Title: Phase-wise Impact Analysis of the Indian National Lockdown against COVID-19 Outcomes

Authors: Vishwali Mhasawade MS^{1,2}, Siddhesh Zadey BSMS MSc-GH^{1,3,4,5}*, and Aatmika Nair MBBS¹

Affiliations:

1 Association for Socially Applicable Research (ASAR), Pune, Maharashtra, India

2 New York University, New York, United States

3 Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States

4 Department of Emergency Medicine, Duke University School of Medicine, Durham, North Carolina, United States

5 Duke Global Health Institute, Durham, North Carolina, United States (Previous affiliation)

* **Correspondence:** Siddhesh Zadey, BSMS MSc-GH; ASAR Office Address: D2 Sai Heritage, New DP Road, Aundh, Pune, Maharashtra, India 411008; Email: <u>sidzadey@asarforindia.org</u>, <u>siddhesh.zadey@duke.edu</u>; Ph. No.: +1-919-699-9557

Abstract word count: 207 Main-text word count: 4967 No. of figures: 2 No. of tables: 3 Funding: None Acknowledgements: None Competing interests: None declared

Abstract

India was one of the most vulnerable countries to the COVID-19 pandemic considering the high transmissibility of the virus, exploding population, and fragile healthcare infrastructure. As an early counter, India implemented a country-wide lockdown and we aimed to study the impact of 4 lockdowns and 2 unlock phases on 6 outcomes: case growth, death count, effective reproduction number, mobility, hospitalization, and infection growth by two methods: interrupted time series (ITR) analysis and Bayesian causal impact analysis (BCIA) for nationals and sub-national levels. We observed that the effects are heterogeneous across outcomes and phases. For example, ITR revealed the effect to be significant for all the outcomes across all phases except for case growth in phase 1. BCIA revealed that the causal effect of all four lockdown phases was positive for deaths. At the state level, Maharashtra benefited from the lockdown in comparison to Tripura. Effects of lockdown phases 3 and 4 on death count were correlated (R=0.70, p<0.05) depicting the 'extended impact' of phasewise interventions. We observed the highest impact on mobility followed by hospitalization, infection growth, effective reproduction number, case growth, and death count. For optimal impact, lockdown needs to be implemented at the sub-national level considering various demographic variations between states.

Keywords

COVID-19; pandemic; lockdown; movement restrictions; India; health policy

Main

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-Cov-2) is a novel virus causing Coronavirus Disease 2019 (COVID-19). The first observed cases of 'pneumonia of unknown cause' emerged in Wuhan, China in December 2019. Since then it has infected 548,868,275 people and caused 6,338,655 deaths globally till June 2022¹. SARS-Cov-2 transmits through multiple modes such as human-to-human contact and droplets², necessitating non-pharmaceutical interventions (NPI) such as physical distancing, quarantine, and isolation, among others in the early phase of the disease spread in the absence of vaccines and treatments³.

As early mitigation strategies in response to the outbreak, social distancing measures and travel restrictions were adopted in China⁴. 'Unprecedented in public health history', the Wuhan and Hubei regions were put under 'lockdown' on 23rd and 24th January 2020, respectively, effectively⁵. This lockdown included a travel ban in and out of these cities, schools, and entertainment areas were closed and public gatherings were prohibited. Haider et al have arbitrarily defined lockdown as 'a set of measures aimed at reducing transmission of COVID-19 that are mandatory, applied indiscriminately to a general population and involve some restrictions on the established pattern of social and economic life⁶. Due to COVID-19's pandemic status, in March 2020, around 149 countries including India adopted physical distancing, school, and workplace closures, restrictions on mass gatherings, public transport, and lockdown⁸. The purpose of stringent movement restrictive public health NPI such as lockdown is to slow the viral transmission for the health system to scale up and enhance its preparedness⁹. Early on, some natural experiments and observational studies found positive evidence for lockdown as an intervention against COVID-19 case incidence¹⁰ and mortality¹¹.

In India, the first COVID-19 case was reported on 30th January 2020 in Thrissur, Kerala, for a 20year-old female who had returned from Wuhan, China¹². Considering the high transmissibility¹³, a large and densely-packed population of over 1.3 billion, diverse cultural values, socio-economic disparities, health equalities, and a fragile healthcare infrastructure^{14,15}, India was perceived to be one of the most vulnerable regions in the world¹⁶. It was estimated that without any public health interventions, India would have 2.2 million cases as of 15th May 2020 as opposed to 13,800 observed cases under a stringent public health intervention¹⁷. Hence, early lockdown implementation was considered necessary to curb the devastation due to the pandemic.

In early March 2020, India adopted containment strategies including quarantining individuals from high case burden countries, isolating infected individuals, restricting the local movement of people in high-incidence areas¹⁸, closing schools and workplaces, canceling mass gatherings, etc.¹⁹. On 22nd March 2020, a 'Janta Curfew' (voluntary public curfew) was observed followed by one of the largest and most extended country-wide lockdowns expanding over 4 phases starting from 25th March 2020. India's swift implementation of lockdown was praised by WHO as 'tough and timely'¹⁵. The lockdown phases differed by stringency²⁰, functioning of businesses, travel restrictions, and zone classification of districts based on case burdens¹⁷. The first lockdown phase was from 25th March to 14th April 2020 (21 days), the second phase was from 15th April to 3rd May 2020 (19 days), the third phase was from 4th to 17th May 2020 (14 days), and the fourth lockdown phase was from 18th to 31st May 2020 (14 days). Post-lockdown re-opening (or unlocking) was also gradual with the first unlock phase being from 1st to 30th June 2020 (30 days), while the second unlock phase was from 1st to 31st July 2020 (31 days)²¹. The first unlock phase saw lockdown only in containment zones while shops, hotels, and restaurants were started in a phased manner in other zones. The second unlock phase permitted most activities to function, inter and intrastate travel was opened as well as limited international travel was permitted under Vande Bharat Mission²².

Previously, several epidemiological modeling studies have predicted the number of COVID-19 cases and deaths under diverse scenarios hypothesizing the presence and space of lockdown. However, only a few studies have investigated the effectiveness of lockdown phases based on observed data¹⁰. A national-level impact analysis would be insufficient to identify how the phases affected COVID-19-

related outcomes. Hence, it is necessary to assess the efficacy of the lockdown at a lower, i.e. subnational geographic and administrative levels. We aimed to study the impact of the four lockdown phases, and the 2 unlock phases on four COVID-19 outcomes 1) death rate, 2) case growth, 3) effective (time-varying) reproduction number (R_t), and 4) mobility at the national (all India) and subnational level using two analytical methods: interrupted time-series regression (ITR) and Bayesian causal impact analysis. Our findings provide evidence for the effectiveness of early public health interventions such as lockdowns to control the pandemic and facilitate a deeper and policy-oriented understanding of the COVID-19 threat in a densely populated country like India and its states.

Results

With the ITR analysis, we observed heterogeneity in the models across outcomes and phases. The supplementary material (**Table S1**) presented the best-performing model considering the multi-level nature of the data using ITR analysis for the different outcomes and lockdown and unlock phases which are followed by their 95% confidence intervals and significance values. Interesting to note that the lockdown intervention did not have a significant effect on case growth in phase 1 but was significant across later phases as outlined in **Table 2**. However, we observed that for the rest of the lockdown and unlock phases the interventions did have a significant impact on all the outcomes, but the magnitude of the effect is heterogeneous with the highest effect on mobility and hospitalization. Furthermore, we observed that the magnitude of the effect of lockdown interventions on mobility and hospitalization outcomes was around 7 times that of other outcomes. Considering the multi-level nature of the data, details about the random and fixed effects of the different outcomes and phases can be found in the supplementary material (**Tables S4-S39**). Furthermore, we observed that the random effects are significant with considerable variance at the subnational levels as demonstrated in Tables S4-S39. This suggests that we need to analyze the effects at the subnational level rather than considering an aggregate model.

Phase	Case growth	Death count	Rt	Mobility	Hospitalization	Infection Growth
Lockdown phase 1	-5068.784	36079.118	25177.188	33713.709	69213.208	-7353.731
Lockdown phase 2	-5017.813	36064.055	25168.100	33665.835	69208.942	-7380.255
Lockdown phase 3	-5032.557	36064.979	25185.604	34154.529	69214.503	-7369.133
Lockdown phase 4	-5025.311	36082.749	25195.585	33964.615	69211.559	-7346.045
Unlock phase 1	-5016.209	36027.696	25188.474	32850.881	69195.283	-7347.558

Table 1: Model performance (AIC) of ITR for different outcomes across phases.

Unlock phase 2	-5017.825	36022.442	25178.963	34122.322	69138.579	-7357.981

Table 2: Impact of interventions on COVID-19 outcomes as assessed using Interrupted time series analysis, effect [95% CI] (significance), note that significance symbols are only represented when the p-value is significant. Rows represent the different phases of lockdown and unlock; columns represent the different outcomes. The model equations for each phase and outcome are mentioned in the supplementary Tables S4-S39.

Phase	Case growth	Death count	Rt	Mobility	Hospitalization	Infection Growth
Lockdown phase 1	-0.001 [-0.002 ,0.001]	0.385 [0.329 ,0.440] (***)	0.046 [0.012 ,0.079] (**)	7.176 [7.023 ,7.328] (***)	8.143 [6.249 ,10.036] (***)	0.003 [0.001 ,0.004] (***)
Lockdown phase 2	0.001 [-3.01E-05 ,0.002] (.)	0.308 [0.257 ,0.360] (***)	0.0840 [0.052 ,0.115] (***)	7.365 [7.220 ,7.512] (***)	6.457 [4.677 ,8.237] (***)	0.004 [0.003 ,0.005] (***)
Lockdown phase 3	0.002 [0.001, 0.003] (**)	0.321 [0.271 ,0.371] (***)	0.063 [0.032 ,0.094] (***)	7.775 [7.624 ,7.926] (***)	6.985 [5.252 ,8.718] (***)	0.004 [0.003 ,0.005] (***)
Lockdown phase 4	0.002 [0.001 ,0.003] (**)	0.339 [0.290 ,0.389] (***)	0.060 [0.030 ,0.912] (***)	7.854 [7.706 ,8.002] (***)	7.019 [5.300 ,8.738] (***)	0.003 [0.002 ,0.005] (***)
Unlock phase 1	0.001 [0.001 ,0.003] (*)	0.339 [0.290 ,0.388] (***)	0.0655 [0.036 ,0.097] (***)	7.899 [7.677 ,8.030] (***)	7.318 [5.610 ,9.026] (***)	0.0036 [0.0024 ,0.0004] (***)
Unlock phase 2	0.001 [4.08E-05 ,0.004] (*)	0.2630 [0.211 ,0.315] (***)	0.067 [0.036 ,0.098] (***)	7.792 [7.642 ,7.942] (***)	4.564 [2.763 ,6.366] (***)	0.004 [0.003 ,0.005] (***)

Using Bayesian causal impact analysis, we evaluated the effect of the interventions through the absolute causal effect values obtained using the causal impact analysis, while also performing a sensitivity analysis of -3 to +3 days around the intervention times. The analysis at the national level is reported in **Table 3**, with each cell denoting the causal effect of the intervention at the national level. We observed that for case growth the interventions during lockdown phases 1, 2, 3, and 4 had an overall negative effect, indicating unlock phases 1 and 2 had a positive causal effect on case growth. We also found that lockdown phases 1, 2, 3, and 4 had an overall positive causal effect on death rate

and mobility while unlock phase 1 had a positive effect on death rate and mobility, while unlock phase 2 had a positive effect on death rate but not on mobility. Lockdown phases 1, 2, and 3 had a positive effect on R_t but phase 4 had a negative effect. Unlock phase 1 had a positive effect on R_t while phase 2 had a negative effect. Thus, even at the national level, we observed a lot of heterogeneity in the effects across phases and outcomes. These (normalized) differences are even more apparent at a subnational level reflected in **Figure 1**. For example, for the union territory of Jammu and Kashmir, there was an increase in the effect on case growth across lockdown phases 1, 2, 3, and 4 while the effect decreased across unlock phases 1 and 2. However, in the same union territory, there was an overall decrease in the effect on death rate across lockdown phases 1, 2, 3, and 4 while the effect remained almost constant during unlock phases 1 and 2. In the state of Gujarat, the effects on R_t gradually increased across lockdown phases 1, 2, 3, and 4. In the state of Jharkhand, there was a higher effect on mobility during lockdown phase 1 which was considerably higher than other neighboring states and union territories; this effect remains almost constant across lockdown phases 2, 3, and 4. In general, the interventions had a heterogeneous effect on states in any intervention period and this also changes across outcomes.

Table 3: Absolute causal effect of intervention (with 95% confidence interval) as computed using causal impact analysis for different outcomes. Rows represent different intervention phases and columns represent the outcomes.

	Outcome (95% Credible Interval)							
Phase	Case growth	Death count	R _t	Mobility	Infection Growth	Hospitalization		
Lockdown phase 1	-0.465 [-1.064, 0.059]	0.001 [0.000, 0.001]	-0.139 [-0.224, - 0.055]	9.223 [-13.262, 29.495]	0.042 [0.007, 0.075]	180.53 [-19.300, 376.350]		
Lockdown phase 2	-0.078 [-0.362, 0.211]	0.002 [0.002, 0.003]	0.363 [0.268, 0.461]	38.156 [24.474, 51.235]	0.044 [0.023, 0.064]	17.331 [-209.130, 239.710]		
Lockdown phase 3	-0.014 [-0.247, 0.189]	0.002 [0.001, 0.003]	0.209 [0.115, 0.301]	28.231 [17.679, 38.909]	0.0198 [0.001, 0.036]	587.09 [335.800, 834.790]		
Lockdown phase 4	-0.002 [-0.222, 0.177]	0.007 [0.006, 0.009]	0.195 [0.109, 0.278]	24.975 [15.161, 35.250]	0.013 [- 0.001, 0.029]	1157.90 [838.180, 1479.220]		
Unlock phase 1	0.004 [-0.153, 0.170]	0.006 [0.003, 0.008]	0.175 [0.044, 0.299]	24.571 [15.630, 33.406]	0.030 [0.017, 0.044]	2641.270 [2216.410, 3056.71]		
Unlock phase 2	0.008 [-0.115, 0.122]	0.012 [0.010, 0.015]	0.066 [-0.049, 0.203]	-1.057 [-8.780, 6.459]	-0.004 [- 0.015, 0.005]	5613.82 [4333.120, 6857.320]		

To understand the lingering effects of the interventions, we also evaluated the spearman correlation between causal effects obtained using causal impact analysis across outcomes and lockdown and unlock phases. The correlation (blue for positive and red for negative magnitudes) between the effects across phases and outcomes was significant only in certain cases as represented by the white asterisk in **Figure 2**. Another interesting phenomenon was that we did not observe significant self-correlation

between most of the effects. We also saw a significant positive correlation between the effects of death count and hospitalization indicating the severity of the cases that were hospitalized. Furthermore, we also observed a correlation between Rt and infection growth, indicating the causal chain between the two. These factors were important in assessing how the effects interact across outcomes for different phases. Thus, assessing the correlation between the effects across phases and outcomes allowed the identification of any long-term effect on one intervention, helpful in assessing long-term effects to guide efficient policy decisions.

Figure 1: Effects of lockdown and unlock interventions as estimated using causal impact analysis for different outcomes (rows) across phases (columns) for Indian states and UTs. For lockdown phases 1 to 4 (first 4 columns) values closer to 1 represent a higher effect of the intervention which is desired, while for the unlock interventions (columns 5 and 6) values closer to 0 are desired. Darker colors denote values closer to 1 while lighter colors denote values closer to 0. States for which the causal effect for each different outcome was significant (p<0.05) are mentioned for each phase.

Figure 2: Correlation between causal impact effects across outcomes and phases.

Discussion

Interrupted time series regression model results suggest that the effects varied significantly at the subnational level as evidenced by the multi-level modes, with the effect being significant on mobility and hospitalization across all phases. Interestingly, we observed that the lockdown interventions did not have a significant effect on case growth during lockdown phases 1 and 2 highlighting the effectiveness of such interventions in curbing case growth which was one of the fundamental outcomes to consider. Investigating the effect estimates for different phases and outcomes illustrates the variability at the sub-national or state level, motivating the causal impact analysis to be performed at this level. The Bayesian causal impact analysis illustrates how the effects of the interventions changed across phases for different outcomes. For example, for case growth, we observed that the effect for Jammu and Kashmir gradually increased across the lockdown phases but was almost constant in the unlock phases. Similarly, for the death count, we observed that the effect size for Maharashtra gradually decreases with the progression of the pandemic across the lockdown phases, also reflected in the hospitalizations. For infection growth, we saw almost the same effect across all

phases in West Bengal while for Gujarat, a significant effect on mobility during the lockdown phases except phase 1. Kerala had a significant effect across all the phases. In the correlation analysis of outcomes across phases and places, we observe that the effects are correlated for certain phases and outcomes, but this is not significant in most of the combinations. For example, we found that effects on R_t are correlated across lockdown phases 3 and 4 and unlock phases 1 and 2. Moreover, we also found that the effect on the death count in lockdown phase 3 highly correlated with the effect on hospitalizations in lockdown phases 3 and 4. This was surprising considering that a higher effect on hospitalization should reduce the effect on death counts but this was not observed here.

Tiwari and colleagues through five compartment mathematical model Susceptible (S)-Exposed (E)-Infected (I)-Recovered (R)-Death (D) (SEIRD), investigated the progression of COVID-19 in India from 30th January to 10th July and the impact of lockdown on R_t and case growth²³. Their findings show that the cases were fewer during the lockdown phases and have increased sharply during unlock phases. Our study concurs that the lockdown slowed down the case growth but unlocking spiked it. With respect to R_t, Tiwari reported a general decrease in the trend during the lockdown period and an increase during the post-lockdown period. Whereas by the ITR method, we found that lockdown phases 1, 3, and 4 impeded R₁, but lockdown phase 2 observed a spike. Moreover, unlock phases 1 & 2 showed a decrease slowed down the increase in R_1 . This shows that it is vital that we observe the effect of the lockdown in a phase-wise manner that was implemented in the country. Another study using the epidemic SIR model shows that within the lockdown phase 1, R_t showed a dip followed by a rise and then went down to 1.56^{24} . Another study investigated R_t for 10 states in India at 15 days and 30 days after implementing the lockdown and showed that the highest decrease in R_t was seen in Andhra Pradesh, Delhi, and Rajasthan, and a reciprocal increase in R_t in Gujarat during the same period²⁵. In our study too, R_t in Gujarat during lockdown phase 1 increased while it decreased in Kerala, Jharkhand, Punjab, and Delhi. A study done to investigate the impact of lockdown in the city of Pune, Maharashtra state showed that the regional lockdown showed a 13% decrease in weekly new patients while the national lockdown showed only a 2% decrease²⁶. This validates the need to study the sub-national impact of lockdown on COVID-19 as done in our study.

Bihar, Karnataka, Andhra Pradesh, and Tamil Nadu observed an increase in death rate in the postlockdown phases²⁷, similar to our findings that showed an increase in death rates during the same period. By simple regression analysis, Goshal et al. found that there was a 45% reduction in total infection in India after one week from the declaration of the lockdown which conforms to our findings of case growth that slowly declined throughout the lockdown phases²⁸. Thayer et al used Google community mobility reports which categorized mobility into six parts and showed that mobility at the parks, recreational areas, workplaces, and transit stations was reduced when the lockdown was announced and continued to remain low till unlock phase 1²⁹. In our study, we found that Lockdown phases 1, 2, 3, and 4 had a negative effect on mobility whereas unlock phase 1 had a positive effect on mobility.

For most outcomes, the lockdown did not have a significant impact as illustrated using the causal impact analysis. One potential reason for this could be the lack of homogeneity at the national level with respect to healthcare resources and the impact on jobs. This suggests a better approach for addressing such settings while considering economic impact at a more regional level. A modeling study showed that a longer lockdown between 42-56 days is preferred to flatten the curve rather than 21 days lockdown³⁰. However, lockdown phases 3 and 4 observed relaxations of some norms in certain zones, but our study did not observe much difference in these phases. Moreover, there is geographic variability in the effects of implementing the policy (non-monolithic structure of the states), and hence a bottom-up approach is desired in designing interventions in comparison to top-down approaches even in the initial phases of the pandemic. Thus, there is a need to equally involve state and local governments. We further observed that there was excess focus on the anticipated efficacy of the interventions rather than to scale up the healthcare resources, and thus preparedness for the impact of the pandemic was lost. This was more of a speculated efficacy, and thus, very short-sighted policy implications with little consideration of societal implications and ethical concerns of the lockdown interventions³¹.

There are certain limitations of this work. For example, some outcomes such as epidemiological doubling time are not included. For the current outcomes considered it is challenging to estimate the accuracy of the values, hence we use the processed data from IHME. To address this higher resolution data, maybe at the district level would be helpful but is currently not possible due to 1) very limited data for the specific time period³², and 2) very few districts were infected during the lockdown periods. Another major limitation is the simplicity of the Bayesian causal impact model with no time-varying factors, and no confounders that can potentially generate better counterfactuals. However, this is because 1) the predictor needs to be correlated to the outcomes, and 2) the predictor should not be impacted by the intervention. As we did not find such predictors that satisfy the second condition, we are restricted to a simple model. For future work, predictors from other places such as Sweden and Korea where interventions were not implemented during our study period could be incorporated.

Methods

Data Sources

We used COVID-19 daily projections for six outcomes - 1) mobility (termed as mobility), 2) death counts, 3) mean cases, 4) effective reproduction number (R_t), 5) hospitalization, and 6) mean infections from the Institute for Health Metrics and Evaluations (IHME) from 13th March to 20th August 2020 for 30 Indian states and union territories (UTs). National and subnational mid-year population data were extracted from the Census-based Population Council projections for 2020. The first lockdown phase (LP1) was from 25th March to 14th April 2020 (21 days), the second phase (LP2) was from 15th April to 3rd May 2020 (19 days), the third phase (LP3) was from 4th to 17th May 2020 (14 days), and the fourth lockdown phase (LP4) was from 18th to 31st May 2020 (14 days). The first unlock phase (UP1) was from 1st to 30th June 2020 (30 days) while the second unlock phase (UP2) was from 1st to 31st July 2020 (31 days) ²¹. Our study duration lasts 159 days from March 14th until August 19th 2020, which extends beyond the unlock intervention periods to analyze the after-effects of the interventions.

Data Variables

Our analysis focuses on six COVID-19 pandemic outcomes, 1) case growth C(t), 2) death count D(t), 3) effective reproductive number (R_t), 4) composite mobility M(t), 5) infection growth, and 6) hospitalization. First, case growth is calculated as

$$C_{t+1} = \log\left(c(t+1)\right) - \log\left(c(t)\right)$$

where c(t) represents the average number of cases observed on day t.

To understand the trend in these cases, we converted them to the log scale, and calculating the rolling difference for consecutive days allows us to evaluate the growth³³. Similar to case growth, we also defined infection growth as a rolling difference in the infections for consecutive days on a log scale. Next, we considered the death counts in each region as another outcome. We used the normalized composite mobility index, M_t , which accounts for the change in mobility and ranges between [-100, 0] during our study period³⁴, where 0 indicates typical mobility or the baseline.

Data analysis

Two statistical methods used for assessing the impact of the interventions across the four outcomes of interest are described below:

1) **Interrupted time series regression (ITR):** For performing the ITR analysis, we required information about when the interventions were implemented, and the time elapsed since the

> previous intervention for each time point in our data. To do this we represented 4 lockdown and 2 unlock phases using indicator variables. For example, we set the phase indicator for the first lockdown phase as 1 for all the dates between 25th March 2020 to 14th April 2020 which comprises the first lockdown period, and set is 0 for all the remaining dates for the mobility indicator. However, to account for the lags in reporting and transmission for other outcomes, additional days were incorporated; namely +7 for R_t , +10 for C_t , and +13 for D_t , +14 for hospitalizations, and +7 for infection rate. Thus, phase 1 for R_t lasted from April 1 to April 21 2020, for C_t lasted from April 4 until April 24 2020, and for D_t lasted from April 7 until April 27 2020. We follow a similar procedure to set indicators for the other lockdown and unlock phases.

> To identify their variance at the sub-national level for the effect of the interventions, we ran the following models for each outcome and phase and choose the one that best explains the data for the specific outcome and phase:

1. Fixed effects model: $log(Y_t) = \beta_0 + e\beta_1 N_0 + \beta_2 P_i + \beta_3 N_1 + \beta_4 log (population)$

2. Random intercept model: $log(Y_t) = \beta_0 + \beta_1 N_0 + \beta_2 P_i + \beta_3 N_1 + \beta_4. log(population) + (1|State)$

3. Random slopes model: $log(Y_t) = \beta_0 + \beta_1 N_0 + \beta_2 P_i + \beta_3 N_1 + \beta_4 log(population) + (0 + N_0 + log(population)|State)$

4. Mixed effects model: $log(Y_t) = \beta_0 + \beta_1 N_0 + \beta_2 P_i + \beta_3 N_1 + \beta_4 log(population) + (1 + N_0 + log(population)|State)$

Where:

 $N_0 = Number of days since start of the study$ $P_i = Phase indicator$ $N_1 = Number of days since the start of the phase$

and Y represents the six outcomes of interest. Finally, we obtained 36 models for the 6 outcomes and 6 phases. In the multi-level models, phase indicator variables and the number of days since the last intervention phase were used as fixed effects while the states and UTs. For each model, β_0 represents the baseline level of the outcome at t=0, β_1 represents the change in the outcome per day pre-intervention, β_2 represents the change in the level of the outcome immediately post-intervention, and β_3 , is our primary parameter of interest, which represents the difference in the slope post-intervention compared to pre-intervention period. We determine the model fit for different models using AIC values.

2) Bayesian causal impact analysis: As we observed variance in the estimates at the subnational level with the ITR analysis, Bayesian causal impact analysis is performed for each state. This analysis centers around a Bayesian Structural time series model aimed to estimate the effect of an intervention. The effect is assessed by comparing the observed outcome values after an intervention is performed and the baseline values; the Bayesian structural time series model predicts the outcome for the post-intervention period in the absence of the intervention. Thus, for the causal impact analysis, we have the outcome observed during our study time as well as the dates on which interventions were performed as the input. The causal impact model builds on this data to forecast the values had the intervention not taken place, i.e., the counterfactual values in the post-intervention period. Bayesian causal impact analysis thus allows estimating the causal effect by comparing the observed and counterfactual values whereas ITR helps in determining the effect by comparing a change in the coefficients of the predictors before and after an intervention, although both aim to answer causal questions.

We implemented six models for each outcome and separate models for each region (state/UT). Thus, our primary analysis consisted 6 * 6 * (30 (number of states and union territories at a subnational level) + 1(aggregate data at the national level), i.e., a total of 1080 models. The dates of intervention for the different outcomes and phases are similar to the processing done for ITR which account for lag for all the outcomes. As most of the potential covariates that could be included in the analysis and which are associated with the outcome such as mobility, weather conditions, temperature, and pollution were impacted by the lockdown and unlock interventions, i.e., they were not independent of the interventions, we did not include any covariates in the causal impact analysis. We also did not incorporate seasonality features as the assessment depicted a lack of significant seasonality. Thus, default parameters were used with dynamic regression and seasonality set to False. The model is described below:

causal impact model

= Causal Impact (data, pre. intervention period, post. intervention period)

We obtain the relative and absolute effect of each intervention for each outcome along with the p-values using the causal impact analysis. To understand the effect of each intervention, we flip (negate) the effects of the unlock phases since the nature of the unlock intervention is opposite to that of the lockdown intervention. Furthermore, we normalize the effects for all states and UTs between 0 and 1 across all outcomes to compare across outcomes. We do this independently for the 4 lockdown phases and the 2 unlock phases. Accordingly, Figure 2 represents the causal effects for all states and outcomes normalized for the 4 lockdown phases in the left panel and the normalized causal effects across all states and outcomes for the 2 unlock phases in the right panel. We use the geopandas package in Python to visualize the intervention effects across outcomes and phases. We also conducted sensitivity analyses (+/-3 days) around the intervention periods by considering additional lag periods (different across outcomes) around the intervention phase dates but found that the results did not vary based on sensitivity. The statistical analysis is carried out in R version 4.0.3, epinow2, CausalImpact, lme4 packages for the main analysis. Data processing and plots are generated using Python version 3.5. The code is made publicly available at <u>https://github.com/asarforindia/India-</u> lockdown-impact.

References

1. Johns Hopkins Coronavirus Resource Center. COVID-19 Map - Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu/map.html (2020).

2. Jin, Y.-H. et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil. Med. Res. 7, 4 (2020).

3. Khadka, S. et al. Different Modes of Transmission and Containment Strategies for COVID-19. Europasian J. of Med. Sci. 2, (2020).

4. Tian, H. et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 368, 638–642 (2020).

5. Lau, H. et al. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J. Travel Med. 27, (2020).

6. Haider, N. et al. Lockdown measures in response to COVID-19 in nine sub-Saharan African countries. BMJ Glob Health 5, (2020).

7. Blavatnik School of Government. Oxford COVID-19 Government Response Tracker. https://covidtracker.bsg.ox.ac.uk/ (2020).

8. Sandford, A. & Euronews. Coronavirus: Half of humanity now on lockdown as 90 countries call for confinement | Euronews. https://www.euronews.com/2020/04/02/coronavirus-in-europe-spain-s-death-toll-hits-10-000-after-record-950-new-deaths-in-24-hou (2020).

9. Fong, M. W. et al. Nonpharmaceutical Measures for Pandemic Influenza in Nonhealthcare Settings-Social Distancing Measures. Emerging Infect. Dis. 26, 976–984 (2020).

10. Islam, N. et al. Physical distancing interventions and incidence of coronavirus disease 2019: natural experiment in 149 countries. BMJ 370, m2743 (2020).

11. Meo, S. A. et al. Impact of lockdown on COVID-19 prevalence and mortality during 2020 pandemic: observational analysis of 27 countries. Eur. J. Med. Res. 25, 56 (2020).

12. Andrews, M. A. et al. First confirmed case of COVID-19 infection in India: A case report. Indian J. Med. Res. 151, 490–492 (2020).

13. Cheng, H.-Y. et al. High transmissibility of COVID-19 near symptom onset. medRxiv (2020) doi:10.1101/2020.03.18.20034561.

14. Rajagopalan, S. & Choutagunta, A. Assessing healthcare capacity in india. SSRN Journal (2020) doi:10.2139/ssrn.3570651.

15. The Lancet. India under COVID-19 lockdown. Lancet 395, 1315 (2020).

16. Hariharan, S. & The Times of India. India among countries most vulnerable, least prepared for automation in APAC: study - Times of India. https://timesofindia.indiatimes.com/business/india-business/india-among-countries-most-vulnerable-least-prepared-for-automation-in-apac-study/articleshow/84533057.cms (2021).

17. Ray, D. & Subramanian, S. India's lockdown: an interim report. Indian Econ. Rev. 1–49 (2020) doi:10.1007/s41775-020-00094-2.

18. Khanna, R. C., Cicinelli, M. V., Gilbert, S. S., Honavar, S. G. & Murthy, G. S. V. COVID-19 pandemic: Lessons learned and future directions. Indian J. Ophthalmol. 68, 703–710 (2020).

19. Varghese, G. M. & John, R. COVID-19 in India: Moving from containment to mitigation. Indian J. Med. Res. 151, 136–139 (2020).

20. Global Change Data Lab, Oxford Martin School. COVID-19 Data Explorer - Our World in Data. https://ourworldindata.org/explorers/coronavirus-data-explorer?uniformYAxis=0&hideControls=true&Interval=7-

day+rolling+average&Relative+to+Population=true&Color+by+test+positivity=false&country=USA ~ITA~CAN~DEU~GBR~FRA&Metric=Stringency+index (2020).

21. Soni, P. Effects of COVID-19 lockdown phases in India: an atmospheric perspective. Environ. Dev. Sustain. 1–12 (2021) doi:10.1007/s10668-020-01156-4.

22. India TV News Desk. Lockdown Unlock in India COVID19 pandemic guidelines restrictions 2020 coronavirus lockdown series | India News – India TV. https://www.indiatvnews.com/news/india/lockdown-unlock-in-india-covid19-pandemic-guidelinesrestrictions-2020-coronavirus-lockdown-series-674925 (2020).

23. Tiwari, V., Deyal, N. & Bisht, N. S. Mathematical Modeling Based Study and Prediction of COVID-19 Epidemic Dissemination Under the Impact of Lockdown in India. Front. Phys. 8, (2020).

24. Ranjan, A. et al. Impact of Lockdown 1.0-4.0 on spread of COVID-19 Pandemic in India. Indian J. Community Health 32, 598–600 (2020).

25. Mitra, A., Pakhare, A. P., Roy, A. & Joshi, A. Impact of COVID-19 epidemic curtailment strategies in selected Indian states: An analysis by reproduction number and doubling time with incidence modelling. PLoS ONE 15, e0239026 (2020).

26. Mave, V. et al. Association of national and regional lockdowns with COVID-19 infection rates in Pune, India. Sci. Rep. 12, 10446 (2022).

27. Kalra, A. & Novosad, P. Regional Lockdown Policies and COVID-19 Transmission in India. Economic and Political Weekly Vol. 57, (2022).

28. Ghosal, S., Bhattacharyya, R. & Majumder, M. Impact of complete lockdown on total infection and death rates: A hierarchical cluster analysis. Diabetes Metab. Syndr. 14, 707–711 (2020).

29. Thayer, W. M., Hasan, M. Z., Sankhla, P. & Gupta, S. An interrupted time series analysis of the lockdown policies in India: a national-level analysis of COVID-19 incidence. Health Policy Plan. 36, 620–629 (2021).

30. Ray, D. et al. Predictions, role of interventions and effects of a historic national lockdown in India's response to the COVID-19 pandemic: data science call to arms. Harvard Data Science Review 2020, (2020).

31. Zadey, S., Dharmadhikari, S. & Mukuntharaj, P. Ethics-driven policy framework for implementation of movement restrictions in pandemics. BMJ Glob Health 6, (2021).

32. Zadey, S. India's problem of data and deaths. Lancet 397, 2462–2463 (2021).

33. Siedner, M. J. et al. Social distancing to slow the US COVID-19 epidemic: Longitudinal pretest-posttest comparison group study. PLoS Med. 17, e1003244 (2020).

34. Institute for Health Metrics and Evaluation. COVID-19 model FAQs | Institute for Health Metrics and Evaluation. https://www.healthdata.org/covid/faqs (2020).

SUPPLEMENTARY MATERIAL

Table S1: Absolute causal effect of intervention [with 95% credible interval] as computed using causal impact analysis for different outcomes. Rows represent different intervention phases and columns represent the outcomes with sensitivity to the intervention: date of intervention - the relevant time window.

	Outcome (95% Credible Interval)					
Phase	Case growth	Death rate	R _t	Mobility		
Lockdown phase 1	-0.285	0.001	-0.243	-23.502		
	[-0.794, 0.197]	[0.001, 0.001]	[-0.307, -0.179]	[-41.087, -6.654]		
Lockdown phase 2	-0.041	0.002	0.379	41.340		
	[-0.318, 0.245]	[0.001,0.002]	[0.275, 0.480]	[27.079, 54.529]		
Lockdown phase 3	-0.022	0.002	0.221	28.237		
	[-0.219, 0.191]	[0.001,0.003]	[0.127, 0.326]	[17.180, 38.594]		
Lockdown phase 4	-0.014	0.007	0.200	25.705		
	[-0.198, 0.170]	(0.006,0.007)	[0.108, 0.288]	[15.566, 36.149]		
Unlock phase 1	0.009	0.006	0.180	26.835		
	[-0.162, 0.149]	[0.005,0.007]	[0.063, 0.297]	[17.944, 35.316]		
Unlock phase 2	0.011	0.011	0.092	0.314		
	[-0.114, 0.134]	[0.009, 0.014]	[-0.027, 0.226]	[-7.754, 8.332]		

Table S2: Absolute causal effect of intervention [with 95% credible interval] as computed using causal impact analysis for different outcomes. Rows represent different intervention phases and columns represent the outcomes with sensitivity to the intervention: date of intervention + the relevant time window.

	Outcome (95% Credible Interval)						
Phase	Case growth	Death rate	R _t	Mobility			
Lockdown phase 1	-0.285	0.001	-0.009	36.477			
	[-0.768, 0.168]	[0.000, 0.001]	[-0.112, -0.007]	[14.624, 57.999]			
Lockdown phase 2	-0.041	0.002	0.346	35.752			
	[-0.311, 0.225]	[0.002,0.003]	[0.247, 0.441]	[22.661, 48.447]			
Lockdown phase 3	-0.022	0.003	0.208	27.853			
	[-0.255, 0.201]	[0.002,0.004]	[0.122, 0.298]	[17.011, 38.195]			
Lockdown phase 4	-0.014	0.008	0.192	24.455			
	[-0.221, 0.167]	[0.007, 0.010]	[0.101, 0.282]	[14.770, 33.527]			
Unlock phase 1	0.009	0.004	0.165	22.031			

	[-0.150, 0.157]	[0.001,0.007]	[0.032, 0.295]	[12.653, 30.720]
Unlock phase 2	0.011	0.013	0.037	-2.243
	[-0.119, 0.132]	[0.010, 0.016]	[-0.085, 0.172]	[-9.662, 5.000]

TableS4:Estimatesforcasegrowthinlockdownphase1usingITR(case_growth~days0+days1+phase_indi_0+log_sum_pop+(0+days0+log_sum_pop|state),AIC:--<td

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	-0.0654592	-0.1161346	-0.0147838	0.02585529	754.563762	-2.5317525	0.01155127	*
days0	0.00018214	-0.0010385	0.00140278	0.00062279	4769.51854	0.29246259	0.76994568	
days1	-0.0006662	-0.0019512	0.00061878	0.00065562	4896.59044	-1.0161572	0.30960473	
phase_indi_0	-0.0531014	-0.0674616	-0.0387412	0.00732677	4896.59038	-7.2475848	4.91E-13	***
log_sum_pop	0.00807132	0.00529021	0.01085243	0.00141896	696.657568	5.68819663	1.89E-08	***

(a) Fixed effects

	Name	Var	Std
state	days0	1.73E-07	0.00041643
state	log_sum_pop	2.62E-06	0.00161904
Residual		0.02052475	0.14326461

(b) Random effects

Table S5: Estimates for case growth in lockdown phase 2 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	-0.0518497	-0.102708	-0.0009914	0.02594858	735.746445	-1.9981711	0.04606573	*
days0	-0.0014368	-0.0026024	-0.0002712	0.00059469	4731.93518	-2.4160559	0.01572728	*
days1	0.00118378	-3.01E-05	0.00239763	0.00061932	4896.52927	1.91141937	0.05600903	
phase_indi_1	-0.0081309	-0.0213975	0.0051356	0.00676877	4896.52932	-1.2012442	0.22971457	
log_sum_pop	0.00807943	0.00528392	0.01087494	0.00142631	680.717113	5.6645789	2.18E-08	***

	Name	Var	Std
state	days0	1.72E-07	0.00041427

state	log_sum_pop	2.58E-06	0.00160662
Residual		0.02073936	0.14401168

(b) Random effects

Table S6: Estimates for case growth in lockdown phase 3 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	-0.0478624	-0.0986769	0.00295206	0.02592624	710.249771	-1.8461003	0.06529358	•
days0	-0.0019942	-0.0031309	-0.0008574	0.00058	4712.70431	-3.4382702	0.00059051	***
days1	0.00179609	0.00061756	0.00297462	0.0006013	4896.43539	2.98700162	0.00283125	**
phase_indi_2	0.02945581	0.0150448	0.04386681	0.00735269	4896.43546	4.00612702	6.26E-05	***
log_sum_pop	0.00812338	0.0053282	0.01091856	0.00142614	654.505871	5.69607358	1.85E-08	***

	Name	Var	Std
state	days0	1.70E-07	0.00041242
state	log_sum_pop	2.53E-06	0.00159091
Residual		0.02067823	0.14379926

(b) Random effects

Table S7: Estimates for case growth in lockdown phase 4 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	-0.048718	-0.0994925	0.00205641	0.0259058	729.833117	-1.8805838	0.06042652	•
days0	-0.0018115	-0.0029413	-0.0006816	0.00057646	4709.65825	-3.1424239	0.00168595	**
days1	0.00158746	0.00041757	0.00275735	0.00059689	4896.34237	2.65953855	0.00785026	**
phase_indi_3	0.02159342	0.00732947	0.03585737	0.00727766	4896.34228	2.96708233	0.00302095	**
log_sum_pop	0.00808139	0.00528819	0.01087459	0.00142513	676.605502	5.67063793	2.11E-08	***

	Name	Var	Std
state	days0	1.69E-07	0.00041134
state	log_sum_pop	2.54E-06	0.00159332

Residual	0.02070952	0.14390802
----------	------------	------------

(b) Random effects Table S8: Estimates for case growth in unlock phase 1 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	-0.0499486	-0.1006773	0.00078006	0.02588245	756.477404	-1.9298255	0.05400207	
days0	-0.0016096	-0.0027356	-0.0004836	0.0005745	4655.19959	-2.8017424	0.00510374	**
days1	0.0013855	0.00022115	0.00254984	0.00059407	4897.07163	2.33222708	0.01972907	*
phase_indi_4	-0.0029923	-0.0136312	0.00764656	0.0054281	4897.07171	-0.5512655	0.58147682	
log_sum_pop	0.00805031	0.00525533	0.01084529	0.00142604	708.999794	5.6452311	2.39E-08	***

(a) Fixed effects

	Name	Var	Std
state	days0	1.80E-07	0.00042401
state	log_sum_pop	2.74E-06	0.00165547
Residual		0.02074039	0.14401525

(b) Random effects

Table S9: Estimates for case growth in unlock phase 2 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	-0.0514642	-0.1022666	-0.0006617	0.02592009	699.747258	-1.9854942	0.04747942	*
days0	-0.0015112	-0.0026493	-0.0003731	0.00058066	4601.43315	-2.6025811	0.00928217	**
days1	0.00123056	4.08E-05	0.00242034	0.00060704	4897.86543	2.02714665	0.04270147	*
phase_indi_5	0.00850321	-0.0043425	0.02134893	0.00655406	4897.86542	1.29739475	0.1945565	
log_sum_pop	0.00808565	0.00528241	0.01088888	0.00143025	636.708517	5.65331908	2.38E-08	***

(a) Fixed effects

	Name	Var	Std
state	days0	1.93E-07	0.00043909
state	log_sum_pop	2.95E-06	0.00171672
Residual		0.02072832	0.14397332

(b) Random effects

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	4.75317928	-11.706909	21.2132675	8.39815852	6.83492769	0.56597875	0.58949774	
days0	-0.1321058	-0.2992381	0.03502657	0.08527317	32.647017	-1.5492068	0.13097274	
days1	0.3849398	0.32911174	0.44076785	0.02848423	4865.03612	13.5141394	7.00E-41	***
phase_indi_0	1.68127157	0.77307368	2.58946947	0.46337479	4865.03898	3.62831907	0.0002882	***
log_sum_pop	-0.1843562	-1.1448698	0.77615734	0.49006695	7.24446453	-0.3761858	0.71755436	

Table S10: Estimates for death count in lockdown phase 1 using ITR

(a) Fixed effects

	Name	Var	Std
state	(Intercept)	136.315752	11.6754337
state	days0	0.19834166	0.44535566
state	log_sum_pop	0.06839826	0.26153061
Residual		82.9592031	9.10819428

(b) Random effects

Table S11: Estimates for death count in lockdown phase 2 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	-1.3848926	-13.02219	10.2524049	5.93750579	6.16838833	-0.2332448	0.82311937	
days0	-0.0678661	-0.2335677	0.09783542	0.08454316	34.6311021	-0.8027395	0.42760032	
days1	0.30834641	0.25678786	0.35990497	0.02630587	4871.83859	11.7215835	2.59E-31	***
phase_indi_1	-1.4458886	-2.2800238	-0.6117534	0.42558701	4871.83866	-3.3973982	0.00068575	***
log_sum_pop	0.13931836	-0.5520184	0.83065517	0.35272934	30.3868206	0.39497243	0.69562221	

	Name	Var	Std
state	(Intercept)	696.05105	26.3827794
state	days0	0.197003	0.44385019
state	log_sum_pop	2.34870883	1.53254978
Residual		82.9296254	9.10657045

(b) Random effects

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	4.03844242	-6.165232	14.2421168	5.20605198	38.998454	0.77572073	0.44259285	
days0	-0.0781487	-0.2442526	0.08795528	0.08474847	33.9712868	-0.9221248	0.36296651	
days1	0.32112125	0.27129736	0.37094514	0.02542082	4873.16	12.6322153	5.12E-36	***
phase_indi_2	-1.5603908	-2.4713925	-0.649389	0.46480534	4873.16005	-3.3570844	0.00079372	***
log_sum_pop	-0.1564782	-0.8349572	0.52200087	0.34616913	29.8930503	-0.4520281	0.65451184	

Table S12: Estimates for death count in lockdown phase 3 using ITR

(a) Fixed effects

	Name	Var	Std
state	(Intercept)	422.524587	20.5554029
state	days0	0.19900536	0.44610017
state	log_sum_pop	2.09936522	1.44891864
Residual		82.9591072	9.10818902

(b) Random effects

Table S13: Estimates for death count in lockdown phase 4 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	8.07477621	-2.6379267	18.7874792	5.4657652	21.7236222	1.47733682	0.15393725	
days0	-0.0949386	-0.2655569	0.0756797	0.08705175	30.8170488	-1.0905995	0.28390337	
days1	0.33938691	0.28998491	0.3887889	0.02520556	4865.3433	13.4647622	1.33E-40	***
phase_indi_3	0.67245197	-0.2328722	1.57777617	0.46190859	4865.3427	1.45581179	0.14550918	
log_sum_pop	-0.378709	-1.100575	0.34315691	0.36830571	26.0833818	-1.0282464	0.3132754	

	Name	Var	Std
state	(Intercept)	84.8660081	9.21227486
state	days0	0.2111043	0.45946088
state	log_sum_pop	1.01195047	1.00595749
Residual		83.1780706	9.12020124

(b) Random effects

					0			
	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	4.39079676	-5.3134969	14.0950904	4.9512612	49.4797884	0.8868037	0.37947474	
days0	-0.0873006	-0.2541654	0.07956429	0.08513669	33.126512	-1.0254165	0.3125967	
days1	0.33929376	0.29037916	0.38820836	0.02495689	4870.10146	13.5951955	2.41E-41	***
phase_indi_4	-2.492173	-3.1811619	-1.8031841	0.35153141	4870.10144	-7.0894747	1.54E-12	***
log_sum_pop	-0.1715427	-0.8170701	0.47398466	0.32935675	39.3826657	-0.5208416	0.60539343	

Table S14: Estimates for death count in unlock phase 1 using ITR

(a) Fixed effects

	Name	Var	Std
state	(Intercept)	330.827382	18.1886608
state	days0	0.20155387	0.44894751
state	log_sum_pop	1.70268668	1.30487037
Residual		82.334766	9.07385067

(b) Random effects

Table S15: Estimates for death count in unlock phase 2 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	6.28234217	-3.0342381	15.5989224	4.75344462	76.1754221	1.32163992	0.19024367	
days0	-0.0456543	-0.2123524	0.12104385	0.08505163	33.9794744	-0.5367831	0.59491498	
days1	0.26302798	0.21063848	0.31541748	0.02672983	4868.2197	9.84024229	1.23E-22	***
phase_indi_5	3.58294864	2.65402344	4.51187385	0.47395014	4868.21986	7.55975862	4.80E-14	***
log_sum_pop	-0.30645	-0.9519356	0.33903563	0.32933546	45.856931	-0.9305102	0.35697992	

	Name	Var	Std
state	(Intercept)	215.060095	14.6649274
state	days0	0.20005034	0.44726988
state	log_sum_pop	1.48149456	1.21716661
Residual		82.2602492	9.06974361

(b) Random effects

		1		1	8			
	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	-274.01459	-543.1911	-4.83809	137.337474	0.0749946	-1.9951917	0.81948022	
days0	-2.5958942	-5.4417251	0.24993673	1.45198122	73.8287878	-1.787829	0.07790705	•
days1	8.14270355	6.24900139	10.0364057	0.96619232	4818.48758	8.42762187	4.60E-17	***
phase_indi_0	29.6935043	4.00307539	55.3839333	13.1076026	4818.50585	2.26536502	0.02353449	*
log_sum_pop	18.8777763	1.08307913	36.6724736	9.07909398	0.11709388	2.07925773	0.74970228	

Table S16: Estimates for hospitalization in lockdown phase 1 using ITR

(a) Fixed effects

	Name	Var	Std
state	(Intercept)	84508.9895	290.704299
state	days0	39.2282602	6.26324678
state	log_sum_pop	655.140206	25.5957068
Residual		70232.2089	265.013601

(b) Random effects

Table S17: Estimates for hospitalization in lockdown phase 2 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	-289.3045	-553.64839	-24.960612	134.871809	1.52073959	-2.1450331	0.20378491	
days0	-1.135032	-3.9244538	1.65438976	1.42320052	69.5892038	-0.7975208	0.42786158	
days1	6.4576034	4.67767209	8.23753471	0.90814491	4865.63427	7.11076322	1.32E-12	***
phase_indi_1	-37.07525	-61.089592	-13.060908	12.2524406	4865.6341	-3.0259482	0.00249151	**
log_sum_pop	18.8821766	1.39092068	36.3734326	8.92427416	2.28798845	2.11582211	0.15235964	

	Name	Var	Std
state	(Intercept)	92073.0509	303.435415
state	days0	39.0657249	6.25025799
state	log_sum_pop	672.606963	25.9346672
Residual		70178.6644	264.91256

(b) Random effects

Table S18: Estimates for hospitalization in lockdown phase 3 using ITR

					<u>v</u>			
	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	-268.15573	-526.71011	-9.6013521	131.917924	6.79954323	-2.0327468	0.08277408	
days0	-1.5904133	-4.3577817	1.17695501	1.41194857	67.4317862	-1.1263961	0.26399061	
days1	6.98543723	5.25211441	8.71876004	0.88436463	4867.72895	7.89882026	3.45E-15	***
phase_indi_2	-22.448501	-48.878232	3.98122903	13.4848041	4867.72926	-1.6647258	0.09603183	
log_sum_pop	17.8956788	0.6179951	35.1733625	8.81530674	9.25396072	2.03006876	0.07206658	

(a) Fixed effects

	Name	Var	Std
state	(Intercept)	105484.172	324.783269
state	days0	39.0557325	6.24945857
state	log_sum_pop	751.130521	27.4067605
Residual		70270.673	265.086161

(b) Random effects

Table S19: Estimates for hospitalization in lockdown phase 4 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	-260.21619	-522.59522	2.16283878	133.869313	3.57271498	-1.9438076	0.13228499	
days0	-1.6043653	-4.3595449	1.15081435	1.40572972	67.6849946	-1.1413042	0.25776526	
days1	7.01936716	5.30010458	8.73862974	0.87719091	4867.15448	8.0020975	1.52E-15	***
phase_indi_3	-33.047976	-59.322421	-6.7735311	13.4055754	4867.15516	-2.4652411	0.01372637	*
log_sum_pop	17.4864358	-0.0388756	35.0117471	8.94164968	5.24300054	1.95561629	0.10522709	

	Name	Var	Std
state	(Intercept)	98228.9977	313.415057
state	days0	38.8211858	6.23066496
state	log_sum_pop	733.522358	27.0836179

(b) Random effects

Table S20: Estimates for hospitalization in unlock phase 1 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	-615.1556	-1035.6338	-194.6774	214.533636	3.24520769	-2.8674086	0.05845559	
days0	-1.7313844	-4.4863088	1.02353989	1.40559947	56.1065654	-1.2317765	0.22317028	
days1	7.31835641	5.61015713	9.02655568	0.87154626	4868.07059	8.39697989	5.94E-17	***
phase_indi_4	-57.045984	-77.111205	-36.980762	10.237546	4868.0713	-5.5722322	2.65E-08	***
log_sum_pop	38.0056145	13.4391072	62.5721218	12.5341626	3.80534634	3.03216224	0.0412908	*

(a) Fixed effects

	Name	Var	Std
state	(Intercept)	84806.0883	291.214849
state	days0	39.1035171	6.25328051
state	log_sum_pop	51.4082735	7.16995631
Residual		69823.8652	264.242058

(b) Random effects

Table S21: Estimates for hospitalization in unlock phase 2 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	-181.85666	-447.8875	84.1741756	135.732514	41.5642102	-1.3398165	0.18758454	
days0	-0.0107264	-2.7596351	2.73818233	1.40253021	72.3613334	-0.0076479	0.99391899	
days1	4.56453995	2.7632714	6.36580851	0.91903146	4871.31962	4.96668522	7.04E-07	***
phase_indi_5	118.362864	91.7282342	144.997494	13.5893466	4871.31969	8.70997465	4.10E-18	***
log_sum_pop	11.9055746	-6.492547	30.3036961	9.38696919	23.9451288	1.26830869	0.21688071	

	Name	Var	Std
state	(Intercept)	239235.988	489.117561
state	days0	37.7681493	6.14557965

state	log_sum_pop	1452.47497	38.1113496
Residual		69201.2657	263.061334

(b) Random effects

Table S22: Estimates for infection growth in lockdown phase 1 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
Intercept	0.16060766	0.12132228	0.19989303	0.020039	4924	8.01475349	1.33E-15	***
days0	-0.0029212	-0.0041159	-0.0017264	0.00060944	4924	-4.7931966	1.69E-06	***
days1	0.00272394	0.00147445	0.00397342	0.00063735	4924	4.2738487	1.96E-05	***
phase_indi_0	-0.0192828	-0.0308041	-0.0077615	0.00587688	4924	-3.2811308	0.00104112	**
log_sum_pop	-0.0037004	-0.0057528	-0.0016481	0.00104687	4924	-3.5347678	0.00041189	***

Table S23: Estimates for infection growth in lockdown phase 2 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
Intercept	0.1730889	0.13399927	0.21217853	0.01993915	4924	8.68085485	0	***
days0	-0.0045983	-0.0057354	-0.0034612	0.00058003	4924	-7.9276666	2.66E-15	***
days1	0.00458324	0.00340366	0.00576282	0.00060169	4924	7.61727375	3.09E-14	***
phase_indi_1	0.03294817	0.02238504	0.0435113	0.00538813	4924	6.11495733	1.04E-09	***
log_sum_pop	-0.0037004	-0.0057473	-0.0016536	0.00104406	4924	-3.5442914	0.00039733	***

Table S24: Estimates for infection growth in lockdown phase 3 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
Intercept	0.16968462	0.1305898	0.20877944	0.0199418	4924	8.50899242	0	***
days0	-0.0041419	-0.0052559	-0.0030279	0.00056825	4924	-7.2888146	3.62E-13	***
days1	0.00406977	0.00291807	0.00522146	0.00058747	4924	6.92764942	4.83E-12	***
phase_indi_2	0.03000538	0.01851535	0.04149541	0.00586093	4924	5.11956143	3.18E-07	***
log_sum_pop	-0.0037004	-0.0057496	-0.0016513	0.00104524	4924	-3.5402948	0.00040338	***

Table S25: Estimates for infection growth in lockdown phase 4 using ITR

Estimate 2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
-----------------	---------	----	----	--------	-------	-----

Intercept	0.1655651	0.12638957	0.20474063	0.01998297	4924	8.28531084	2.22E-16	***
days0	-0.0035854	-0.004695	-0.0024757	0.00056603	4924	-6.3341794	2.60E-10	***
days1	0.00347484	0.00232877	0.0046209	0.0005846	4924	5.9439917	2.97E-09	***
phase_indi_3	-0.0101807	-0.0215594	0.00119804	0.00580415	4924	-1.7540346	0.07948678	
log_sum_pop	-0.0037004	-0.0057544	-0.0016465	0.00104769	4924	-3.5320129	0.00041619	***

Table S26: Estimates for infection growth in unlock phase 1 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
Intercept	0.16683821	0.12767608	0.20600033	0.01997613	4924	8.35187754	2.22E-16	***
days0	-0.0037606	-0.0048654	-0.0026558	0.00056356	4924	-6.6729745	2.78E-11	***
days1	0.00363807	0.00249789	0.00477826	0.00058159	4924	6.25536356	4.30E-10	***
phase_indi_4	0.00919676	0.00078048	0.01761303	0.00429304	4924	2.14224652	0.03222255	*
log_sum_pop	-0.0037004	-0.0057541	-0.0016468	0.00104753	4924	-3.532555	0.00041534	***

Table S27: Estimates for infection growth in unlock phase 2 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
Intercept	0.16845385	0.12932119	0.20758651	0.0199611	4924	8.43910667	0	***
days0	-0.0039642	-0.0050746	-0.0028538	0.00056642	4924	-6.9986791	2.93E-12	***
days1	0.00396428	0.00281031	0.00511824	0.00058862	4924	6.73481163	1.83E-11	***
phase_indi_5	-0.0195162	-0.0293876	-0.0096447	0.00503532	4924	-3.8758584	0.00010763	***
log_sum_pop	-0.0037004	-0.0057519	-0.001649	0.00104642	4924	-3.5362919	0.00040952	***

Table S28: Estimates for mobility in lockdown phase 1 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	76.5108973	52.8094603	100.212334	12.0927921	30.8116151	6.3269836	4.99E-07	***
days0	-6.9840876	-7.135934	-6.8322412	0.07747407	4521.8231	-90.147416	0	***
days1	7.17595408	7.02352626	7.32838191	0.07777073	4865.54259	92.2706298	0	***
phase_indi_0	-8.0232295	-8.7501714	-7.2962877	0.3708955	4865.54029	-21.632049	3.69E-99	***

log_sum_pop	-3.3323715	-4.7355444	-1.9291986	0.7159177	30.3755511	-4.6546852	6.01E-05	***
(a) Fixed effects								

	Name	Var	Std
state	(Intercept)	49.074794	7.00534039
state	days0	0.00503324	0.07094535
Residual		51.981437	7.20981532

(b) Random effects

Table S29: Estimates for mobility in lockdown phase 2 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	76.8924256	52.6310738	101.153777	12.3784682	28.8333695	6.21178845	9.15E-07	***
days0	-7.158806	-7.3053314	-7.0122805	0.07475927	4399.49719	-95.758102	0	***
days1	7.36550886	7.21919703	7.51182068	0.07465026	4866.74669	98.6668865	0	***
phase_indi_1	-7.749002	-8.4143889	-7.083615	0.33948937	4866.74529	-22.825463	1.22E-109	***
log_sum_pop	-3.3021218	-4.7385973	-1.8656463	0.73290912	28.4442164	-4.5054997	0.00010381	***

(a) Fixed effects

	Name	Var	Std
state	(Intercept)	51.8906375	7.20351564
state	days0	0.00519893	0.07210359
Residual		51.4474241	7.17268598
		66 4	

(b) Random effects

Table S30: Estimates for mobility in lockdown phase 3 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	75.1901979	52.1235067	98.256889	11.7689362	9.546751	6.38886952	9.78E-05	***
days0	-7.5456379	-7.6972562	-7.3940195	0.07735774	4461.55083	-97.542125	0	***
days1	7.7749637	7.62365185	7.92627555	0.07720134	4866.91944	100.710213	0	***
phase_indi_2	0.90070316	0.14246048	1.65894584	0.38686562	4866.91935	2.32820679	0.01994189	*
log_sum_pop	-3.1077725	-4.4830996	-1.7324453	0.70171043	13.1546894	-4.4288532	0.00066187	***

	Name	Var	Std
state	(Intercept)	132.563921	11.5136406
state	days0	0.00520765	0.07216408
state	log_sum_pop	0.33289743	0.57697265
Residual		56.8871865	7.54235948

(b) Random effects

Table S31: Estimates for mobility in lockdown phase 4 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	78.4815054	55.0502713	101.912739	11.954931	11.2303471	6.56478115	3.67E-05	***
days0	-7.6227958	-7.7709515	-7.4746401	0.07559103	4410.65921	-100.84259	0	***
days1	7.85395638	7.70627022	8.00164253	0.07535146	4865.19645	104.230973	0	***
phase_indi_3	5.28743784	4.55429977	6.0205759	0.37405691	4863.88295	14.1353835	1.73E-44	***
log_sum_pop	-3.2585928	-4.6535036	-1.863682	0.71170228	12.3547924	-4.5785898	0.00058867	***

(a) Fixed effects

	Name	Var	Std
state	(Intercept)	43.805225	6.61855158
state	days0	0.00519954	0.07210786
state	log_sum_pop	0.06266365	0.25032709
Residual		54.7117679	7.39674036

(b) Random effects

Table S32: Estimates for mobility in unlock phase 1 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	77.5806587	55.2124777	99.9488397	11.412547	5.94272074	6.79783917	0.00051681	***
days0	-7.6812843	-7.8136074	-7.5489611	0.06751306	4114.17133	-113.77479	0	***
days1	7.89909029	7.76779407	8.03038651	0.0669891	4866.26766	117.916054	0	***
phase_indi_4	9.43585415	8.95884185	9.91286645	0.24337809	4866.26705	38.770351	8.53E-287	***
log_sum_pop	-3.1940728	-4.5405812	-1.8475644	0.68700673	8.9237394	-4.6492599	0.00123096	**

(u) i med circets								
	Name	Var	Std					
s	(Intercept)	40.0167342	6.32587814					
state	days0	0.00525069	0.07246167					
state	log_sum_pop	0.18414656	0.42912302					
Residual		43.5122716	6.59638322					

(a) Fixed effects

(b) Random effects Table S33: Estimates for mobility in unlock phase 2 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	80.4308751	58.1703532	102.691397	11.3576179	1.39613775	7.08166767	0.04621207	*
days0	-7.5549238	-7.7051071	-7.4047405	0.07662555	4383.86181	-98.595363	0	***
days1	7.79176613	7.64186568	7.94166659	0.07648123	4862.80877	101.878149	0	***
phase_indi_5	-1.9473124	-2.5541829	-1.340442	0.30963347	4862.95788	-6.289089	3.47E-10	***
log_sum_pop	-3.3691215	-4.7314158	-2.0068272	0.69506088	3.60705381	-4.8472322	0.01080497	*

(a) Fixed effects

	Name	Var	Std
state	(Intercept)	18.6881432	4.32297851
state	days0	0.00530359	0.07282573
state	log_sum_pop	0.49104982	0.70074947
Residual		56.4805422	7.51535377

(b) Random effects

Table S34: Estimates for Rt in lockdown phase 1 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	1.71001543	-0.056759	3.47678989	0.9014321	33.8834924	1.89699859	0.06637847	
days0	-0.0550437	-0.0884921	-0.0215953	0.01706584	2095.23665	-3.2253735	0.00127746	**
days1	0.0458001	0.01247108	0.07912913	0.01700492	4865.78651	2.6933446	0.00709817	**
phase_indi_0	-0.4464996	-0.7538205	-0.1391787	0.15679926	4865.78664	-2.8475875	0.00442366	**
log_sum_pop	0.08778449	-0.0316673	0.20723628	0.06094591	45.8942969	1.44036722	0.15655107	

(a) Fixed effects								
	Name	Var	Std					
state	days0	0.00080495	0.02837156					
state	log_sum_pop	0.03044006	0.1744708					
Residual		9.36572491	3.06034719					

(a) Fixed effects

(b) Random effects

Table S35: Estimates for Rt in lockdown phase 2 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	1.91982802	0.1630553	3.67660074	0.89632908	34.2696102	2.14187853	0.03939403	*
days0	-0.0894392	-0.1214071	-0.0574712	0.01631047	2066.94061	-5.4835427	4.68E-08	***
days1	0.08396506	0.05244071	0.11548941	0.01608415	4864.84595	5.22036093	1.86E-07	***
phase_indi_1	0.60148115	0.319181	0.8837813	0.14403334	4864.84574	4.17598568	3.02E-05	***
log_sum_pop	0.09057457	-0.0275503	0.20869948	0.06026892	46.4628795	1.50284059	0.13964706	

(a) Fixed effects

	Name	Var	Std
state	days0	0.00076814	0.02771538
state	log_sum_pop	0.02882982	0.16979346
Residual		9.35106061	3.05795039

(b) Random effects

Table S36: Estimates for Rt in lockdown phase 3 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	2.14176333	-0.1102673	4.39379399	1.14901635	52.5107276	1.86399727	0.067917	
days0	-0.0707647	-0.1026699	-0.0388596	0.01627844	314.287471	-4.3471436	1.87E-05	***
days1	0.06345816	0.0326837	0.09423261	0.01570154	4815.66841	4.04152409	5.39E-05	***
phase_indi_2	-0.142376	-0.4494007	0.16464863	0.1566481	4815.66543	-0.9088907	0.36345328	
log_sum_pop	0.06642284	-0.0947347	0.22758035	0.08222473	9.51898835	0.80782064	0.43891422	
(a) Fixed effects								

Name Var Std

state	(Intercept)	6.73247148	2.59470065
state	days0	0.001029	0.03207804
state	log_sum_pop	0.09633893	0.31038513
Residual		9.36932115	3.06093469

(b) Random effects

Table S37: Estimates for Rt in lockdown phase 4 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	3.60078298	1.9328885	5.26867746	0.85098221	50.7164293	4.2313258	9.74E-05	***
days0	-0.0677994	-0.0980909	-0.037508	0.0154551	4816.93259	-4.3868616	1.17E-05	***
days1	0.06045231	0.0297078	0.09119681	0.01568626	4823.84193	3.85383794	0.00011779	***
phase_indi_3	-0.486859	-0.7921052	-0.1816128	0.15574072	4823.84164	-3.126087	0.00178202	**
log_sum_pop	-0.0131414	-0.1004147	0.07413185	0.04452799	30.3148614	-0.2951269	0.76990881	

(a) Fixed effects

	Name	Var	Std
state	(Intercept)	3.06288388	1.75010968
state	days0	0.000245	0.01565258
Residual		9.48749588	3.0801779

(b) Random effects

Table S38: Estimates for Rt in unlock phase 1 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	2.02139615	0.18348268	3.85930962	0.93772819	29.3448459	2.15563122	0.03944449	*
days0	-0.0739399	-0.1063158	-0.041564	0.01651862	325.727527	-4.4761541	1.05E-05	***
days1	0.06655263	0.03618341	0.09692186	0.01549479	4869.744	4.29516265	1.78E-05	***
phase_indi_4	0.14011907	-0.0840522	0.36429033	0.11437519	4869.74452	1.22508277	0.22060329	
log_sum_pop	0.07740518	-0.0581349	0.21294522	0.06915435	31.627796	1.11931027	0.27143666	
(a) Fixed effects								

Var

Name

Std

state	days0	0.00142266	0.03771821
state	log_sum_pop	0.05493586	0.234384
Residual		9.35028423	3.05782345

(b) Random effects

Table S39: Estimates for Rt in unlock phase 2 using ITR

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
(Intercept)	5.60079684	2.15797143	9.04362224	1.75657585	569.931131	3.18847423	0.00150872	**
days0	-0.0739711	-0.1052512	-0.042691	0.01595954	1633.12416	-4.6349135	3.85E-06	***
days1	0.06723231	0.03645457	0.09801005	0.01570322	4887.41387	4.28143587	1.89E-05	***
phase_indi_5	-0.0761629	-0.3394472	0.18712131	0.13433117	4887.41375	-0.566979	0.57075451	
log_sum_pop	-0.1271956	-0.3184243	0.06403312	0.09756747	57.2145961	-1.3036682	0.19756804	

(a) Fixed effects

	Name	Var	Std
state	(Intercept)	44.696988	6.6855806
state	days0	0.00079065	0.02811857
state	log_sum_pop	0.13553002	0.36814402
Residual		9.35563387	3.05869807

(b) Random effects