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Abstract 
Objective: More than one-third of the people with focal epilepsy do not achieve seizure freedom 
with medication, neuromodulation, or neurosurgery therapies. Palliative care with the goal of 
reducing epilepsy burden is an alternative for these patients. Minimizing severe seizures is 
essential for reducing morbidity. Existing seizure severity scales are qualitative and rely on 
patient reports, limiting our ability to rigorously track and intervene to curb severe seizures. The 
goal of this study is to develop and validate a quantitative metric for seizure severity. 
 
Methods: We retrospectively analyzed preictal and ictal intracranial-EEG (iEEG) recordings 
from 54 people with drug-resistant epilepsy undergoing pre-surgical evaluation. We developed a 
new metric that objectively combines seizure duration, spread, and semiology to quantify seizure 
severity. We calculated preictal iEEG network features and fit a linear mixed-effects model to 
quantify patient-specific associations between preictal networks and seizure severity. 
 
Results: We evaluated 256 seizures from 54 patients using the quantitative seizure severity 
score. Seizure severity was consistent with clinical seizure type. Medication taper strategy was 
associated with seizure severity (p = 0.018, 97.5% confidence interval = [-1.242, -0.116]) and 
lower pre-surgical seizure severity was associated with better post-surgical seizure outcome (U = 
465, p = 0.042). A linear mixed-effects model with preictal network features as regressors and 
seizure severity as response revealed a group-level positive trend. In 12 out of 14 patients with 
multiple types of seizures, more severe seizures were preceded by more abnormal preictal 
networks. 
 
Significance: We present a quantitative metric for seizure severity that correlates with clinical 
and electrographic features. We found that the seizure severity score was associated with 
abnormal preictal networks. We propose this measure to holistically capture patient condition 
and guide incremental changes in therapy to improve patient outcome over time. 
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Introduction 
Of the approximately 70 million people with epilepsy worldwide, more than 30% are resistant to 

anti-seizure medications (ASMs)1. For many of these patients, clinicians aim for palliative rather 

than curative therapies. These approaches focus on reducing the frequency and severity of 

seizures as clinicians adjust ASMs or expand ablation, resection, and stimulation targets to 

deliver better seizure control. There are currently no good measures of seizure severity to guide 

therapy changes other than patient seizure diaries, which can be inaccurate for many 

individuals2. A quantitative measure of seizure severity is essential for ensuring that therapies are 

effectively treating individuals with epilepsy. 

 

Assessment of the clinical response to treatment relies mainly on seizure diaries in which 

patients report seizure type, semiology, duration, and frequency. Emerging evidence suggests 

that individuals with impaired awareness during their seizures may not be able to report epileptic 

events or their severity accurately3–5. A combination of at least three factors can characterize 

seizure severity: a) seizure duration, b) patterns of seizure spread, and c) seizure semiology. 

Seizure semiotics such as convulsions, lack of awareness, falls, disruptive automatisms, or 

seizure-related injuries are associated with decreased quality of life and increased risk of sudden 

unexpected death (SUDEP)5–8. Previous studies have quantified seizure severity from clinical 

semiology using survey-based scales8–12. The National Hospital Seizure Severity Scale (NHS3) 

is one such scale, amongst others, that is useful for measuring the efficacy of ASMs in clinical 

trials8,12. Though these scales quantify clinical semiology to estimate seizure severity, survey-

based scales are limited by interpretation bias and insufficiently capture objective measures of 

severe seizures12. 

 

Electrophysiological features characterizing seizure severity, such as seizure spread patterns and 

seizure duration, can be quantified from EEG. In epilepsy monitoring units (EMUs), patients are 

monitored with intracranial EEG (iEEG) for days to weeks, and seizures are induced by 

progressively withdrawing ASMs, sleep deprivation, or other provoking measures. Even in the 

controlled EMU setting, severe seizures carry a significant risk of injury13,14, so it is critical to 

minimize seizure severity while maximizing the diagnostic yield of iEEG. There is some 

precedent for using EEG measures of seizure severity to guide treatment; for example, in 
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generalized epilepsies, long runs of primary generalized discharges, a measure of seizure 

duration, are associated with impaired awareness15. Developing a quantitative seizure assessment 

tool that combines clinical and electrophysiological features of seizures would be instrumental in 

guiding seizure reduction therapies. 

 

In this study, we propose a quantitative measure of seizure severity that integrates seizure 

duration, spread, and semiology. We apply this seizure severity score to more than 250 seizures 

from 54 patients who underwent iEEG monitoring, many of whom exhibited multiple seizure 

types. We validate the sensitivity of the seizure severity score against clinical variables such as 

seizures after medication tapering, duration of epilepsy, seizure classification, and surgical 

outcomes. We finally test the hypothesis that quantitative measures derived from preictal iEEG 

recordings may predict more severe seizures and could notify patients and clinicians to preempt 

seizure-related injuries in the EMU. 

 

Materials and methods 

Patient characteristics 

We retrospectively analyzed data from 256 seizures recorded in 54 individuals with epilepsy 

from the Hospital of the University of Pennsylvania (HUP). Data collection for research received 

prior approval by the HUP institutional review board and informed consent was obtained from 

each subject. Subjects completed (1) in-patient iEEG monitoring in the EMU, (2) pre- and post-

implant MR and CT imaging, respectively, to localize electrode contacts, (3) resection or 

ablation surgery for seizure control, and (4) assessment of surgical outcome at one year after 

surgery. Patient demographics are provided in Table 1 and Table S1, dichotomized to determine 

clinical factors that are associated with FBTCS. All seizures were classified using the ILAE 

classification as focal aware seizures (FAS, n = 50), focal impaired awareness seizures (FIAS, n 

= 93), and focal to bilateral tonic-clonic seizures (FBTCS, n = 73)16. Subclinical seizures (SCS, n 

= 36) were identified on the EEG by the attending epileptologists and were accompanied by no 

obvious clinical symptoms. Four seizures were marked as unknown classification as ictal testing 

for awareness was not performed. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.26.22281569doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.26.22281569
http://creativecommons.org/licenses/by-nc-nd/4.0/


iEEG data selection and processing 

iEEG data were collected at 500, 512, or 1024 Hz using electrocorticography (ECoG) grids and 

strips, stereoelectroencephalography (SEEG) depth electrodes, or a combination of both 

modalities. In each patient, we segmented iEEG recordings into three categories: 1) ictal epochs 

for each seizure event, 2) 60-sec preictal epochs preceding each seizure’s onset, and 3) 20 

interictal epochs, each 30-sec in duration, to quantify a baseline distribution. 

 

Ictal epochs were identified from the clinical notes of the attending EMU epileptologist and 

confirmed with video-EEG. Interictal epochs were selected randomly and fulfilled the following 

criteria: clips were recorded 1) during awake segments of iEEG recording for consistency across 

patients, 2) more than 72 hours after implant to minimize implant effect, 3) at least 2 hours 

before annotated seizures, and 4) at least 2, 6, and 12 hours after subclinical, focal onset, and 

focal-to-bilateral seizures, respectively. Wake status was determined by a validated sleep 

detector17. In all recordings, we excluded the contacts in white matter, outside the brain, and 

corrupted with noise. On each channel, we applied a 60 Hz second-order IIR notch filter (quality 

factor 30) to remove power line noise and a third-order Butterworth filter between 1 to 120Hz to 

detrend and remove high-frequency noise, both in forward and backward directions to prevent 

artificially introduced phase shift. We applied a common-average reference to all channels. 

 

On the preictal and interictal segments, we computed iEEG functional connectivity networks. 

We down-sampled the preictal and interictal epochs to 200Hz to maintain a consistent sampling 

rate across patients and applied a third-order Butterworth filter between 0.5 to 80Hz. We 

computed broadband coherence between each pair of electrodes using Welch’s method and a 2-s 

Hamming window with 1-s overlap. Channels were represented as nodes and broadband 

coherence between pairs of channels were represented as edges. We finally summarized the 

network topology in each epoch by computing the mean node strength across all channels. 

 

To estimate the deviations in the preictal networks from the interictal baseline in each patient, we 

computed the mean and standard deviation of node strength from 20 interictal epochs. We z-

scored preictal node strength using the interictal node strength mean and standard deviation, then 
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computed the absolute value of the z-score. A higher (lower) preictal z-score meant that the 

preictal network was less (more) similar to the interictal baseline distribution. 

 

Seizure severity score 

We obtained a seizure severity score for each seizure by combining the seizure duration, seizure 

spread pattern, and seizure semiology as shown in Figure 1 and detailed below: 

 

Quantifying seizure duration and spread from electrographic characteristics:  

We quantified seizure duration from the clinical annotations of the iEEG recording. A clinical 

team of board-certified epileptologists visually reviewed iEEG data and marked the earliest 

electrographic change (EEC) and offset18. We computed seizure duration as the number of 

seconds from EEC to offset and transformed the duration to a log scale. 

 

We quantified seizure spread by first separating iEEG contacts as those involved and not 

involved in the seizure using an absolute slope-based seizure detector. The absolute slope is a 

time-series metric that records both high-amplitude slow-wave and low-amplitude fast-wave 

signal properties, which are typical in iEEG recordings of seizures19 (see Supporting 

Information). Figure S1 shows that results obtained using the absolute slope method are 

consistent with results obtained using deep-learning-based seizure spread algorithms20. Next, we 

localized iEEG contacts to brain regions using a predefined Desikan-Killiany atlas21 by applying 

our previously published semi-automatic pipeline22,23. This pipeline registers post-implant CT 

imaging to pre-implant MRI, labels contacts in native space, and transforms the electrode 

coordinates in ICBM152 2009c non-linear symmetric standard space24,25. We constructed a 5mm 

sphere around each contact26 and mapped the contact to the overlapping brain regions defined by 

the atlas. The number of regions that overlapped with at least one seizing channel quantified the 

extent of seizure spread for every seizure. 

 

Quantifying seizure semiology from clinical characteristics 

We quantified seizure semiology from the clinical features of each seizure by applying the 

previously validated NHS3 seizure-severity scale8,12. For each seizure, we extracted the clinical 

semiology and patient descriptions reported by epileptologists in their notes. Three independent 
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reviewers rated each seizure on the 27-point NHS3 scale of seizure severity, which consists of 

questions related to fractures, falls, and automatisms, among other physical and social 

manifestations of seizures. The methods section in the Supporting Information shows the score 

sheet of the NHS3 seizure-severity scale. 

 

Integrating electrographic and clinical characteristics 

Seizure duration, spread, and semiology were integrated into a single severity score for each 

seizure. We reduced the three features into a single seizure severity score using non-negative 

matrix factorization (NMF) for dimensionality reduction. NMF quantified the goodness-of-fit 

(R2) to interpret each feature’s contribution to the seizure severity score (see Supporting 

Information for details on the application of NMF). 

 

Statistical methods 

To validate the seizure severity score and assess its sensitivity in response to changes in clinical 

therapy and disease severity, we tested its association with a) seizure type, b) epilepsy duration, 

c) ASM tapering load in the EMU, and d) seizure outcomes at one-year after surgery. Across all 

analyses, we chose nonparametric statistical tests over parametric methods to avoid making any 

assumptions about the distribution of features across seizures or patients. We hypothesized that 

more severe seizures would be associated with severe clinical seizure classification, longer 

epilepsy duration, lower ASM load due to medication tapering, and poor seizure outcomes. We 

rejected the null hypotheses for p < 0.05 and reported the test statistic for each analysis. 

 

To test if seizure severity scores were different across seizure types, we applied the Kruskal-

Wallis test and the post-hoc Dunn’s test for pairwise comparisons. One-tailed Spearman rank 

correlation was used to test the associations between epilepsy duration and patient-level severity, 

defined as the maximum seizure severity score across a patient’s seizures. We converted the 

ASM load in patients for each day in the EMU to a continuous metric by applying a first-order 

pharmacokinetics model, thereby quantifying the average ASM load for up to one hour before 

seizure onset. A linear mixed-effects model with ASM load as the fixed effect predictor, patient 

number as the random effect, and severity as the response was used to determine the effect of 

ASM load on severity. A Mann-Whitney rank sum test was used to determine if the distribution 
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of patient-level severity was significantly different between subjects who were and were not 

seizure-free after surgery. 

 

To test whether iEEG node strength in the preictal segments could predict seizure severity 

scores, we applied a linear mixed-effects model with random slope and intercept. We set the 

mean preictal node strength z-scores as the fixed effect predictor, individual patients as the 

random effect, and severity as the response to determine the patient-level associations between 

preictal deviation in node strength and seizure severity. 

 

Data availability 

To ensure transparency and allow others to use our methods, we have made all our code 

available at https://github.com/penn-cnt/Pattnaik-seizure-severity. All iEEG recordings are 

accessible from iEEG.org. 

 

Results 

Seizure severity scores highlight the variability of seizures within patients 

Across 256 seizures from 54 patients, seizure severity scores ranged from 0.03 to 2.3, with a 

median of 0.74 (Figure 2a). Seizure severity scores were bounded such that the lowest possible 

score was 0. We calculated the range of severity scores for each patient and found that severity 

scores varied substantially even in the same patient (median = 0.33, IQR = 0.79, Figure 2b). 

We highlight two example cases, HUP162 (in red) and HUP139 (in blue). All three seizures for 

HUP162 were deemed SCS, whereas HUP139 had an episode of FAS, FIAS, and FBTCS each. 

All seizures were deemed as subclinical for HUP162, though seizure spread patterns and 

duration were different (Figure 2c). This indicated different seizure severity (seizure 1 = 0.20, 

seizure 2 = 0.69, seizure 3 = 0.75). For HUP139, the difference in seizure semiology is apparent 

for seizure traces of the FBTCS characterized by longer duration and spread (Figure 2d). 

However, we found that the FAS and FIAS were more similar when seizure spread, duration, and 

other NHS3 clinical characteristics were factored in, resulting in seizure severity scores of 0.25 

and 0.24 for the FAS and FIAS, respectively, and 0.75 for the FBTCS. 
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Figure 2e shows the seizure severity score for all seizures categorized by clinical seizure type. 

We highlight three observations from this plot: a) median seizure severity scores monotonically 

increase from SCS, FAS, FIAS, and FBTCS types, b) severity values vary even within a single 

seizure type, and c) distributions of severity overlapped across seizure types i.e., some seizures 

deemed as SCS, FAS, and FIAS, typically considered less severe, had higher scores than some 

FBTCS seizures, typically considered more severe. We detected a similar trend in Figure S2 

upon categorizing individual features constituting seizure severity by seizure type. 

Overall, these results suggest that our proposed seizure severity score is more sensitive in 

detecting variability between seizures, even in the same patient, than the gross classification of 

seizures by clinical semiology alone. 

Seizure severity score is sensitive to changes in disease severity and clinical response  

Severe seizures are a hallmark of severe epileptic disorders27; therefore, we tested if our 

proposed seizure severity score correlates with factors known to be associated with epilepsy 

severity. Specifically, we focused on three independent factors: a) epilepsy duration: patients 

who experience uncontrolled seizures for longer may exhibit greater changes in their epileptic 

networks and more severe seizures22,28, b) ASM load taper: more severe seizures might occur 

when patients are weaned off ASMs in the EMU29, and c) seizure outcomes: poor seizure 

outcomes (Engel class 2-4) after surgery are associated with widespread abnormalities in 

epileptic network and may permit severe seizures before surgery30. 

 

Epilepsy severity, an important indicator of cognitive and social burden, consists of seizure 

frequency, seizure severity, and the degree to which brain networks are altered. Figure 3 shows 

the association of these three independent clinical factors with each patient’s seizure severity 

score. We found that seizure severity correlated with epilepsy duration (Spearman r = 0.23, p = 

0.049), ASM load taper (p = 0.018, 97.5% confidence interval = [-1.242, -0.116]), and seizure 

outcomes (U = 465, p = 0.042). These results appear to validate our hypotheses that more severe 

seizures might occur with longer epilepsy duration and at lower doses of ASMs in the EMU. The 

association of more severe seizures with one-year seizure outcomes after surgery suggests that 

the seizure severity score might be a sensitive predictor of response to therapy.  
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Deviations in preictal iEEG network node strength from baseline are associated with 

seizure severity within patients 

We assessed if preictal iEEG features could predict the severity of impending seizures in 

individual patients. Premising on emerging evidence that distinct changes in iEEG functional 

connectivity precede seizures of different severity31, we identified patients whose seizure 

severity scores had a variance of at least 0.1 (n = 14). These patients had seizures in the EMU 

that were very dissimilar, spanning a wide range on the spectrum of the seizure severity score. 

We computed the deviation of iEEG functional connectivity node strength in the preictal 

segment preceding each seizure from the seizure-free/interictal baseline. Modeling the 

relationship between seizure severity score and node strength, we found that most patients had a 

positive trend. At the group level, there was a significant positive association between preictal 

deviation in node strength and seizure severity (beta = 0.68, 95% CI = [0.12, 1.25]).  

The positive association, at the group level, demonstrates that preictal iEEG segments with 

greater deviations in node strength precede more severe seizures in approximately 86% (12/14) 

of patients. However, the opposite effect between seizure severity and preictal deviation in node 

strength at the individual patient level (Figure 4b-c) suggests that network changes prior to 

seizure onset might not fully explain the occurrence of severe seizures in 14% (2/14) of our 

cohort. Analyzing chronic iEEG recordings and a larger sample size are needed to better 

understand the influence of preictal dynamics on seizure severity at a patient-specific scale. 

 

Discussion 
Quantifying seizure severity is critical to assess disease burden in epilepsy and measuring 

response to therapy, particularly for neurostimulation and medications which are adjusted over 

multiple years. We propose a new metric to quantify seizure severity that builds on the previous 

semiology-based seizure severity scales by including electrophysiological features that 

characterize seizure spread and duration. The proposed seizure severity score highlights seizure-

specific variability in individual patients and demonstrates the overlap between clinical seizure 

classifications. By assessing the association between seizure severity scores and independent 

clinical measures related to epilepsy severity, we found that our seizure severity score might be 
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sensitive to changes in clinical response. We investigated the iEEG data before seizures to 

suggest network measures that may predict the likelihood of severe seizures that could help 

preempt seizure-related injuries. 

 

Seizure frequency and type are typically recorded from patient diaries maintained by people with 

epilepsy, and have been shown to be inaccurate and inconsistent for children and people who 

have altered awareness during seizures4,32. While survey-based scales of seizure severity are 

effective in capturing associated behaviors12, they lack a measure of how brain networks are 

altered by epilepsy. Emerging evidence suggests that structural30 and functional33 networks are 

altered in people with severe seizures and epileptic networks acutely generate seizures that 

manifest as different network dynamics34. Our measure for seizure severity, which uncovers 

differences between seizures within and across individual patients, builds on existing seizure 

classification and severity scales by quantifying electrographic duration and spread—both 

characteristics of widespread, pathological brain networks. 

 

Epilepsy duration, response to medication taper, and surgical outcomes are clinical variables that 

independently measure properties of epilepsy burden. Epilepsy duration associates with 

widespread abnormalities in the epileptic network22 and quality of life5, though some patients, 

including those with genetic seizure disorders, do not experience progressively worse seizures 

with epilepsy duration. We observe a weak, positive correlation between patient-level seizure 

severity and epilepsy duration in accordance with previous findings, perhaps limited by the small 

sample size and heterogeneity of our cohort. Moreover, our finding that more severe seizures 

occur at lower ASM loads is robust to various taper strategies determined by clinical need. A 

growing body of evidence suggests that rapid seizure spread and a propensity for FBTCS are 

guided by a diffuse epileptic network and indicate poor surgical outcome35,36. We find that the 

seizure severity score similarly measures properties of the epileptic network that manifest as 

poor surgical outcome. Despite substantial heterogeneities in the patient population, our findings 

that seizure severity is associated with epilepsy duration, response to medication taper, and 

surgical outcome are promising for determining a clinical biomarker that holistically measures 

epilepsy burden. 
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The current treatment approach for severe seizures in the EMU is emergency administration of 

short-acting benzodiazepines such as lorazepam (Ativan) which acutely reduces or terminates 

seizures37. Severe seizures in this setting are detected by visual observation of specific 

semiological signs by clinical experts, and there is no indication of severe seizures prior to onset. 

Previous work has indicated that iEEG network properties may differ for moderate and high 

severity seizures31,38. Our results show that network changes before seizure onset may predict 

severity within individual patients. However, the patient-specific nature of our result indicates 

that several mechanisms may cause severe seizures, and not all are detected with the sparse 

spatial sampling of iEEG within the controlled EMU setting. Seizure triggers from 

environmental factors, sleep stages, and other behavioral changes which are inadequately 

captured in iEEG recordings may also affect the severity of an impending seizure. These factors 

must be integrated with iEEG network measures to build a robust seizure severity predictor. We 

envision an application of the seizure severity predictor where a patient’s propensity for severe 

seizures may dictate their medication prescriptions and taper strategy in the EMU, and clinicians 

and caregivers can intervene with acute medication to curb severe seizures within a warning 

period to ensure patient safety. 

 

Our work has several important clinical implications. Neurostimulation-based therapies such as 

deep-brain stimulation (DBS)39 and responsive neurostimulation (RNS)40 rely on iterative 

adjustments of stimulation parameters such as amplitude, frequency, and pulse width to 

effectively reduce seizures. Searching the parameter space of stimulation devices to optimize 

therapy remains an outstanding challenge40. Measuring changes in seizure severity following 

stimulation parameter adjustments could close the loop for improving iterative therapies and 

enable clinicians to approach optimal device settings more rapidly. The emerging development 

of minimally invasive devices with more recording channels and a suite of on-board algorithms 

could leverage seizure severity recordings to self-optimize parameters without manual clinical 

input41–43.  Administration of ASMs are also iterative, as dosage and new medications are altered 

based on patient reports of seizure frequency44. Changes in seizure severity could objectively 

measure the effects of medication administration and decrease the time to finding effective 

medication plans for patients. Previous studies have indicated that subclinical seizures, which are 

not captured in seizure diaries, may affect mood and impair cognition45. Detecting and 
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incorporating the severity of subclinical seizures and interictal epileptiform activity in the overall 

burden of epilepsy could guide therapies to diminish deleterious effects on mood and cognition. 

Bringing quantitative measures of seizure severity into therapies of neurosurgery, 

neuromodulation, and medication might better measure one’s epilepsy condition over time. 

 

Though our study outlines a novel methodology for measuring seizure severity, certain 

limitations must be noted. Intracranial EEG is implanted with the goal of identifying the 

epileptogenic zone and patients do not have a uniform number of electrodes nor a uniform 

number of sampled regions. We chose two methodological considerations to mitigate this 

limitation. First, we measured seizure spread as the number of brain regions where at least one 

electrode in a counted region was recruited to the seizure to account for spatial oversampling of 

the hypothesized seizure onset zone. We chose not to normalize the number of recruited regions 

by the number of implanted regions since some subjects had unilateral implants only. Second, we 

summarized the preictal data with node strength, a global network measure that is robust to the 

incomplete sampling of the iEEG brain network, 46,47. Baseline seizure frequency and severity 

were not controlled for when assessing an individual’s propensity for severe seizures following 

medication taper, and future studies might additionally incorporate an individual’s trajectory in 

seizure severity over the course of their disease using clinical notes from the electronic health 

record48. People admitted to the EMU are often medically refractory, thus seizure severity scores 

may differ in ambulatory EEG, where an individual may be exposed to more seizure triggers. We 

have developed and validated a quantitative seizure severity score using iEEG data as a proof of 

principle, and future work should extend these concepts to non-invasive EEG and chronic, 

ambulatory iEEG devices to measure long-term changes in seizure severity. Despite these 

limitations, our proposed framework for calculating seizure severity can be applied across a 

multi-center dataset of seizures to overcome center-specific biases in clinical practice. 

 

Conclusion 
We developed and validated a continuous measure for seizure severity that combines seizure 

duration, spread, and semiology. We show that the seizure severity score detects variability in 

seizures within and across patients and is sensitive to measures of epilepsy severity. Finally, we 

propose a preictal iEEG network measure that associates with seizure severity. As the number of 
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palliative measures for drug-resistant epilepsy grows7,49, new metrics are critical to evaluate 

epilepsy burden following medication administration, neuromodulation, and neurosurgery. By 

proposing a novel, quantitative metric for seizure severity, we seek provide an objective measure 

for epilepsy burden and improve clinical care for people with epilepsy. 
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 FBTCS - FBTCS + Fisher’s exact test (p) 

Therapy 

( Resection / Ablation ) 

( 8 / 12 ) ( 20 / 14 ) 2.14 (0.26) 

Implant 

( ECoG / SEEG ) 

( 5 / 15 ) ( 18 / 16) 0.30 (0.05) 

Laterality 

( L / R ) 

( 15 / 5 ) ( 18 / 16 ) 2.67 (0.15) 

Lesion Status 

( Lesional / Non-

lesional ) 

( 8 / 12 ) ( 17 / 17 ) 0.67 (0.58) 

Gender 

( F / M ) 

( 11 / 9 ) ( 14 / 20 ) 1.74 (0.40) 

Total 20 34  

 

Table 1. Subject demographics and clinical data. Clinical variables for the subjects included 
in the study are given. Fisher’s exact test with p values for significance are reported. 
 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.26.22281569doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.26.22281569
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 1. Seizure severity is composed of metrics for seizure spread, duration and 
semiology. (a) Patients are implanted with intracranial EEG to localize seizure onset. (b) 
Multiple seizures are recorded electrographically and corresponding clinical notes document 
semiology. (c) We quantify seizure spread as the number of brain regions to which a seizure has 
spread, (d) seizure duration as the time elapsed from earliest electrographic change to offset and 
(e) seizure semiology using a previously validated clinical scale. (f) Seizure spread, duration and 
semiology are objectively combined into one metric that represents seizure severity. 
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Figure 2. The seizure severity score quantifies differences within and across patients. (a) 
The rain cloud plot shows the distribution of severity values. Each point represents one seizure 
and example patients are highlighted in red and blue, respectively. The blue cloud shows a kernel 
density estimate.  (b) Patient specific severity values. Patients are sorted by minimum severity 
value and example patients are highlighted in red and blue, respectively. (c) Seizure recordings 
of HUP162 with three labeled sub-clinical seizures (SCS). (d) Seizure recordings of HUP139 
with a focal aware seizure (FAS), focal impaired aware seizure (FIAS), and a focal-to-bilateral-
tonic-clonic seizure (FBTCS). Channels in red were detected as being part of the seizure and 
channels in black were detected as being spared from the seizure. (e) A plot of seizure severity 
by seizure type across all patients. (Kruskal-Wallis test with post-hoc Dunn’s test, p <0.05 for all 
pairs). 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.26.22281569doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.26.22281569
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Seizure severity is associated with clinical variables of epilepsy. (a) Epilepsy 
duration is correlated with maximum seizure severity (one-tailed Spearman’s r = 0.22, p = 0.05). 
Individual points represent patients. Linear regression line and 95% confidence interval are 
shown in black and gray. (b) A linear mixed effects model was fit with anti-seizure medication 
as the covariate, patient as the random effect, and seizure severity score as the response variable 
(p = 0.018, 97.5% confidence interval = [-1.242, -0.116]). The thick purple line shows the fixed 
effects intercept and slope, and the thin purple lines show each patient’s random intercept. 
Individual data points represent each seizure and are plotted in grey. (c) Poor outcome patients 
are associated with more severe seizures than good outcome patients. The most severe seizure 
within each patient was used to measure patient-level severity (Mann-Whitney U = 264, p = 
0.04). 
  

 

). 
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Figure 4. Patient-level trends in preictal node strength and severity. (a) A linear mixed 
effects model was fit with preictal bivariate features as the covariate, patient as the random 
effect, and seizure severity score as the response variable (p = 0.034, 97.5% confidence interval 
= [0.013, 0.352]). The thick dashed line shows the fixed effects intercept and slope, and the thin 
purple lines show each patient’s random intercept and slope. Individual data points represent 
each seizure and are plotted in grey. (b) Electrode-level features from the patient with the largest 
positive slope. Boxplots summarize electrode-level features and seizures are sorted by increasing 
severity. (c) Same layout as (b) for the patient with the largest negative slope. 
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