃") acting as mixing proportions. 
The model can equivalently be defined by the likelihood for observations, which involves factoring 
a latent matrix of disease probabilities: 

P(W|θ,Φ) =,Bernoulli5W#,%6[θ	Φ]#,%)
#,%

 

Here, W is the binary input matrix recording individuals’ diagnosed diseases, with rows 
representing individuals and columns representing disease codes; P(Wd,s=1) is the probability of 
disease s being 1 (diagnosed) for individual d. 𝜙 is the topic-disease matrix (each row a topic 
and each column a disease), and 𝜃 the topic weights matrix (each row an individual and each 
column a topic). The occurrence of disease s for individual d is modelled with a Bernoulli 
distribution parameterized by the corresponding entry in the product of matrices 𝜃 and 𝜙: 
[𝜃	𝛷]",&. This model differs from LDA in three ways. First, LDA samples diseases (or words) 
according to a multinomial distribution, so that diseases can occur multiple times, while treeLFA 
only allows presence or absence. Second, LDA conditions on the number of observed diseases, 
whereas for treeLFA the number of diseases is informative. Third, treeLFA uses an informative 
prior on topic vectors 𝜙! guided by a tree-structured ontology such as ICD-10 (Figure 1 in the 
analytic note). This prior has the property that diseases that are closely related on the tree tend 
to have correlated probabilities. Inference on the treeLFA model was performed using partially 
collapsed Gibbs sampling [53], integrating out the topic weight variable. See the analytic note 
for more details, including on hyperparameter optimization.  
 

Validation of treeLFA; Comparison with related topic models 
We assessed treeLFA’s performance in a simulation experiment, comparing it to the same model 
but without an informative tree prior (flatLFA; Fig 2a), and to LDA. We designed the simulation to 
test the model with respect to the degree of multimorbidity in the data; the size of the data; and 
the correctness of the prior. The degree of multimorbidity was governed by α, the concentration 
parameter of the Dirichlet prior for the topic weight variable θ, with large values corresponding to 
the presence of several multimorbidity clusters in individuals, and small values resulting in 
individuals mainly presenting diseases from a single cluster. To test the influence of prior 
misspecification we used two sets of topics for simulation. In one set (“correct tree prior”) the 
active disease codes in topics were aligned with the tree structure of disease codes, resulting in 
a high likelihood under the prior, which specifies that child nodes on the tree tend to (though not 
exclusively) have the same activity as their parent nodes (Fig 2b,c). In the other setting (“incorrect 
tree prior”) the pattern of active disease codes in topics was possible but unlikely under the prior 
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(Supplementary Fig 1a,b). For each set of topics we considered four combinations of D and α, 
resulting in eight parameter combinations in total (Supplementary Table 1). For each of these we 
generated 20 data sets. To evaluate the performance of treeLFA, flatLFA and LDA we used two 
metrics: the accuracy of the inferred topic (𝛥𝜙, average absolute per-disease difference in 
probability between aligned true and inferred topics; see Methods for details), and Rpl, the ratio of 
the average per-individual predictive test likelihood for treeLFA and flatLFA.  

Both metrics indicate that on data simulated using the correct tree prior, treeLFA performs better 
than flatLFA, which does not have the benefit of an informative prior (Figures 2d-g, Supplementary 
Table 2).  This is most pronounced for small datasets with strong multimorbidity (Figure 2d; 𝛥𝜙 
0.012±0.004 (treeLFA) and 0.025±0.010 (flatLFA); Rpl 1.003±0.002), while for larger datasets, 
the two models show similar performance and the prior has less influence (Figure 2e; 𝛥𝜙 
0.009±0.006 (treeLFA) and 0.011±0.005 (flatLFA)). treeLFA outperforms LDA except for large 
data sets with weak multimorbidity (Figure 2g; 𝛥𝜙 0.0100±0.0009 (treeLFA) and 0.0084±0.0021 
(LDA)) where both models gave accurate inference. For simulation using incorrect tree priors, 
flatLFA gave results comparable to simulation with correct priors, and the performance of flatLFA 
and treeLFA is similar across the four parameter combinations (Supplementary Figure 1), 
indicating that treeLFA is robust against prior misspecification. Overall, these results indicate that 
both treeLFA and flatLFA give accurate results when sufficient training data is available, even if 
treeLFA’s informative prior is inaccurate; but when the tree prior is correct, treeLFA performs 
better than flatLFA, particularly when training data is limited. Even in larger real-world data sets, 
low-frequency topics will have limited training data, hence this suggests that treeLFA could add 
power to the analysis of multimorbidity in biobank data. 
 

Topics of ICD-10 codes inferred from UK Biobank data 
To investigate the properties of treeLFA on real-world data, we built an exploratory data set using 
the HES data in UKB from 502,413 individuals, consisting of the 100 most frequent codes from 
chapters 1-13 of the ICD-10 coding system (top-100 UKB dataset, Supplementary Table 4). We 
split these data randomly into training (80%) and testing (20%) datasets, and trained treeLFA with 
an initial K=11 topics (There is a discussion of the optimal number of topics below).  

The inferred topics include an “empty” topic, in which all codes have near-zero probability of 
occurring (Figure 3a, Supplementary Table 5). Its associated entry in the optimal Dirichlet prior 
parameter 𝛼 is very large (0.585) compared to that of other topics (0.016-0.06), indicating that the 
empty topic is frequently assigned to an individuals’ disease profile The remaining topics all 
contain active codes. Most topics are sparse (8 topics contain fewer than 10 high-probability 
(>0.2) codes), but the model also infers dense topics, such as topics 8 and 10 which include 41 
and 43 high-probability codes respectively. To assess whether codes tend to be specific to a topic, 
we normalised their probabilities across topics to make the largest probability 1. We found that, 
in general, codes are typically specific to topics: most (87/100) are active (normalised 
probability>0.5) in 3 or fewer topics. However, some codes are active in many topics, such as I10 
(essential hypertension, active in 6 topics) and C44 (other malignant neoplasms of skin, active 
in 8 topics) (Figure 3a), suggesting that they have both large prevalence and a large number of 
multimorbidity partners belonging to different disease clusters. The top disease codes (i.e. the 
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five with the largest probabilities) in the 10 non-empty topics are consistent with known disease 
mechanisms (Figure 3b), and are most frequently drawn from two (6/10) of the ICD-10 chapters. 
Specifically, in Topic 5, codes E78 (disorders of lipoprotein metabolism and other lipidemias) and 
I10 (essential hypertension) are components of the metabolic syndrome [54], which is associated 
with increased risk for cardiovascular diseases (CVD) [55], an association supported by the other 
three inferred top codes for this topic (I20, I21 and I25, all heart diseases). Another example is 
Topic 11, whose top codes include four spondylopathy subtypes, while the remaining one is G55 
(nerve root and plexus compressions), a common complication of intervertebral disk disorders.   

In addition to defining topic vectors, the model also infers individuals’ weights for all topics (shown 
for 2,000 individuals in Figure 3c, Supplementary Table 5). As expected, most individuals have 
substantial weight for the empty topic, and this weight was strongly and negatively associated 
(Pearson correlation: -0.853) with the total number of diagnoses. Individuals that were not 
diagnosed with any of the top-100 ICD-10 codes (629/2,000) have a weight near 1 for the empty 
topic, while the majority of other individuals (1056/1371) have large weight (>0.1) for less than 
two disease (non-empty) topic, as expected from the sparsity of the data. 

To compare the performance of treeLFA with flatLFA and LDA, we used the same input data to 
train the flatLFA model with 11 topics and the LDA model with 10 topics (no empty topic would be 
inferred by LDA, so it was trained with one fewer topic). Topics inferred by treeLFA and flatLFA 
were almost identical (Supplementary Figure 2a), indicating that the input data was large enough 
to make the impact of the informative prior minimal. Most topics inferred by LDA also had a high 
level of similarity to the non-empty topics inferred by treeLFA, except for two topics, for which the 
cosine similarities were 0.685 and 0.853 (Supplementary Figure 2b). Overall, these results 
indicate that the three topic models captured the same multimorbidity pattern from the top-100 
UKB dataset.   
 

GWAS on topic weights 
We next investigated whether the quantitative traits defined by the topic weights can be used to 
identify genetic variants that are associated with an individual’s risk for developing 
multimorbidities represented by the topics. We performed GWAS on individuals’ weights for the 
11 topics inferred by treeLFA (topic-GWAS), and identified associations that reached genome-
wide significance (p<5×10-8; non-lead SNPs with r2>0.1 were removed). For comparison, we also 
performed standard binary GWAS for the 100 ICD-10 codes and the 296 Phecodes mapped from 
these ICD-10 codes.  

We found 128 independent loci associated with at least one of the 11 topics, while 812 
independent loci were associated with at least one of the 100 ICD-10 codes; 82 loci were shared 
between the sets (Figure 4a). Phecode GWAS showed similar patterns (Supplementary Figure 
3a,b). Breaking this down by topic, we find that unique loci found by topic-GWAS were highly non-
randomly distributed (Figure 4b, Supplementary Table 7). Most unique loci were associated with 
the empty topic (20/36), followed by Topic 8 (17/28) which contains a large number (41) of high 
probability codes (>0.2) from Chapter 11 (Diseases of the digestive system, 12 codes) and 13 
(Diseases of the musculoskeletal system and connective tissue, 13 codes). In contrast, four 
sparse topics showed no unique loci. Topics 5 (metabolic and heart diseases) and 6 (joint 
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diseases) had many associated loci (50 and 17 respectively) and also a substantial number of 
unique loci (5 and 7 respectively), suggesting that active codes in these topics include shared 
genetic components. The identification of novel loci indicates that topic-GWAS provides additional 
power for discovery. For example, Figure 4c (Supplementary Table 7) compares P-values of lead 
SNPs from the topic-GWAS for Topic 5, and P-values for association of the same loci with the top 
five active codes in Topic 5 (E78, I10, I20, I21, I25) from the single code GWAS. For most topic-
associated lead SNPs, P-values given by topic-GWAS are smaller than those given by the 
corresponding single code GWAS, indicating increased power for these examples. This also 
explains some loci uniquely found by topic-GWAS, including some loci that show single-code P-
values well below genome-wide significance (see Figure 4d for two example loci). Despite the 
limited numbers of topic-associated loci, the genomic control inflation factor and LD score 
regression (LDSC) indicate that most topics are in fact highly polygenic traits, with the exception 
of the empty topic and Topic 8, for which LDSC analysis suggests that uncontrolled confounding 
factors exist (Supplementary Table 8; age, sex and the first 10 PCs were controlled for in topic-
GWAS).  

We next asked whether topic-GWAS simply identify associations with disease groups (categories) 
represented by internal nodes of the ICD-10 or the Phecode ontology tree, which correspond to 
expert-led disease clusters and provide a useful contrast to our data-driven multimorbidity 
clusters. To answer this we performed GWAS on groups of ICD-10 codes or Phecodes 
corresponding to internal nodes in the respective classification systems. We found 634 loci 
associated with the 68 internal ICD-10 codes and 296 loci associated with the 136 internal 
Phecodes. Of the 128 topic-associated loci, 41 were not associated with any of the non-internal 
ICD-10 codes; and for Phecodes the corresponding number was 56 (Supplementary Figure 3c-
f). This indicates that topic modelling provides insights into the relationships of diseases beyond 
those provided by expert-driven disease groupings encoded in ontologies. For example, Topic-8 
has the majority of its active codes coming from Chapter 11 (Diseases of the digestive system) 
and 13 (Diseases of the musculoskeletal system and connective tissue), and a similar 
multimorbidity cluster was also identified by a recent study on UK Biobank [11]. Interestingly, this 
cluster has many unique loci found by topic-GWAS, possibly indicating that these two categories 
of diseases share some underlying biology. 

We then compared the topic-GWAS results for topics inferred by treeLFA, flatLFA and LDA. As 
expected from the similarity of topics inferred by treeLFA and flatLFA, similar numbers of 
associated loci were identified (128 and 126; Supplementary Figure 4a), compared to LDA, which 
identified many fewer (65; Supplementary Figure 4b), of which 44 overlap with the treeLFA loci. 
This difference in numbers of associated loci is mostly due to treeLFA’s empty topic (associated 
with 36 loci), which is not identified by LDA, and also due to differences in the dense Topic 8 
(treeLFA, 28 loci; LDA, 4 loci), and topics 5 and 6 (Supplementary Figure 4c). One reason for the 
relatively poor performance of LDA may be that LDA-derived topic weights are negatively 
correlated with each other, as they must sum to one, while treeLDA’s topic weights are only 
negatively correlated with the empty topic weight, but are otherwise almost independent of each 
other (Supplementary Figure 5).  
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Validation of topic-GWAS results 
To exclude the possibility that the unique topic-GWAS associations were driven largely by 
technical biases or population stratification, we validated the results in three ways. First we 
considered overlap with previously identified loci reported in the GWAS catalogue [56]. We find 
that 114/128 (89.1%) of all topic-associated loci and 36/46 (78.3%) of unique associations have 
records in the GWAS catalogue, and this overlap is consistent across topics (Supplementary 
Figure 6a). Second, we looked at enrichment of topic-associated loci in functional genomic 
regions. To do this we defined three groups of SNPs, including lead SNPs for all loci associated 
with ICD-10 codes, a random selection of 10,000 GWAS tag SNPs (controls) and topic-associated 
lead SNPs that were not found by single code GWAS, and then compared the proportions of them 
that have different functional properties (two-proportion Z-test, adjusted P-value<0.05, Bonferroni 
correction). We find that compared to random SNPs, a significantly larger proportion of topic-
associated SNPs are in genomic regions with strong transcription activity (using chromHMM-
predicted chromatin states as proxy [57]). In addition, the proportions of SNPs that are QTLs and 
have chromatin interactions (CI) in at least one tissue in the first and third groups are similar (0.83 
and 0.77 are eQTL, 0.90 and 0.98 have CI), and larger than the corresponding proportions in the 
control group (0.50 and 0.65 for eQTL and CI), indicating that loci associated with single codes 
and topics have comparable functional properties which are different from those for controls. 
(Supplementary Figure 6b-d). 

Third, we made use of the test data to validate topic-GWAS results. We reasoned that if topics 
and their associated loci represent true biological processes, then topic-GWAS results should 
enable us to predict the risks of individual diseases with an accuracy comparable to that achieved 
using single code GWAS. To do this we first constructed PRS for topic weights using topic-GWAS 
results on training data. We found that they all show significant association with inferred topic 
weights on test data (Supplementary Table 10). We then used these PRS for topics to construct 
PRS for the 100 ICD-10 codes, by adding individuals’ PRS for the ten disease topics weighted by 
the probability of the ICD-10 code of interest in each topic. For comparison, we also constructed 
PRS for all ICD-10 codes directly using the single-code GWAS results in the standard way. Each 
pair of PRS for an ICD-10 code was used to predict individuals’ corresponding diagnosed disease 
in the test data, and their performance was evaluated using the area under the receiver-operator 
curve (AUC) statistic. For 65 ICD-10 codes, topic-PRS AUCs are larger than single-code PRS 
AUC (Figure 4f, Supplementary Table 7), with increases ranging from 1% to 5%. This increase 
was seen most for ICD-10 codes from chapters 5 (Mental and behavioural disorders, 75% (3/4) 
showing increased AUC), 11 (Diseases of the digestive system, 86% (18/21)) and 13 (Diseases 
of the musculoskeletal system and connective tissue, 70% (14/20)). By contrast, single-code PRS 
performed well for codes that have a relatively large number of associated loci found by single 
code GWAS (>10 associated loci; 18/22 disease codes show larger AUC for single-code PRS 
than topic-PRS; Supplementary Figure 7a,b). Finally, to make an objective comparison of the 
topic-GWAS for treeLFA/LDA, we constructed PRS for ICD-10 codes from LDA’s topic-GWAS 
using the same approach, and found that in the majority of cases (99/100) the PRS based on 
treeLFA’s results have larger AUC (Supplementary Figure 7c), indicating treeLFA’s topic-GWAS 
is more informative. Taken together, the three complementary approaches indicate that topic-
GWAS associations broadly represent true genetic associations with biological phenotypes. 
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Inference and topic-GWAS results across models 
Before applying treeLFA to a larger data set containing more diseases, we considered how to 
select the number of topics (K), a fundamental problem for topic models. We trained treeLFA 
models with different numbers of topics (K=2-20, 50, 100) on the top-100 data set, and found that 
for larger K topic vectors were frequently duplicated, therefore we performed clustering on the 
posterior samples of topics (see Methods for more details). The resulting topics always included 
an empty topic, and as K increased the topics tended to become more sparse, although some 
dense topics always remained (Figure 5a, Supplementary Table 12). As K increased, topics 
tended to split into sub-topics, which we visualised in a tree by connecting each topic to its most 
similar topic (measured by Pearson correlation of topic vectors) in the layer above, and we 
observed that the topics split in a stable way (Figure 5b, Supplementary Table 12). These 
observations indicate that topic-GWAS loci and associated effect sizes should also be stably 
identified. We verified this for many loci (examples in Supplementary Figure 8), and Figure 5b 
illustrates this for a single variant. On the top-100 UKB dataset, the number of distinct topics 
remaining after clustering is saturated at 25-30 topics (Supplementary Figure 9a). Similarly, the 
total number of topic-GWAS loci, the number of unique such loci, and the predictive likelihood on 
the test data all began to saturate beyond K=20 (Figure 5b; Supplementary Figure 9b). We do 
note that for models with K=50 or K=100, we infer several near-empty topics after clustering, 
which are unlikely to be stable multimorbidity patterns and are challenging to interpret. Taken 
together, these results indicate that selecting a sufficiently large value for K, combined with post-
hoc clustering of topics, is a computationally efficient strategy for producing a stable and 
comprehensive set of topics. 

 

Results on a larger UKB dataset  
We next defined a larger data set consisting of the 436 ICD-10 codes from chapters 1-14 with a 
prevalence exceeding 0.001 in UKB (top-436 UKB dataset, Supplementary Table 15), and again 
randomly split this 80/20 into training and testing datasets. Training treeLFA/flatLFA models with 
100 topics, we identified about 40 distinct topics after clustering of posterior samples. Therefore, 
we kept 40 topics for both models (for the convenience of an objective comparison of predictive 
likelihood), and collapsed the remaining near-empty topics into the empty topic.  

Since the inference results (topics) given by different treeLFA/flatLFA chains were not exactly the 
same, we used the result given by the chain with the largest predictive likelihood on the test data 
for the downstream analyses. Among the 40 inferred topics, 29 were found by all three treeLFA 
chains, and five were found by two treeLFA chains, suggesting most topics were stably identified 
from the data (Figure 6a, Supplementary Table 16). The 40 topics again include several dense 
topics, with topics 1-5 including more than 40 active codes (having a normalised probability>0.5 
in a topic). The set includes many sparse topics, with most including active codes enriched (Fisher 
exact test, adjusted P values<0.05, FDR corrected) for 1-2 ICD-10 chapters, and again a single 
empty topic (Figure 6a-b; Supplementary Table 16). The top active codes in topics (defined as 
having an unnormalized probability>0.3) are shown in Table 1, where topics are annotated based 
on the categories of these top active codes. For most topics, their top active codes represent 
similar diseases, such as diseases affecting the same physiological system or having the same 
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pathological mechanism. Comparing topics identified by treeLFA and flatLFA, we found that 32 
topics were identified by both models (cosine similarity>0.9; Supplementary Figure 10a), while 
the remaining topics have substantial differences. Overall, the predictive likelihood of treeLFA 
chains was better than that of flatLFA, and has a smaller range (Supplementary Figure 10b), 
indicating that the tree-based prior is indeed helpful in extracting meaningful patterns from the 
data.  

We then performed topic-GWAS on the 40 treeLFA and flatLFA topics we kept. We found 278 
treeLFA and 260 flatFLA genome-wide significant loci, with the majority (207) found in both sets 
and associated with corresponding topics (Supplementary Figure 10c-d, Supplementary Table 
18). We also performed single-code GWAS on the 436 ICD-10 codes and found 1,093 associated 
loci, among them 198 were also associated with treeLFA topics. Lead SNPs for loci only 
associated with treeLFA topics (80 unique loci) had smaller effect sizes (median absolute effect 
size: 0.021) compared to loci supported by both topics and single codes (0.024) (Figure 6d, 
Supplementary Table 16), indicating that topic-GWAS enabled the discovery of variants with small 
effects on multiple related diseases. Unique loci were not uniformly distributed across topics; as 
in the top-100 dataset, many were associated with the empty topic (21). Topics 3 and 30 also 
have large proportions of unique loci (81.5% and 83.3%), and most of their active codes are from 
Chapter 13 (Diseases of the musculoskeletal system and connective tissue). Other topics that are 
associated with substantial numbers of unique loci are shown in the Supplementary Table 19.  
 
We validated the topic-associated loci for the larger dataset using the same approach as used 
with the top-100 dataset. Overall, 89.2% (248/278) of topic-associated loci and 78.9% (63/80) of 
unique associations have records in the GWAS catalogue. The functional validation results were 
also similar to that on the top-100 dataset, with unique topic-associated loci and single code 
associated loci exhibiting similar profiles (Supplementary Figure 11). The two types of PRS for 
single codes were also constructed using single code/topic-GWAS results. For 130 in 436 (30%) 
ICD-10 codes, PRS based on topic-GWAS resulted in larger AUC on the test data. These codes 
were mainly from Chapter 3 (Diseases of the blood and blood-forming organs and certain 
disorders involving the immune mechanism, 5/12), Chapter 9 (Diseases of the circulatory 
system, 21/48) and Chapter 13 (Diseases of the musculoskeletal system and connective tissue, 
24/52). In contrast, for most (93 of 109) ICD-10 codes with more than 5 associated loci, PRS 
based on single code GWAS resulted in better performance (Supplementary Table 21). To 
compare treeLFA and flatLFA, we also constructed PRS for single codes based on flatLFA 
results, and compared their AUC on the test data to that of treeLFA. For 231 in 436 codes 
(53%), PRS based on treeLFA showed better performance. Supplementary Figure 10e 
compares the density plots for the AUC of PRS for all codes given by the two methods, where 
treeFLA shows a minor advantage. 
 

Discussion  
Multimorbidity is a major challenge for today’s healthcare systems, yet our understanding of it 
remains limited [58]. The establishment of biobanks linked to electronic health records presents 
an opportunity for a more systematic study of multimorbidity, and highlights the need for reliable 
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and powerful analytic tools to enable the identification of major multimorbidity clusters and 
downstream analyses of paired phenotype and -omics data.  

Here we developed treeLFA, a topic model inspired by Latent Dirichlet Allocation (LDA) that 
admits a prior for topics constructed on existing tree-structured medical ontologies. We compared 
it to flatLFA and LDA on both simulated and UKB data, and found that the prior was effective at 
extracting relevant topics from limited input data, such as data involving rare diseases. We also 
found that the novel model structure better fits the binary input data, resulting in the identification 
of an empty (“healthy”) topic, and ensuring that topic weights for the remaining disease topics 
were largely uncorrelated, improving power for downstream topic-GWAS. We implemented 
algorithms to optimise hyperparameters of the model, and developed a computationally efficient 
approach to determine the number of meaningful topics to be inferred.  

By applying treeLFA to HES data for 436 common diseases recorded in UKB, we identified 40 
topics reflecting combinations of diseases that tend to co-occur. These topics varied in density 
and include a single empty topic, many sparse topics that each include a small number of active 
disease codes, and several dense topics. We found that the inferred topics were largely consistent 
with the current disease classification system (ICD-10), yet treeLFA also combines diseases 
distant on the tree structure into the same topic, indicating the utility of supplementing expert-led 
knowledge systems with data-driven methods. By comparing the topics inferred by treeLFA and 
LDA, and topics inferred by different treeLFA models, we found that multimorbidity clusters were 
consistently inferred, indicating the existence of stable multimorbidity clusters, and that topic 
modelling of cross-sectional diagnosis data is an informative method of finding them.  

Most inferred topics likely reflect underlying aetiology, as indicated by the fact that the large 
majority (34/40) show genome-wide significant associations with genetic markers, while 20 topics 
are associated with 80 novel loci that do not reach genome wide significance in GWAS for single 
ICD-10 codes, and show evidence of functionality using multiple methods. The active ICD-10 
codes in the topics with the most novel associations are mainly from Chapter 13 (Diseases of the 
musculoskeletal system and connective tissue), with substantial contributions also from Chapters 
4 (Endocrine, nutritional and metabolic diseases), 9 (Diseases of the circulatory system) and 14 
(Diseases of genito-urinary system), suggesting that diseases in these chapters share genetic 
risk factors.  

With topic-GWAS results, we explored constructing PRS for a single code as the sum of PRS for 
all topics weighted by the probabilities of the code in topics. We found that for certain codes, 
especially codes with very few GWAS hits from Chapter 13, this new type of PRS outperforms 
the standard PRS based on single code GWAS results. This improvement in prediction might 
result from better estimation of effect sizes of variants by topic-GWAS. This is because although 
treeLFA factorises the input matrix in a linear way, it achieves a dimension reduction by mapping 
from the disease space to the topic space. This results in fewer traits and therefore more ‘cases’ 
for each one, which is especially beneficial for the study of the highly polygenic traits (topic 
weights), where there are a large number of SNPs with small effects.   

In contrast to topic-GWAS, single-code GWAS on the 463 common diseases resulted in 1,093 
significant associations, of which the vast majority (895) were not associated with any topic. Taken 
together, these genetic analyses indicate that the majority of genetic associations are driven 
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through links to individual diseases. Meanwhile, most multimorbidity clusters also have genetic 
bases, which are mainly composed of pleiotropic genetic variants affecting risks of multiple active 
diseases in the cluster. Besides, there are also a substantial number of associations for topics 
that are difficult to identify by single code GWAS due to the lack of power. From a biological 
perspective, they might reflect the complex connections between upstream pathways that are 
distant to individual diseases, or variants with direct yet small effects across multiple diseases. 
Overall, these observations are a helpful starting point for our pursuit of a deeper understanding 
of the mechanisms underlying multimorbidity clusters.  

We consistently identified an “empty” topic, which reflects individuals’ overall disease burden, 
since their weights for the “empty” topic are negatively correlated with their total number of 
diagnosed diseases. Perhaps surprisingly we found that this topic showed many genetic 
associations, many of which (21/35) had not been identified before. An enrichment analysis for 
topic-associated genes (Methods) indicated several lifestyle-associated factors, such as gym 
attendance and religious observance, suggesting that this topic may be related to individuals’ 
health behaviour, which in part is genetically determined. In contrast, for most sparse disease 
topics, the enriched gene sets are usually directly related to the active codes in the topic 
(Supplementary Table 22).  

There have been many studies aiming at identifying multimorbidity patterns using various  
methods [12,13,16,17,59]. Most of these studies focus on dozens of diseases that in addition 
varied from study to study, making comparisons difficult. We compared the topics identified by 
treeLFA with multimorbidity networks (which are interpretable at the level of genetic loci) found 
by a recent study using the HES data for 439 common diseases in UKB (433 of these are included 
in the larger UKB dataset in our study) [11]. For most of the disease networks, there are specific 
corresponding disease topics identified by treeLFA (Supplementary Table 23). However, the 
overlap of active codes in treeLFA inferred topics and the disease networks is limited, suggesting 
significant differences in the details of the inference results. This discrepancy could be caused by 
the fundamental differences between the two methods, since treeLFA analyses all diseases 
simultaneously, while multimorbidity networks were constructed based on pairs of diseases that 
tend to co-occur. One limitation of topic models is that they cannot determine the relationships 
between active diseases in the same topic. In contrast, an advantage of topic models is that they 
make direct use of individual level data for the genetic analyses, and allows for making predictions 
on the test data, which provides an objective way to compare different methods. 

Our work represents real progress in the understanding of multimorbidity, yet also reveals 
important and unsolved challenges. For instance, while we showed that taken together the novel 
genetic associations likely represent true biology, we have not performed individual replication of 
the findings in this study in independent data sets and this may be challenging unless the data 
sources and methods of data collection are comparable to UK Biobank. The problem of inferring 
disease topics that are stable, tractable and biologically meaningful across geographies and 
healthcare systems represents a major challenge for future research.  
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Methods 
Full technical details are given in the analytical note in the supplemental data. 

Validation of treeLFA with simulated data 
The simulation study served two purposes. Firstly, we aimed to verify that treeLFA can 
accurately infer latent topics from the diagnosis data encoded as binary variables. Secondly, we 
aimed to compare the performance of the three topic models (treeLFA, flatLFA and LDA) 
discussed in the next section, such that the influence of model structure and treeLFA’s 
informative prior for topics on the inference can be assessed. 

Overview of the three related topic models 
1. treeLFA 
treeLFA (“latent factor allocation with a tree structured prior for topics”) is a topic model designed 
for binary diagnosis data in Biobanks based on the Bayesian mean-parameterized binary non-
negative matrix factorization [41]. It models the presence and absence of S disease codes for D 
individuals with D×S Bernoulli distributions, and the matrix of Bernoulli probability for all disease 
variables is factored into the topic matrix (ϕ) and the topic weight matrix (θ). The loading of 
disease code s in topic t (ϕts) is its corresponding Bernoulli probability in the topic, and the 
Bernoulli probability of the disease variable for individual d and disease code s is a mixture of 
the Bernoulli probability of code s in all topics, with the mixing coefficients specified by the topic 
weights for individual d. treeLFA also incorporates an informative prior for topics constructed by 
running a Markov process on a tree structure of individual words, which assumes that disease 
codes on the same subtree are likely to have similar Bernoulli probability in the same topics (see 
the details in the analytic note).  

2. flatLFA 
flatLFA has the same model space as treeLFA, with the only difference being that flatLFA uses 
a non-informative prior for topics, which is constructed on a tree structure where all nodes 
(representing all disease codes in a topic) are placed directly under the common root node. By 
comparing the performance treeLFA and flatLFA, the contribution of treeLFA’s informative prior 
for topics to the inference can be assessed. 

3. LDA 
Latent Dirichlet Allocation (LDA [60])’s model configuration is different from treeLFA. LDA only 
models the disease codes that are diagnosed for individuals with categorical distributions. For 
LDA, each topic is a categorical distribution (or a Multinomial distribution if the input data is 
viewed as a count matrix) across the S disease codes, and a Dirichlet prior distribution is used 
to generate these topics. By contrast, for treeLFA each topic is a sequence of Bernoulli 
probability for the S disease codes, and S Beta distributions are used to generate the topics.  
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Description of simulated data 

We simulate multiple data sets using different topics and hyperparameters to assess the 
performance of the three topic models (treeLFA, flatLFA and LDA) in different situations. We 
simulate the input data sets in two steps. Firstly, we build a tree structure for 20 disease codes 
(Figure 2B). The tree structure has three layers. The first layer is the root node; the second layer 
contains five nodes, and each of them has three children nodes in the third layer. Secondly, we 
generate topics of disease codes using the tree structure above. A Markov process on the tree 
structure is used to do this (see the analytic note), and the rationale for choosing the parameter 
of the Markov process is explained below.  

The Markov process chooses active disease codes (disease codes having large probability in a 
topic) for each topic by generating binary indicator variables for disease codes (with 1 represents 
active codes, and 0 represent inactive codes in a topic) (see the analytic note). The Markov 
process has two transition probabilities, ρ01 and ρ11, which control the sparsity of the topics (ρ01 

= P(I = 1|Iparent = 0), ρ11 = P(I = 1|Iparent = 1)). Small values for both ρ01 and ρ11 give rise to sparse 
topics (because most codes in a topic will be inactive), while large values for both generate dense 
topics. ρ11 also controls the clustering of active codes in topics. With a large ρ11, most children 
codes of an active parent code will be active. As a result, active codes in a topic will gather on 
the same branch of the tree. By contrast, if ρ11 is small, active codes will spread across the entire 
tree. For our simulation, we use topics resembling those generated with small ρ01 and large ρ11. 
This reflects our belief that in the real world most topics of disease codes should be sparse (thus 
we chose small ρ01), and that active disease codes in the same topic tend to come from the same 
subtree (thus we chose large ρ11).  

For our simulation, we construct two sets of topics manually. The first set of topics are likely to 
be generated using a Markov process with small ρ01 and large ρ11, while the second set of topics 
are unlikely to be generated by this Markov process. The first set of topics are used to test if the 
tree structure of codes improves inference accuracy, and the second set of topics are to test the 
robustness of treeLFA’s inference when the tree structure of codes is wrongly specified. We 
manually specified the topics to ensure that they are completely distinct from each other and 
have strong patterns with respect to the clustering of active codes. 

Figure 2B shows the first set of topics. For the first three topics, all codes on one branch of the 
tree are active, and the remaining codes are inactive. In the last topic, all codes from two 
branches of the tree are active. The last topic has a different level of sparsity compared to the 
first three topics as it contains eight instead of four active codes. Apparently, these topics are 
likely to be generated using a Markov process with small ρ01 and large ρ11, since a parent code 
and all its children codes are always in the same state (either active or inactive). In the second 
simulation setting, active diseases in topics are not generated according to their adjacency on 
the tree (Supplementary Figure 1B). We construct these topics by switching a fraction of active 
codes between topics in the first simulation setting. As a result, active parent codes always have 
inactive children codes, and inactive parent codes always have active children codes. 
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We simulate disease data using the topics described above and the generative process of 
treeLFA. For each dataset, we split the data into training and testing data of the same size. To 
evaluate the topic models in different situations in each topic setting, we use four combinations 
of two hyperparameters to simulate data: α (the concentration parameter of the Dirichlet prior for 
topic weights θ) and D (the number of individuals in the training dataset). A large value for α 
means that most individuals will have large topic weights spread across topics. By contrast, a 
small value for α will make topic weights for each individual more concentrated on a single topic. 
A large α makes the inference difficult, since most individuals are a mixture of multiple topics. 
Therefore, data sets simulated using large α require larger D for accurate inference. For each 
hyperparameter and topic setting, we simulate 20 datasets. Table 3 summarises the 
hyperparameter and topic settings. 

Implementation of the inference procedure 
LDA is implemented using the R package “topicmodels”, and collapsed Gibbs sampling is used 
to do the inference. treeLFA and flatLFA are implemented from scratch by us using the R 
package “RcppParallel” and “Rcpp”. 

For the hyperparameters of the topic models, we provide the true value of α to train the three 
models. Beta priors for the probability of active and inactive disease codes in topics (ϕ) are 
Beta(2,4) and Beta(0.3,80). Beta priors for the transition probability (ρ01 and ρ11) of the Markov 
process are Beta(4.8,20) and Beta(20,4.8). For flatLFA only ρ01 will be used on the tree, and its 
prior is Beta(7,20), resulting in approximately the same expected number of active codes in 
topics as treeLFA. For LDA we try a few different values (0.01,0.1,1) for η, the concentration 
parameter of the Dirichlet prior for topics. We find that with η = 0.01 LDA has the best 
performance evaluated by the inference accuracy. 

For the initialization of hidden variables for treeLFA and flatLFA, we initialised all indicator 
variables (I) as 0, and then simulate all probability variables (ϕ) using the Beta prior for inactive 
disease codes. Topic assignment variables (Z) are randomly sampled for all individuals. 
For each simulation scenario, ten Gibbs chains were sampled, and 20 posterior samples of 
hidden variables were collected from each Gibbs chain with an interval of 100 iterations after 
15,000 burn-in iterations. 

Evaluation and comparison of topic models on simulated datasets 
Two metrics are used to evaluate the models in simulations. The first metric is the inference 
accuracy, measured with the averaged per disease difference between true and inferred topic 
loadings: 
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,-.+)6/
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where ϕks is the Bernoulli probability of disease code s in topic k. The pairwise t-test is used to test 
for statistical difference between two different models. The second metric is the predictive likelihood 
on the test data (see the analytic note for more details). For each posterior sample of topics, 
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200 Monte-carlo samples of topic weight θ are used to approximate the predictive likelihood. A 
sensitivity analysis is done to ensure the number of samples for θ is enough to have a stable 
estimate of the predictive likelihood. 

For both metrics, we firstly use each posterior sample of topics (contains all four topics inferred 
by a model) for evaluation, and then take the average of the results for all posterior samples of 
topics from all chains. To reorder the inferred topics as the true topics, we match each inferred 
topic to the true topic that has the highest cosine similarity, in a greedy procedure (i.e. once a 
true topic is matched, it is removed from the matching of the next inferred topic). 

Inference on the top-100 UK Biobank dataset 

The input data for treeLFA 
The input to treeLFA includes the Hospital Episode Statistics (HES) diagnosis data for individuals 
in the UK Biobank, and the tree structure for disease codes. The diagnosis dataset is constructed 
from the Hospital Episode Statistics (HES) data in the UK Biobank, which is coded using the 
five-layered hierarchical ICD-10 billing system. The first layer of the ICD-10 tree structure only 
contains the root node; the second layer is composed of chapters of diseases coded using capital 
English letters; the third layer contains blocks of disease categories; the fourth layer contains 
single disease categories; and lastly, the bottom layer contains sub-categories of diseases, 
which can be, for instance, the same disease occurring at different sites of human body, or 
subtypes of the same disease. In UK Biobank, most of the diagnosed diseases are encoded 
using codes on the bottom layer (fifth layer) of the tree. We use the fourth layer of encoding as 
diagnoses, where we replace all diagnoses with their parental code in the fourth layer.  

The top 100 most frequent ICD-10 codes in UK Biobank from the first 13 chapters of the ICD-10 
coding system are chosen to construct the dataset. This selection of chapters provides a balance 
between breadth of phenotype and depth within any one chapter so that the potential benefits of 
treeLFA can be explored. The diagnosis data is a binary matrix, with each row represents an 
individual, and each column a disease code. Zeros and ones in the matrix are used to represent 
the absence and presence of diagnosed ICD-10 codes for individuals. If an individual is 
diagnosed with the same disease code several times, we keep only one record to avoid bias of 
repeated diagnoses. The full dataset is randomly split into a training dataset and a testing 
dataset, containing the diagnosis record for 80% and 20% individuals. 

The tree structure of disease codes is encoded in a table with 2 columns: the first column 
contains all the ICD-10 codes on the tree, and the second column records the parent codes of 
the corresponding codes in the first column (Supplementary Table 1). 

Implementation of treeLFA 
Training strategy for treeLFA 
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The Gibbs-EM algorithm is firstly used to optimise α in two stages. In the first stage we run 2,000 
iterations of the Gibbs-EM algorithm. In the E-step of each iteration, we run the Gibbs sampler for 
treeLFA for 20 iterations and collect one posterior sample of Z (19 burn-in Gibbs sampling 
iterations before the collection of the posterior sample). In the M-step, α is optimised using this 
single posterior sample of Z collected in the E-step. In the second stage we continue to run the 
Gibbs-EM algorithm for 200 iterations. In the E-step of each iteration, we run the Gibbs sampler 
for treeLFA for 200 iterations and collect ten posterior samples of Z in total (19 burn-in Gibbs 
sampling iterations before the collection of each posterior sample). The reason to have two stages 
of training is to balance the computational speed with the inference accuracy. In the first stage, 
we optimise α more frequently and quickly get close to its optimal value. In the second stage, α 
is more accurately optimised based on multiple posterior samples of Z. 

After optimising α, we use collapsed Gibbs sampler to simulate posterior distributions of all hidden 
variables (Z, I, ϕ, ρ), with α fixed at and hidden variables initialised at the values provided by the 
last iteration of the GibbsEM algorithm. 5,000 burn-in iterations are run before the collection of 
posterior samples of hidden variables. 50 posterior samples are then collected with an interval of 
100 iterations. For each topic model, ten Gibbs chains are constructed, and 50 posterior samples 
are collected from each chain. 

Choices of hyperparameters and initialization of hidden variables 
To shorten the training with the Gibbs-EM algorithm, we initialise α as (1,0.1,...,0.1). The first 
entry in α is much larger than the others, and it corresponds to the empty topic that will always 
be inferred from real-world diagnosis data. We also initialise α in other ways, such as using 
(1,...1), and we find that model converge to the same results regardless of the ways of 
initialization of α, and the optimised α is usually more close to (1,0.1,...,0.1) than other choices. 
For topic assignment variable Z, we assign the empty topic (topic 1, corresponds to the first entry 
in α) to all disease variables for individuals without any diagnosed disease codes. For individuals 
with at least one diagnosed disease code, all topics are randomly assigned to all disease 
variables. For topics, all indicator variable I are initialised as 0, and probability variable ϕ are 
randomly sampled from Beta(1,5,000,000). Beta(0.3,80) and Beta(2,4) are used as the prior for 
ϕ of inactive and active codes. Beta(3,20) and Beta(3,3) are used as the prior for transition 
probability ρ01 and ρ11 of the Markov process on the tree. The hyperparameters for flatLFA are 
set in the same way as treeLFA. 
For LDA, the concentration parameters of the Dirichlet priors for topic weights (α) and topics (η) 
are both initialised as a vector of 0.1. α is not optimised since we find that this has negligible 
influence on the inference result (inferred topics) and downstream analyses (topic-GWAS). 

Post-processing of inference result 

Approximation of topic weights 

The topic weight variable θ is integrated out during the collapsed Gibbs sampling, therefore their 
posterior samples need to be approximated using posterior samples of Z and α. θ can be 
computed as in Griffiths and Steyvers [53]: 
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Ndt: the total number of disease variables assigned with topic t for individual d. 
Nd: the total number of disease variables. 

Combining inference results from different Gibbs chains 

To combine the inference results given by different Gibbs chains, the “identifiability” issue needs 
to be addressed, since the order of topics in different posterior samples from different chains 
may not be the same. 
We combine all posterior samples of topics from all chains together, and cluster topics before 
taking the average within each cluster. To cluster topics from all samples, we firstly construct a 
shared nearest neighbour (SNN) graph using the R package “scran” [61]. With the SNN graph, 
we use the “Louvain” algorithm [62], a community detection algorithm implemented in the R 
package “igraph”, to assign topics into clusters. After clustering, similar topics coming from 
different chains or posterior samples will be put into the same cluster. In addition to topics (ϕ), 
we also assign posterior samples of other hidden variables (I, ρ and α) to the corresponding 
clusters according to the clustering result for topics. 
The Louvain algorithm doesn’t allow us to directly specify the total number of clusters 
(communities) to be found. Instead, the number of clusters is decided by the hyperparameter k 
(the number of nearest neighbours to consider) for the construction of the SNN graph. A large k 
will result in a small number of clusters, while a small k gives rise to a large number of clusters, 
though some clusters might be alike. Empirically, we choose k=𝑁56	 ×

8!"
9

, where Nch is the 
number of Gibbs chains for the same treeLFA model, and Nps is the total number of posterior 
samples taken from each chain. This choice is to balance the total number of clusters found by 
the algorithm and the uniqueness of different clusters. 

Post-processing inference results from models with a large number of topics 

For models set with a very large number of topics which far exceed the actual number needed 
to explain the data (for instance, the treeLFA models set with 50 or 100 topics), multiple near-
empty topics (topics with few active codes having near zero probability) will be inferred. Although 
the small differences between these near-empty topics are not meaningful, they are usually 
assigned to different clusters by the Louvain algorithm. To collapse these near-empty topics into 
the single empty topic, we further apply hierarchical clustering on topics averaged from different 
clusters given by the Louvain algorithm. During the hierarchical clustering, similar topics are kept 
being combined until all the remaining topics are significantly different from each other. The 
“distinctiveness” of all remaining topics is used as the stop criterion for the hierarchical clustering 
[63] (it has to be larger than the threshold). It is defined as the smallest pairwise distance for all 
topics: mini≠jd(ϕi,ϕj), with d in the equation denotes a measure of distance between a pair of 
topics (topics ϕi and ϕj). 
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Genetic analyses 

topic-GWAS and single code GWAS 
To find genetic variants influencing individuals’ risks for topics of diseases, we perform GWAS 
using inferred topic weights as continuous traits (topic-GWAS). Since topic weights are real 
numbers in the range of 0 to 1, the basic assumptions of linear regression do not hold. We apply 
a logit transformation on topic weights to address this issue before fitting the standard linear 
model for GWAS. We validate that using logit transformation gives better results than using rank 
based inverse normal transformation and using no transformation on topic weights. The 
validation is done by comparing the number of significant loci found by different methods, and 
the predictive performance of PRS for single codes based on topic-GWAS results (see section 
below). For topic-GWAS, we only include common SNPs (SNPs with a minor allele frequency 
(MAF) larger than 0.01 in the UK Biobank) and individuals who self-report having British ancestry 
in the training dataset (343,006 individuals in total). Sex, age and the first ten principal 
components (PCs) of genomic variation are controlled for. 
For comparison, we also perform GWAS (logistic regression) using the presence and absence 
of single ICD-10 codes as binary traits (single code GWAS). The inclusion criterion for 
individuals, SNPs and covariates are the same as topic-GWAS. In addition to ICD-10 codes, we 
also use terminal Phecodes mapped from the top 100 ICD-10 codes as traits for single code 
GWAS. Phecodes are defined by systematically grouping terminal ICD-10 codes into more 
applicable medical terms based on the judgements of clinicians and researchers [64], which 
reduces the granularity of terminal ICD-10 codes. Similar to ICD-10 codes, there is also a 
hierarchical coding system for Phecodes. To map the ICD-10 codes used in the top-100 UKB 
dataset to phecodes, we firstly extract all terminal ICD-10 codes (on the fifth layer of the ICD-10 
tree) that are children codes of the 100 level-4 ICD-10 codes, and then retrieve their 
corresponding Phecodes according to the Phecode map (https://phewascatalog.org/phecodes). 
In total, there are 296 terminal Phecodes mapped from the 100 ICD-10 codes. 

Inflation in P-values given by topic-GWAS 

Inflation in P-values are observed for the topic-GWAS results given by all three topic models. 
The inflation can either be resulted from true polygenicity of the traits (topic weights), or 
stratification in the population. To differentiate these two possibilities, we carry out the LD score 
regression (LDSC) [65] using the summary statistics of topic-GWAS for all topics. Pre-computed 
LD scores (based on 1000 Genomes European data) are downloaded and used in the analyses, 
as recommended in the tutorial for LDSC [66]. The genomic control inflation factor λGC and the 
intercept of LDSC are output by the algorithm, and compared with each other. A large λGC and 
small intercept for the same trait suggest true polygenicity causing the inflation in P-values, while 
large values for both λGC and intercept suggest stratification in the population. 

Processing GWAS results 

To define genomic loci from significant SNPs (P<5×10−8) found by GWAS, we use the clumping 
function implemented in PLINK-1.9. r2>0.1 is used as the threshold for clumping SNPs in linkage 
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disequilibrium (LD). We define a loci to be an association for both topic-GWAS and single code 
GWAS as follows: the significant lead SNP found by one GWAS method can be clumped with a 
significant lead SNP found by the other method. 

GWAS on internal disease codes on the tree 

In addition to grouping disease codes via topic modelling, we also group disease codes 
completely following the medical ontologies (ICD-10 and Phecode systems). In other words, we 
use internal codes (such as blocks of categories of diseases and chapters of disease, 
corresponding to the nodes in the third and second layers of the ICD-10 coding system) of the 
two disease classification systems as binary traits for single code GWAS. For instance, if both 
disease codes A and B are under a common parent code C on the tree, then C will be used as 
the trait for GWAS, and individuals who are diagnosed with either A or B will be used as cases 
for the single code GWAS for code C. For the 100 ICD-10 codes there are 68 internal codes, 
and for the 296 Phecodes there are 136 internal codes. 

Comparison of topic-GWAS results for the three topic models 

In addition to topics inferred by treeLFA, topic-GWAS for flatLFA and LDA inferred topics are 
also performed. For LDA, only individuals with at least one diagnosed disease code are used as 
input for inference. For topic-GWAS, there are two options to deal with the individuals without 
any diagnosis. We can either exclude them or include them and give them small random weights 
for all disease topics. We experiment with both methods, and find that excluding the completely 
healthy individuals results in a larger power for topic-GWAS. 

Validation of topic-associated loci 
Validation using the GWAS Catalogue 
We check the GWAS Catalogue [56] to see if topic-associated loci were also found by previous 
GWAS as significant. We download the full GWAS Catalogue [67], and clump all SNPs in it to 
topic-associated lead SNPs (r2>0.5 as threshold). If a topic-associated lead SNP found by us 
can be clumped, it means that a SNP in LD with it was found by a previous GWAS as significant. 

Validation using functional genomic resources 
Integrated analysis of GWAS results and functional genomic datasets has gained popularity in 
recent years [56,68]. Checking the enrichment of genomic annotations among topic-associated 
loci (lead SNPs) is another angle of validation. We obtain various genomic annotations for topic-
associated loci using the software “FUMA” [69,70]. Since most topics only have a small number 
of associated loci, we combine all loci (lead SNPs) that are associated with at least one topic 
and perform analyses on them as a whole. Meanwhile, we also perform the same analyses on 
all single code associated lead SNPs and 10,000 random SNPs sampled from all SNPs used in 
the GWAS (the distribution of their MAF are matched to topic-associated SNPs) for comparison. 
The assumption made here is that if topic-GWAS find true associations, then the significant 
SNPs should have an enrichment profile that is similar to single code associated SNPs (positive 
control) and significantly different from randomly selected SNPs (negative control). 
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Three types of functional annotations are used for the validation of topic-associated lead SNPs. 
Firstly, the three groups of loci (lead SNPs) are annotated using the 15-core chromatin states 
predicted by the chromHMM algorithm [57]. Since the predicted chromatin states in the 127 
available types of tissues are different, for each genomic locus we use the smallest chromatin 
state across all tissues. Secondly, we calculate the proportions of lead SNPs in the three groups 
that are eQTL (expression quantitative trait loci) in different tissues using the eQTL mapping 
function implemented in FUMA, based on the GTEv8 dataset [71,72]. Thirdly, we calculate the 
proportions of lead SNPs having chromatin interactions with other genomic regions in different 
tissues, based on the HiC data from the GSE87112 dataset [71]. The default setting of FUMA 
for parameters is used in all the analyses. The two proportion z-test is used to test for significant 
differences between the proportions of two groups. 

Genetic risk prediction based on topic-GWAS results 

PRS for topics 

Another way to validate topic-GWAS results is to use them for prediction tasks on the test data. 
Because individual variants’ effects on traits of interest are usually small, polygenic risk scores 
(PRS) are constructed to aggregate the effects of tens of thousands of variants. With topic-
GWAS carried out on the training data, PRS for topic weights (traits of topic-GWAS) are 
constructed using the software “PRSice-2” [73], which uses a “C+T” (clumping and thresholding) 
method. No threshold for P-values is manually set for the inclusion of SNPs. 
We use prediction accuracy to evaluate PRS for topics. Topic weights for individuals in the testing 
dataset are inferred by running the Gibbs sampler for treeLFA on them, with ϕ and α fixed at 
values learnt from the training data (averaged from all posterior samples from all Gibbs chains). 
Ten Gibbs chains are simulated to infer topic weights for individuals in the testing dataset, and 
50 posterior samples are collected from each chain, and their average is used in the subsequent 
analyses. With inferred topic weights, linear models are fit to evaluate the associations of PRS 
for topics and the corresponding topic weights, using the logit transformed topic weights as 
response variables, and PRS for topics as independent variables. The heritabilities of topic 
weights are estimated using LDSC as a reference. 

PRS for single codes based on topic-GWAS results 

To evaluate topic-GWAS results using single code GWAS results as reference, and to compare 
the topic-GWAS results for different topics models (such as treeLFA and LDA) under a common 
criterion, we construct two types of PRS for single ICD-10 codes using single code  and topic-
GWAS results, respectively. PRS based on single code GWAS are constructed in the standard 
way. As for PRS based on topic-GWAS, for code s we extract its probabilities in all topics (ϕts), 
and calculate an individual’s PRS for it as: PRS% = ∑ (PRS( × ϕ(%):

(01 , where PRSt is the 
individual’s PRS for topic t (constructed using the topic-GWAS result for topic t). The area under 
the receiver-operator curve (AUC) is used to evaluate the predictive performance of PRS on the 
test data. 
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Analyses on the larger UKB dataset 
The input data 
The larger UKB dataset (top-436 dataset) is constructed in the same way as the top-100 UKB 
dataset, and contains the diagnostic records of the top 436 most frequent ICD-10 codes from 
the first 14 chapters of the ICD-10 coding system for all individuals in UKB. These codes are all 
the ones in UK Biobank with a prevalence of at least 0.001 at the date of selection (continued 
data collection means that prevalence will tend to increase over time), corresponding to 
approximately 500 cases. The prevalence threshold of 0.001 is chosen both for computational 
reasons (this is roughly the limit of what can be performed using available computing resources) 
and because there must be sufficient occurrences of diseases from which to discover multi-
morbidity clusters. As with the top-100 dataset, we partition the full top-436 dataset into training 
(80%) and testing (20%) datasets. The top436 and the top-100 datasets use different partitions 
for the training and testing datasets. 

Inference on the top-436 UKB dataset 

Training strategy for the top-436 dataset 

The top-436 dataset is more than three times larger than the top-100 dataset, increasing the 
computational requirements for training topic models. On the top-100 dataset, treeLFA models 
with different numbers of topics are trained and compared. We find that when we set an excess 
number of topics for the model, both inferred topics and topic-GWAS results are stable across 
different models (Figure 5). Therefore, on the top-436 dataset, instead of training many models 
with different numbers of topics, we train treeLFA and flatLFA models with 100 topics, and cluster 
and collapse the inferred topics to combine all near-empty topics into a single one. 
For the optimization of α, the two-stage training strategy with the GibbsEM algorithm is used 
again. 1,500 iterations are run in the first stage (with a single posterior samples of Z collected in 
the E-step), and 350 iterations are run in the second stage (with 10 posterior samples of Z 
collected in the E-step). 50 posterior samples of hidden variables are collected during the last 
50 iterations for Gibbs-EM (with an interval of 200 iterations for the Gibbs sampling). For both 
treeLFA and flatLFA, three Gibbs chains are simulated. 

Choice of hyperparameters and initialization of hidden variables 

α is initialised as (1,0.1,...,0.1). Beta(0.1,3000) and Beta(1.2,3) are used as the prior for ϕ of 
inactive and active codes to account for diseases with small prevalence. The rest hidden 
variables and hyperparameters are set in the same way as for the top-100 dataset. 

Processing inference result 

We find that different Gibbs chains for treeLFA and flatLFA give slightly different inference results 
on the top-436 UKB dataset, while different posterior samples from the same chain have a very 
high level of consistency. Considering the variability among the inference results given by 
different chains, instead of clustering posterior samples of topics from all chains altogether, we 
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cluster posterior samples from different chains separately. With the averaged ϕ and α for different 
chains, we calculate their predictive likelihood on the test data, and for both treeLFA and flatLFA 
we retain the chain which has the largest predictive likelihood, and use its inference result as the 
input for downstream analyses. For each topic inferred by the chain with the largest predictive 
likelihood, we check the inference results of the other two chains to see if they also infer it. For 
all the downstream analyses, we annotate each topic with the number of chains that inferred 
them to give a reference of its reliability.  

Genetic analyses  
topic-GWAS for the larger UKB dataset 
Since the top-436 dataset is much larger than the top100 dataset, to increase the inference 
accuracy for topic weights, after the training with Gibbs-EM algorithm we use Gibbs sampling to 
re-estimate individuals’ topic weights, which is observed to increase the power of topic-GWAS. 
ϕ and α are fixed at values averaged from all posterior samples from the chain with the largest 
predictive likelihood. As a result, there is no longer an identifiability issue, so the results given by 
different chains (for the re-estimation of topic weights) can be combined directly. For both 
treeLFA and flatLFA, ten Gibbs chains are used to re-estimate topic weights, and 50 posterior 
samples are collected from each chain. Topic weights averaged from these chains are used as 
the input for topic-GWAS. 

Gene-set enrichment analysis for topic-associated SNPs 
The software FUMA can find genes that are close to the significant SNPs found by GWAS on 
the genome (physical mapping). With the mapped genes, further analyses can be performed. 
Gene-set enrichment analysis (GSEA) tests for the enrichment of different gene sets among a 
group of genes. We choose genes that are associated with different traits in the GWAS catalogue 
as the reference gene sets to carry out GSEA for genes mapped from topic associated SNPs. 
By doing this, we can summarise the major associations of topic-associated SNPs found by 
previous GWAS. The default setting for FUMA is used in all the analyses in this section. 
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Supplemental data include 11 figures, 23 tables, and the analytical note. 
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Figures  

 

Figure 1 Schematic for topic modelling of the diagnosis data in UKB with treeLFA.  
The presence and absence of S disease codes for D individuals in the biobank is modelled with 
D×S	Bernoulli distributions. The matrix of Bernoulli probabilities is factored into the product of a 
topic matrix and a topic weight matrix. Individuals’ weights for topics are modelled with 
categorical distributions with a Dirichlet prior. Each topic is composed of S probability variables 
with Beta priors to parameterize the Bernoulli distributions for disease codes. Disease codes 
can be either active or inactive in topics. Active disease codes have large probability while 
inactive ones have near zero probability. A prior for topics (specifies the likelihood of different 
disease codes to be active in topics) is constructed on the tree structure of disease codes 
specified by a medical ontology (such as the ICD-10 coding system). The path from the root 
node to active leaf nodes (corresponding to all active disease codes in a topic) are highlighted 
on a three-layered tree structure for 13 disease codes in 4 topics.  
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Figure 2. Comparison of three related topic models (treeLFA, flatLFA and LDA) on 
simulated datasets. 
a, The informative and non-informative tree structures used by treeLFA and flatLFA. 
b, The tree structure of the 20 disease codes used for simulation. Red nodes on the tree correspond to all 
active disease codes in the last topic used for simulation.  
c, The four topics used for simulation. The heatmap shows the probabilities of diseases in topics. Each row 
corresponds to a disease code, each column corresponds to a topic. Inactive disease codes in topics have 
zero probability. All active disease codes in each of the first three topics come from the same single branch 
of the tree in Figure 2B. Active codes in the last topic come from the last two branches of the tree in Figure 
2B. 
d-g, Comparison of three topic models on simulated datasets. The performance of three topic models 
(treeLFA, flatLFA and LDA) on four groups of simulated datasets are shown. The four groups of datasets 
were generated using the same topics (Figure 2C), and different values for D (number of individuals in the 
training dataset) and α (the concentration parameter of the Dirichlet prior for individuals’ topic weights). For 
each combination of D and α, 20 datasets (including both training and testing datasets) were simulated. 
Inference accuracy of topic models is evaluated using the averaged per disease difference between true 
and inferred probability of all diseases in all 4 topics (box plots). Each dot in a box plot is the result of one 
model on one dataset, and dots representing the results of different models on the same dataset are 
connected with grey lines. For treeLFA and flatLFA, the predictive likelihood on the testing datasets were 
calculated using topics inferred on the training data. Each dot in the point plot represents the treeLFA to 
flatLFA ratio of per individual averaged predictive likelihood for one dataset. D, Results on datasets 
simulated using D=2500 and α=1. E, Results on datasets simulated using D=5000 and α=1. F, Results on 
datasets simulated using D=300 and α=0.1. G, Results on datasets simulated using D=1000 and α=0.1.  
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Figure 3 Inference results given by treeLFA on the top 100 UKB dataset. 

a, 11 topics inferred by treeLFA from the top-100 UKB dataset. The heatmap shows the probabilities of 
100 ICD-10 codes in the 11 inferred topics, in which each row is an ICD-10 code and each column is a 
topic. Topics are arranged in an descending order of their corresponding entries in the optimised α vector 
(the single-row heatmap on the top). The tree structure for the 100 ICD-10 codes is shown to the left of 
the heatmap. Codes from different chapters of the ICD-10 coding system are colored differently. The 
barplot below the heatmap shows the number of ICD-10 codes with a probability of at least 0.2 in topics. 
The barplot on the right side of the heatmap shows the number of topics in which an ICD-10 code is 
active (with a normalised probability of at least 0.5).  
b, The top 5 codes with the largest probability in the 10 non-empty topics (topics 2-11 in Figure 3A). 
Numbers in the brackets show the probabilities of disease codes in topics. 
c, Inferred weights for the 11 topics for 2000 random individuals. Each row in the heatmap is a topic, and 
each column is an individual. 
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Figure 4 topic-GWAS result for the 11 topics inferred by treeLFA. 
a, The total number of significant loci found by topic-GWAS for the 11 inferred topics and single code GWAS 
for the 100 ICD-10 codes, and the overlap of these two sets of loci. 
b, The numbers of significant loci found by both single code/topic-GWAS, and the numbers of loci only 
found by topic-GWAS for the 11 topics.  
c, Comparison of P-values given by topic-GWAS for all lead SNPs for Topic 5 and P-values for the same 
SNPs given by single code GWAS for the top 5 active codes (E78, I10, I20, I21, I25) in Topic 5.  
d, The Manhattan plot for Topic 5, and the regional Manhattan plots for single code/topic-GWAS results for 
two example lead SNPs, which are found as significant by topic-GWAS but not the single code GWAS for 
the top 5 active codes in this topic.  
e, Comparison of two types of PRS for the 100 ICD-10 codes. One type of PRS is directly constructed using 
the single code GWAS results. Another type of PRS for ICD-10 codes is constructed as the sum of PRS for 
topics weighted by the probabilities of an ICD-10 code in all topics. The AUC of these two types of PRS on 
the test dataset are plotted. 
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Figure 5 Inference and topic-GWAS results across treeLFA models set with 
different numbers of topics.  
a, Averaged inferred topics given by the treeLFA models set with 2, 5, 20 and 100 topics. For each 
treeLFA model, ten Gibbs chains were trained, and 50 posterior samples of topics were collected from 
each chain. All posterior samples of topics are mixed and clustered, and the mean topic vectors are then  
calculated for each cluster. 
b, Relationship of topics inferred by different models. All topics inferred by all treeLFA models are 
organised into a tree structure. Each node in the tree is a topic inferred by a model, and all nodes on the 
same layer (level) of the tree are all topics inferred by the same treeLFA model (set with a certain number 
of topics). Each topic in the tree is connected to its most similar topic (measured with the Pearson 
correlation) in the layer above. Topics associated with the SNP rs143384 are colored according to the –
log10(P) for the SNP in the corresponding linear regression. Most of the associated topics are in the 
same branch of the tree, so all topics in this branch are plotted in the heatmap on the right side of the 
tree, with names of topics (model.topic-index) associated with rs143384 highlighted in red. In the barplot 
below the heatmap, the effect sizes and standard errors for rs143384 given by topic-GWAS for the above 
topics are plotted. The line plot to the left of the tree shows the total numbers of topic-associated loci and 
the numbers of topic-associated loci that are not found by single code GWAS for different treeLFA 
models. 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.28.22281623doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.28.22281623
http://creativecommons.org/licenses/by/4.0/


 

 

Figure 6 Inference and topic-GWAS results for 40 topics inferred by treeLFA from 
the larger UKB dataset. 
a, The 40 topics inferred by the treeLFA model set with 100 topics. Topics are ordered according to their 
density (the sum of the probability of all codes in the topic). The tree structure of the 436 ICD-10 codes is 
plotted to the left of the heatmap. The colour bar on top shows for each topic the number of treeLFA 
chains which inferred it.   
b, The numbers of active codes (with a normalised probability of at least 0.3) in different topics coming 
from different ICD-10 chapters. Enriched chapters among active codes in topics are highlighted with 
shades in the cells (Fisher exact test, FDR<0.05).  
c, The total numbers of loci associated with the 40 topics and 436 ICD-10 codes, and the overlap of these 
two sets of loci. 
d, Distribution of effect sizes given by topic-GWAS for lead SNPs associated with only topics and lead 
SNPs associated with both topics and single codes. 
e, The total numbers of loci associated with different topics (in the same order as topics in Figure 6A), 
and the numbers of topi-associated loci that are not found by single code GWAS (red). 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.28.22281623doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.28.22281623
http://creativecommons.org/licenses/by/4.0/


 

 

Supplementary figures  

 

Supplementary Figure 1 Comparison of three related topic models (treeLFA, 
flatLFA and LDA) on simulated datasets. 
a, The tree structure of 20 diseases. Active codes in Topic 4 in panel B are highlighted with red colour. The 
active codes in these topics are unlikely to be generated by  a Markov process with small probability of 
transforming from inactive to active and large probability of staying active while going from the parent node 
to its children nodes. 
b, The four topics used for simulation. Active codes in these topics do not follow the tree structure in panel 
A, since an active parent code always has inactive children codes, while active children codes always have 
inactive parent code. 
c-f Comparison of three topic models on simulated datasets. The Parameter setting and metrics are the 
same as those in Figure 2. C, Results on datasets simulated using D=2500 and α=1. D, Results on datasets 
simulated using D=5000 and α=1. E, Results on datasets simulated using D=300 and α=0.1. F, Results on 
datasets simulated using D=1000 and α=0.1. The numeric results are in Supplementary Table 3.  
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Supplementary Figure 2 Comparison of topics inferred by three topic models on 
the top-100 UKB dataset. 
a, Comparison of the 11 topics inferred by treeLFA and flatLFA. The same topics inferred by the two models 
are placed next to each other. Cosine similarity was used to measure the similarity of topics inferred by the 
two models (point plot below the heatmap). The numeric results are in Supplementary Table 6.  
b, Comparison of the 10 topics inferred by LDA and the 10 non-empty topics inferred by treeLFA. Topics 
inferred by treeLFA are normalised such that probabilities of the 100 ICD-10 codes add up to 1 in any topic. 
The same topics inferred by the two models are placed next to each other. Cosine similarity was used to 
measure the similarity of topics inferred by the two models (point plot below the heatmap). The numeric 
results are in Supplementary Table 6.  
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Supplementary Figure 3 Overlap of significant loci found by GWAS using 
different traits. 
a, The total numbers of loci associated with the 296 Phecodes mapped from the top-100 ICD-10 codes 
and the 11 treeLFA topics, and their overlap. 
b, The total numbers of loci associated with any of the 296 Phecodes or the 100 ICD-10 codes and any of 
the 11 treeLFA topics, and their overlap. 
c, The total numbers of loci associated with any of the 68 internal ICD-10 codes and any of the 11 
treeLFA topics, and their overlap. 
d, The total numbers of loci associated with any of the 136 internal Phecodes and any of the 11 treeLFA 
topics, and their overlap. 
e, The total numbers of loci associated with any of the internal or terminal ICD-10 codes and any of the 
11 treeLFA topics, and their overlap. 
f, The total numbers of loci associated with any of the internal or terminal Phecodes and any of the 11 
treeLFA topics, and their overlap.  
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Supplementary Figure 4 Comparison of topic-GWAS results for three topic 
models. 
a, The total numbers of significant loci associated with any of the 11 topics inferred by treeLFA and 
flatLFA, and their overlap. 
b, The total numbers of significant loci associated with any of the 11 topics inferred by treeLFA, and any 
of the 10 topics inferred by LDA. 
c, The numbers of significant loci associated with any of the 11 topics inferred by treeLFA and flatLFA, 
and any of the 10 topics inferred by LDA. The first topic is the empty topic, and is only inferred by treeLFA 
and flatLFA. 
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Supplementary Figure 5 Correlation of topic weights for topics inferred by 
treeLFA and LDA. 
a, The correlation matrix for individuals’ weights for the 11 topics inferred by treeLFA. The first topic is the 
empty topic. 
b, The correlation matrix for individuals’ weights for the 10 topics inferred by LDA. The matrix uses the 
same colour scheme as the matrix in panel A. 
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Supplementary Figure 6 Validation of topic associated loci. 
a, The proportions of topic-associated loci recorded in the GWAS catalogue. Red bars show the results 
for all topic-associated loci, and green bars show the results for loci that are associated with topics but not 
any single code. 
b, Proportions of three groups of SNPs that are in different chromHMM states. Meanings of different 
chromHMM states are shown in the right table. The first group contains lead SNPs associated with at 
least one ICD-10 code; the second group contains 10,000 random SNPs whose allele frequency is 
matched with that of topic-associated lead SNPs; The third group contains lead SNPs associated with at 
least one of the 11 topics but not any single code. The proportions of the first and third groups are 
compared with the second group respectively, and significant differences in proportions (two-proportion Z-
test, adjusted P-value<0.05, Bonferroni correction) are marked with asterisk between the corresponding 
bars (purple asterisks between red and green bars mean significant differences between the first and 
second groups, black asterisks between blue and green bars mean significant differences between the 
third and second groups). The numeric results are in the Supplementary Table 9.  
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c, Proportions of the three groups of SNPs in panel B that are eQTL in different tissues. The numeric 
results are in the Supplementary Table 9.  
d, Proportions of the three groups of SNPs in panel B that have chromatin interaction with genes in 
different tissues. The numeric results are in the Supplementary Table 9.  
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Supplementary Figure 7 PRS for ICD-10 codes based on topic-GWAS results. 
a, Comparison of the AUC of two types of PRS for the 100 ICD-10 codes on the test data. One type of 
PRS is constructed using the topic-GWAS result for treeLFA, and the other type of PRS is constructed 
using single code GWAS results. Bars are colored according to the relative performance of the two types 
of PRS. The numeric results are in the Supplementary Table 11.  
b, The numbers of loci associated with the 100 ICD-10 codes. Bars are colored the same way as in panel 
A.  Codes are colored according to the ICD-10 chapters they belong to. The numeric results are in the 
Supplementary Table 11.  
c, Comparison of the AUC of PRS constructed using the topic-GWAS results for treeLFA and LDA. Bars 
are colored according to the relative performance of the two types of PRS. The numeric results are in the 
Supplementary Table 11. 
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Supplementary Figure 8 Association of SNPs and topics from different treeLFA 
models. 
The associations of a few example SNPs and topics inferred by different treeLFA models are visualised 
on the tree structure of topics. The tree structure of topics is the same as the one in Figure 5. Topics 
significantly associated with 7 different SNPs are highlighted with different colours on the tree structure. 
The numeric results are in Supplementary Table 13.   
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Supplementary Figure 9 Summary statistics for models with different numbers of 
topics. 
a, The predictive log-likelihood on the test data for the ten Gibbs chains for treeLFA models set with 
different numbers of topics. For each chain, the standard deviation of the likelihood calculated using 
different posterior samples of topics were shown.  
b, Numbers of distinct topics remained after clustering for treeLFA models set with different numbers of 
topics. The numeric results are in Supplementary Table 14.  
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Supplementary figure 10 Comparison of the inference and topic-GWAS results for 
treeLFA and flatLFA on the larger UKB dataset. 
a, 40 topics inferred by treeLFA and flatLFA models set with 100 topics. The same topics inferred by 
treeLFA and flatLFA are placed next to each other. Topics inferred by both models are shown first, 
followed by topics inferred by only one model. For each model, the inferred topics are named according to 
their density (in the same order as those in Figure 6a). The tree structure of the 436 ICD-10 codes is 
shown to the left of the heatmap, and codes from different ICD-10 chapters are colored differently. For 
each topic, the number of chains that inferred it is shown with the colour bar on top of the heatmap. The 
numeric results are in Supplementary Table 17.  
b, The predictive log-likelihood on the test data for the three treeLFA and flatLFA chains. The calculation 
of predictive likelihood was repeated ten times to get the standard deviation. The numeric results are in 
Supplementary Table 17.  
c, The total numbers of loci associated with any of the topics inferred by treeLFA and flatLFA, and their 
overlap. 
d, The numbers of loci associated with each treeLFA and flatLDA topic. Topics have the same order as 
those in panel A. The numeric results are in Supplementary Table 17.  
e, Density plots for the AUC of PRS for the 436 ICD-10 codes on the test data based on the topic-GWAS 
results for treeLFA and flatLFA. The numeric results are in Supplementary Table 17.  
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Supplementary figure 11 Validation of topic associated loci for the larger UKB 
dataset. 
All settings are the same as those in the Supplementary Figure 6.  
a, The proportions of topic-associated loci recorded in the GWAS catalogue.  
b, Proportions of three groups of SNPs that are in different chromHMM states. The numeric results are in 
Supplementary Table 20.  
c, Proportions of the three groups of SNPs in panel B that are eQTL in different tissues. The numeric 
results are in Supplementary Table 20. 
d, Proportions of the three groups of SNPs in panel B that have chromatin interaction with genes in 
different tissues. The numeric results are in Supplementary Table 20. 
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