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ABSTRACT 

Autism spectrum disorder is a heterogeneous neurodevelopmental disorder. Early brain 

overgrowth yet reduced cerebellar size is well recognized for autism, but cortical regions 

involved show inconsistent patterns of alteration. No complete and replicable map of early 

regional brain size alterations has been charted. It is also not clear whether individual differences 

in brain size relate to autism symptom severity and cognitive deficits and predict later language 

outcomes. We leveraged structural MRI data from 166 autistic and 109 typical developing 

toddlers to comprehensively and systematically investigate regional gray matter volume 

alterations and cortical surface area and thickness perturbations in autism compared to typical 

developing toddlers using linear mixed-effect models. We then examined their replicability in an 

independent cohort of 38 autistic and 37 typical developing toddlers. We further investigated 

associations between regional brain size and symptom severity, Mullen and Vineland cognitive 

performance using linear regression models. Lastly, we investigated whether early brain size (at 

intake mean age of 2.5 years) can improve support vector machine prediction of language 

outcome at 3-4 years of age when added to a model containing intake clinical and behavioral 

measures. Compared to typical developing toddlers, autistic toddlers presented larger or thicker 

lateral temporal regions, smaller or thinner frontal lobe and midline structures, larger callosal 

subregion volume, and smaller cerebellum. Most of these differences were replicated in an 

independent toddler cohort. Moreover, the identified gray matter alterations were related to 

autism symptom severity and cognitive impairments at intake, and, remarkably, they improved 

the accuracy for predicting later language outcome beyond intake clinical and demographic 

variables. Gray matter volume, thickness, and surface area in regions involved in language, 

social, and face processing were altered in autistic toddlers. Alterations in these regions are 

major early-age developmental attributes of autism.  The early-age alterations in these cortical 

attributes in different regions may be the result of dysregulation in multiple neural processes and 

stages, consistent with prenatal multi-process, multi-stage models of autism. Here we also show 

these gray matter alterations are promising prognostic biomarkers for language outcome 

prediction. 

Keywords: Autism; Structural MRI; Gray Matter; Social and Cognitive Deficits; Language 

Outcome Prediction 
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Introduction 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and 

communicative deficits and repetitive behaviors emerging at 1-4 years old 1,2. ASD affects 

approximately 1 in 54 children in the United States 3. The high prevalence rate of ASD and 

associated social and language deficits significantly elevate the risk of adverse outcomes for 

individuals with ASD and increase the burden for the involved families and the whole society. 

Clinical heterogeneity of ASD is considerable 4-8: Some toddlers benefit from contemporary 

ABA treatments, but others do not. Some toddlers may earn a college degree and live 

independently, but others remain minimally-verbal with life-long struggles with social 

communication. While language and social symptoms improve with age in some toddlers, they 

do not for others, and such outcome differences are not clearly predictable from clinical scores at 

very early ages 4-8. Characterizing ASD neuropathology at the age of clinical onset, and how it 

relates to clinical heterogeneity, is essential for aiding early diagnosis, prognosis, and early 

interventions. 

Converging evidence from neuroanatomical studies suggests brain overgrowth in young kids 

with ASD 9-15, especially in frontal and temporal regions 2,14-17, while other brain regions showed 

inconsistent brain alteration patterns in ASD. For example, both volume increases and reductions 

have been reported in the amygdala 18-20, corpus callosum 21-24, and cerebellum 25-28. The 

inconsistent results may be due to cohort (e.g., subject characteristics), MRI scanner, 

preprocessing pipeline, and analytical methodology differences 20,29. Moreover, most studies 

focused on global measures or single regions (e.g., amygdala, cerebellum, and corpus callosum) 

and single morphometries (e.g., volume, surface area, cortical thickness) of interest that may be 

relevant to ASD. In the cortex, surface area and cortical thickness are dissociable features 30; 

examining potential alterations in both features in the same sample may point to distinct 

biological origins of cortical gray matter changes. No study of brain alterations in young kids 

with ASD has yet examined regional differences across the brain and examined volume, cortical 

thickness, and surface area in a comprehensive manner. 

Brain size alterations have been widely reported to underlie language and social deficits and 

facial recognition impairment in ASD. For example, volumes in frontal and temporal regions 

were related to repetitive behavior and social and communication deficits in ASD as revealed in 
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an unbiased voxel-based morphometry study 25 or a source-based morphometry (a multivariate 

approach) study 31. Moreover, Dziobek and colleagues identified that increased cortical thickness 

in the fusiform gyrus was associated with more severe face processing impairments in 

individuals with autism 32.  These studies used a cross-sectional design and examined an older 

sample among whom compensatory neural alterations may have resulted from behavioral 

challenges rather than caused them. 

There are heterogeneous developmental courses in ASD; some ASD toddlers get better, and 

others get worse with age 33-35. Our previous work demonstrated that degree of functional 

hypoactivation of ASD toddlers in the temporal region in response to a language task markedly 

improved the accuracy for classifying language outcome when combined with behavioral and 

clinical variables 33. However, it’s not clear whether structural alterations of subcortical and 

cortical regional size identified at the earliest clinic visit contribute to discriminating different 

prognosis trajectories.  

To shed light on this, we first examined complete and replicable regional early brain alterations 

in a large toddler sample (166 ASD, 109 TD). Specifically, we comprehensively and 

systematically investigated regional brain volume alterations and cortical surface area and 

thickness perturbations in ASD compared to TD toddlers. We then examined the replicability of 

these regional differences in an independent toddler cohort (38 ASD, 37 TD) using the same 

preprocessing pipeline and the same statistical methods. We further investigated whether these 

brain alterations were associated with contemporaneous behavioral manifestations of ASD 

quantified by symptom severity assessed using Autism Diagnostic Observation Schedule 

(ADOS), and cognitive and behavioral performance evaluated using Mullen and Vineland. 

Lastly, we investigated whether including brain size measures found to be altered at intake age 

would improve a model’s ability to predict language outcome at 3-4 years of age beyond intake 

clinical and behavioral measures.  

Materials and methods 
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This study was approved by the Institutional Review Board at the University of California, San 

Diego. Written informed consent was obtained from parents or legal guardians for all toddlers 

included in this study. Parents or legal guardians were compensated for their participation.  

 

Main sample 

All toddlers were recruited through community referrals or a general population-based screening 

method called Get SET Early 36, also known as the 1-Year Well-Baby Check-Up Approach 37,38, 

allowing detection of ASD at early ages (e.g., ~12 months). Toddlers were tracked from an 

intake assessment (1-3 years of age) and followed roughly every 12 months until 3 to 4 years of 

age (outcome visit). All toddlers participated in a series of clinical and behavioral assessments at 

each visit, including ADOS (Module T, 1, or 2) for ASD symptom evaluation 39-41, the Mullen 

Scales of Early Learning 42 for evaluating early cognition, and the Vineland Adaptive Behavior 

Scales 43 for assessing a child’s functional skills in four different developmental domains.  

All assessments were performed by licensed psychologists with PhD degrees (e.g., C.C.B.) and 

occurred at UCSD Autism Center of Excellence. Diagnosis at the most recent clinical visit was 

used in this study. Diagnosis of ASD is determined by highly experienced and licensed 

psychologists (C.C.B.) using diagnostic criteria in DSM � 44 or � 1 in combination with the 

gold-standard ADOS evaluation 45. Typically developing (TD) toddlers showed no history of any 

developmental delay. Due to the fact that a large proportion of toddlers with ASD were scored at 

the floor of the standardized scores on Mullen subscales, we computed a ratio score for each 

subscale by dividing the age equivalent score by the toddler’s chronological age 46-49. We used 

these ratio scores to evaluate their associations with brain morphometry. 

Clinical and behavioral scores and structural MRI (sMRI) scans were collected from 343 

toddlers (198 ASD and 145 TD). Around 30% of toddlers had follow-up sMRI scans collected, 

contributing to 447 scans in total. Among 343 toddlers, 68 had poor sMRI scans or scans with 

bad segmentation quality (see details later) and were excluded from the study (75 scans were 

discarded), yielding data from 275 toddlers (166 ASD, 109 TD; 202 male, 73 female; 13–50 

months old). Out of 275 toddlers, 187 had only an intake sMRI scan collected, 88 had one or 

more follow-up sMRI scans collected at intervals ranging from 0.5 to 27 (mean ± standard 
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deviation:13.03 ± 3.35) months after the initial/previous scan, contributing to 372 scans in total. 

Demographic and clinical characteristics at the time of scanning of 275 toddlers are displayed in 

Table 1.  

Table 1, Demographic Information and Clinical Test Scores for ASD and TD toddlers in Main Sample. 

Characteristics ASD (166 toddlers) TD (109 toddlers) p value (ASD vs. TD) 

Demographics at MRI and clinical visit 
Sex (M/F) 137/29 65/44 2.60×10-5 a 

Age at MRI scan (months) 30.02 (8.31) 24.63 (9.00) 6.49×10-7 b 

Age at clinical visit (months) 28.76 (8.25) 23.09 (9.20) 2.71×10-7 b 

ADOS (module T, 1 or 2) score 

ADOS SA 13.77 (4.43) 1.96 (2.22) 1.30×10-69 c 

ADOS RRB 3.87 (1.93) 0.28 (0.64) 2.95×10-46 c 

ADOS Total 17.64 (5.55) 2.25 (2.45) 6.04×10-74 c 

Mullen score 

Ratio fine motor 86.05 (17.40) 111.93 (14.04) 4.40×10-17 c 

Ratio visual reception 87.25 (19.58) 116.33 (16.82) 7.59×10-19 c 

Ratio expressive language 63.89 (22.32) 104.46 (19.42) 1.63×10-30 c 

Ratio receptive language 64.43 (24.40) 110.93 (19.84) 1.73×10-33 c 

Early learning composite 73.27 (17.80) 111.75 (17.36) 7.94×10-35 c 

Vineland standard score 

Adaptive behavior composite 80.44 (9.99) 102.96 (10.07) 4.73×10-43 c 

Daily living skills 84.22 (11.20) 103.26 (10.66) 7.09×10-29 c 

Socialization 81. 05 (10.85) 104.21 (9.64) 2.36×10-43 c 

Motor skills 90.61 (11.38) 99.99 (8.97) 2.12×10-9 c 

Communication 77.45 (13.97) 102.94 (11.08) 5.20×10-39 c 
aPearson’s chi-squared test.  

bWelch’stwo sample t test.  

cN-way ANOVA test including age and sex as covariates. 

Note, values for age and all clinical test scores are presented as mean (SD). SD represents standard deviation. ADOS SA represents 

ADOS social affect, and ADOS RRB presents ADOS restricted and repetitive behavior.  

MRI data acquisition and preprocessing 

Imaging data were collected on a 1.5T General Electric MRI scanner during natural sleep at 

night; no sedation was used. Structural MRI data were collected with a T1-weighted IR-FSPGR 

(inversion recovery fast-spoiled prepared gradient recalled) sagittal protocol with TE (echo time) 

= 2.8 ms, TR (repetition time) = 6.5 ms, flip angle = 12°, bandwidth = 31.25 kHz, field of view = 

24 cm, and slice thickness = 1.2 mm. All sMRI scans were parcellated using FreeSurfer 5.3 

(http://surfer.nmr.mgh.harvard.edu/) 50 based on the Desikan-Killiany atlas 51 to provide global 

and regional brain morphometric measures, including total brain volume, total surface area (SA), 

mean cortical thickness, cortical sub-regional volume/SA/thickness, and subcortical volumes. 
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FreeSurfer aligns each toddler’s brain to an average brain derived from cortical folding patterns 

through nonlinear surface-based registration 52. This tool has been validated for studies of 

children 53 and has shown great success in large pediatric studies 35,54,55. Quality evaluation was 

further performed on the raw and segmented sMRI scans by two independent raters (M.D. and 

K.C.) with a rating scale ranging from 0 to 3 (0=best, 1=great, 2=usable, 3=unusable). Out of 

447 sMRI scans, 75 were rated as unusable and were excluded from the study, yielding 372 

scans. 

 

Replication sample 

76 toddlers (38 ASD and 38 TD) recruited in our previous study 14 were used as a replication 

sample. Toddlers were recruited through clinical referral or advertisements and were diagnosed 

by the same licensed psychologist (C.C.B) with the above-mentioned criteria. sMRI scans were 

collected at the same site with a 1.5T Siemens Symphony system during toddler’s natural sleep 

at night. A total of 170 sMRI scans were collected at intake and follow-up visits. All replication 

sMRI scans were preprocessed with FreeSurfer 5.3 using the same pipeline and same Linux 

platform as used for main samples. Similarly, sMRI scans with excessive motion or bad 

segmentation quality were excluded, yielding data from 75 unique toddlers (38 ASD, 37 TD; 55 

male, 20 female) and 167 scans. The detailed participant recruitment, diagnosis evaluation, and 

scan collection can be found in 14. 

Brain structure difference between ASD and TD toddlers 

For both the main and replication samples, ASD vs. TD differences in regional brain size was 

examined using the same linear mixed-effect models as described later. Brain global measures 

(the estimated total intracranial volume (eTIV), total cortical SA, and mean cortical thickness) 

differences between ASD and TD were tested using the model: 

Brain global measure = β0 + β1 × diagnosis + β2 × scan age + β3 × sex + subject ID + ε. 

where each global brain measure was treated as the dependent variable, and fixed-effect 

predictors included diagnosis, age at scan, and sex. Subject was treated as a random effect to take 
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longitudinal scans into account. Diagnosis was coded as a dummy variable (ASD = 1, TD = 0). 

Thus, for each brain region tested, the beta value of diagnosis can be interpreted as how much 

larger/smaller (unit: cm for thickness, cm2 for SA, cm3 for volume) ASD toddlers’ brains are 

compared to TDs’ brains. ASD vs. TD differences in cortical and subcortical volume, cortical 

regional surface area and thickness were tested using the linear mixed effect model as below: 

Regional volume/SA/thickness = β0 + β1 × diagnosis + β2 × scan age + β3 × sex + β4 × brain 

global measure + subject ID + ε. 

where volume/SA/thickness of each brain region was treated as the dependent variable. Subject 

was treated as a random effect, and other predictors (diagnosis, age at scan, sex, and brain global 

measure) were modeled as fixed effects. Brain global measures included eTIV for testing sub-

cortical and cortical regional volume, total cortical SA for testing regional SA, and mean cortical 

thickness for testing regional thickness measures. To identify cortical regions with significant 

volume/SA/thickness differences between ASD and TD in the main sample, a false discovery 

rate (FDR) at p < 0.05 was applied to correct for 68 comparisons (68 cortical regions in left (LH) 

and right (RH) hemispheres). FDR at p < 0.05 was also applied to correct for comparisons of 

subcortical regions, cerebellum (LH and RH), and corpus callosum (CC) regions separately. The 

identified ASD vs. TD differences were considered as replicated if the corresponding p values 

were less than 0.05 in the replication sample. 

Brain-behavior association analyses 

Associations between behavioral measures (ADOS, Mullen, and Vineland) evaluated at the time 

of scan and brain regions showing significant ASD vs. TD differences were examined in ASD 

and TD toddlers separately using the linear regression model: 

Behavioral measure = β0 + β1 × volume/SA/thickness of a brain region + β2 × age + β3 × sex + ε. 

where each behavioral measure is treated as the response variable, and age, sex, and 

volume/SA/thickness of a brain region were predictors. FDR at p < 0.05 was applied to correct 

for multiple comparisons. Moreover, brain-by-diagnosis interaction effects in predicting 

behavioral measures were investigated using the regression model: 
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Behavioral measure = β0 + β1 × volume/SA/thickness of a brain region + β2 × diagnosis + β3 × 

volume/SA/thickness of a brain region × diagnosis + β4 × age + β5 × sex + ε. 

Predicting language outcome for ASD toddlers 

Language outcome of ASD toddlers was stratified as ASD Good or ASD Poor based on Mullen 

EL and RL T scores at outcome visit, as previously employed for prognostic analyses 33-35. An 

ASD toddler was grouped as ASD Poor if both Mullen EL and RL T scores were below -1 SD of 

the T score norm of 50 (i.e., T < 40). An ASD toddler was classified as ASD Good if the toddler 

had either Mullen EL or RL T scores equal to or greater than -1 SD of the normative T score of 

50 (i.e., T ≥ 40). Out of 166 ASD toddlers, 157 had a Mullen evaluation at outcome visit and 

were stratified into two outcome groups: ASD Good (N = 69; 59 males, 10 females; age = 33.88 

± 4.44 months) and ASD Poor (N = 88; 71 males, 17 females; age = 34.55 ± 5.18 months). These 

157 ASD toddlers were further used for language outcome prediction analysis. 

To predict language outcome (ASD Good/Poor), we employed the support vector machine (SVM) 

with ridge regularization. SVM with ridge can select features of importance to achieve a stable 

classification result. We tested and evaluated three different models: clinical/demographic only, 

sMRI only, and clinical/demographic + sMRI models. The clinical/demographic only model 

used behavioral (ADOS, Mullen and Vineland) and demographic (sex, age at intake, and gap 

between intake and outcome visit) variables at intake visit. The sMRI only model leveraged age 

and sex-adjusted intake FreeSurfer measures (age and sex effects were estimated using TD data 
56) within regions that showed significant ASD vs. TD differences. The clinical/demographic + 

sMRI model used all intake features included in clinical/demographic only and sMRI only 

models. Each variable/feature was scaled to be between 0 and 1 prior to SVM for all models. 

Each model was cross-validated with the training samples using 5-fold cross-validation, and its 

performance was evaluated with a hold-out testing set. Among 157 ASD toddlers, 125 (80% 

samples, ASD Good/Poor = 56/69; female/male = 21/104, age: 34.22 ± 4.81 months) were 

utilized for training, with the remaining 32 participants (20% samples, ASD Good/Poor = 13/19; 

female/male = 6/26, age: 34.40 ± 5.13 months) used as a hold-out testing set. Accuracy, 

sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) 

were computed to reflect the performances of prediction models.  
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Data availability  

Raw sMRI and clinical data are available from the National Institute of Mental Health Data 

Archive (NDA, collection ID = 9). The processed data and code are available from the authors 

upon reasonable request. 

Results 

ASD vs. TD brain structure difference in main sample 

In the main sample, no significant ASD vs. TD difference was observed for eTIV (p = 0.96), 

total cortical volume (p = 0.07), total cortical SA (p = 0.49), or mean cortical thickness (p = 0.47). 

However, ASD poor toddlers presented significantly greater total cortical volume compared to 

TD (p = 2.56×10-3, Cohen’s d (referred as d hereafter) = 0.39, beta = 8.62). Four cortical regions 

showed significant volume differences between ASD and TD toddlers after FDR at p < 0.05 

correction (Fig. 1 upper left): ASD toddlers had significantly increased gray matter volume 

(GMV) in LH fusiform (p = 2.44×10-4, d = 0.42, beta = 0.49), LH (p = 9.23×10-4, d = 0.37, beta 

= 0.47) and RH (p = 6.22×10-5, d = 0.45, beta = 0.59) middle temporal regions compared to TD 

toddlers; ASD toddlers also showed significant regional GMV reduction in RH caudal anterior 

cingulate compared to TD (p = 6.12×10-4, d = -0.39, beta = -0.19). Moreover, six cortical regions 

showed a significant thickness difference between ASD vs. TD toddlers (Fig. 1 upper right). 

Compared to TD, ASD toddlers had significantly thicker cortex in LH superior temporal (p = 

9.22×10-5, d = 0.44, beta = 5.30×10-3) and RH banks of the superior temporal sulcus (bank STS) 

(p = 1.50×10-3, d = 0.36, beta = 7.08×10-3) regions, and significantly thinner cortical in LH 

caudal middle frontal (p = 2.76×10-3, d = -0.34, beta = -3.94×10-3), LH (p = 1.76×10-3, d = -0.35, 

beta = -4.48×10-3) and RH pars opercularis (p = 8.18×10-4, d = -0.38, beta = -5.39×10-3), as well 

as LH pericalcarine (p = 4.30×10-3, d = -0.32, beta = -6.12×10-3) regions. ASD toddlers showed 

significantly reduced cortical SA compared to TD in RH caudal anterior cingulate (p = 3.04×10-5, 

d = -0.47, beta = -0.46), RH medial orbitofrontal (p = 5.28×10-5, d = -0.46, beta = -0.57) and RH 

posterior cingulate (p = 3.45×10-4, d = -0.41, beta = -0.43) regions (Fig. 1 lower left). Outside of 

the cortex, ASD toddlers also presented significantly increased volume compared to TD in 

posterior CC (p = 4.05×10-3, d = 0.33, beta = 0.04), mid posterior CC (p = 0.03, d = 0.24, beta = 
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0.01), and mid anterior CC (p = 0.02, d = 0.26, beta = 0.02), and decreased GMV in right

cerebellum GMV (p = 6.74×10-3, d = -0.31, beta = -1.18) (Fig. 1 lower right). No significant

ASD vs. TD difference was observed for subcortical regional GMV (p > 0.05 for all subcortical

regions). Violin plots of brain regions showing significant ASD vs. TD difference are displayed

in supplemental Fig. S1. Results of brain regions showing nominal significant ASD vs. TD

difference (p < 0.05) are listed in the supplemental spreadsheet. 

Figure 1 Brain regions showing significant differences between ASD and TD toddlers in the

main sample in terms of cortical volume, non-cortical volume, cortical thickness and

cortical SA. Colors represent corresponding effect sizes (Cohen’s D), where regions with hot

colors showed significant increases in size among ASD compared to TD and regions with cold

colors showed significant decreases in size among ASD compared to TD; the darker the color,

the larger the difference between ASD and TD. 

ASD vs. TD brain structure difference in replication sample 

In the replication sample, ASD toddlers had significantly bigger brains (p = 0.04, d = 0.41, beta

= 1.15), greater total cortical volume (p = 1.72 × 10-3, d = 0.60, beta = 17.22) and larger mean

cortical thickness (p = 1.42 × 10-4, d = 0.72, beta = 7.87 × 10-3) compared to TD. No significant

ASD vs. TD difference was observed for total cortical SA (p = 0.13). Three out of four cortical

regions showing significant GMV differences between ASD and TD toddlers in the main sample

were replicated (Fig. 2 left): ASD toddlers had significantly increased GMV in LH fusiform (p =

0.03, d = 0.43, beta = 0.46), LH (p = 5.78×10-8, d = 0.95, beta = 1.22) and RH (p = 1.71×10-4, d

= 0.64, beta = 0.94) middle temporal regions compared to TD toddlers. Among 6 regions

showing significant thickness differences between ASD and TD toddlers in the main sample,

three were replicated (Fig. 2 middle): Compared to TD, ASD toddlers had significantly thicker
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cortex in LH superior temporal (p = 1.32×10-6, d = 0.85, beta = 1.04×10-2) and RH bank STS (p

= 0.05, d = 0.33, beta = 6.56×10-3) regions, and significantly thinner cortex in LH pars

opercularis (p = 1.49×10-3, d = -0.54, beta = -6.89×10-3) region. Moreover, ASD toddlers showed

significantly increased volume of mid anterior CC (p = 2.85×10-3, d = 0.50, beta = 0.03), but

decreased volume in right cerebellum cortex (p = 1.56×10-2, d = -0.41, beta = -1.82) compared to

TD (Fig. 2 right). None of the three cortical regions showing significant SA differences were

replicated (p > 0.05). Violin plots of brain regions that were replicated for ASD vs. TD

differences are presented in supplemental Fig. S2. 

Figure 2 Brain regions replicated for ASD vs. TD differences in cortical volume, non-

cortical volume and cortical thickness. Colors represent corresponding effect sizes (Cohen’s

D), where regions with hot colors showed significant increases in size among ASD compared to

TD and regions with cold colors showed significant decreases in size among ASD compared to

TD; the darker the color, the larger the difference between ASD and TD. 

Associations between brain size and behavior 

 
Among 13 regions showing significant ASD vs. TD differences in the main sample, four were

significantly related to ADOS symptom severity or Mullen subscale scores after FDR correction

(Fig. 3 and Fig. S3). In ASD toddlers (Fig. 3), larger (i.e., more aberrant) GMV in LH fusiform

was significantly associated with higher ADOS total (i.e., more severe symptoms, r = 0.17, p =

2.62 × 10-2), and lower Mullen ELC (r = -0.25, p = 1.51 × 10-3), lower Mullen ratio RL (r = -0.28

p = 2.76 × 10-4) and lower Mullen ratio VR scores (r = -0.26, p = 9.58 × 10-4) (i.e., poorer

performance on Mullen subscales). Similarly, larger (i.e., more aberrant) GMV in LH and RH

middle temporal was significantly associated with higher ADOS SA (LH: r = 0.24, p = 1.74 ×

10-3; RH: r = 0.24, p = 2.30 × 10-3) and higher ADOS total (LH: r = 0.24, p = 1.79 × 10-3; RH: r

= 0.24, p = 2.06 × 10-3) scores, and lower Mullen ELC (LH: r = -0.19, p = 1.87 × 10-2; RH: r = -

0.20, p = 9.94 × 10-3), lower Mullen ratio RL (LH: r = -0.19, p = 1.94 × 10-2; RH: r = -0.20, p =

1.15 × 10-2) and lower Mullen ratio VR (LH: r = -0.19, p = 1.86 × 10-2; RH: r = -0.18, p = 2.35 ×
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10-2). Paradoxically, larger (i.e., less aberrant) SA in RH caudal anterior cingulate was

significantly related to lower Mullen ratio RL (r = -0.22, p = 6.05 × 10-3). In TD toddlers (Fig.

S3), only larger GMV in LH middle temporal was significantly associated with higher Mullen

ratio VR scores (r = 0.23, p = 0.02), opposite of the direction of association seen in ASD.  

Importantly, GMV in LH fusiform and LH middle temporal (MT) significantly interacted with

diagnosis to predict Mullen ELC (fusiform: p = 0.01; MT: p = 2.73 × 10-3), Mullen ratio RL

(fusiform: p = 3.74 × 10-3; MT: p = 1.18 × 10-2), and Mullen ratio VR (fusiform: p = 2.33 × 10-3;

MT: p = 2.79 × 10-4). Associations were strongly negative in the ASD group, but near zero or

positive in the TD group. Moreover, SA in RH caudal anterior cingulate significantly interacted

with diagnosis to predict Mullen ratio RL (p = 1.52 × 10-2). Scatter plots of significant brain-

behavior associations are presented in Fig. S4. 

Figure 3 Brain-behavior correlation and its 95% CI in ASD toddlers. Note that * indicates

the correlation is significant; x represents that brain measures significantly interact with

diagnosis (ASD/TD) to predict behavior; colors of medium dark shades of yellow, green, cyan

and a medium light shade of magenta denote LH fusiform volume, LH middle temporal volume,

RH caudal anterior cingulate SA, and RH middle temporal volume, respectively. 
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Predicting language outcome for ASD toddlers 

Mullen ELT and RLT scores of TD and ASD toddlers with good/poor language outcome are 

displayed in Fig. S5, where ASD Good toddlers showed similar language outcome as TD 

toddlers. Fig. 4 plots the performance of clinical/demographic only, sMRI only, and 

clinical/demographic + sMRI models for classifying ASD Good versus Poor language outcome. 

Sensitivity and specificity reflect the accuracy for correctly detecting ASD Poor and ASD Good, 

respectively. Combining intake clinical/demographic and sMRI features yielded the highest 

accuracy (81%) and AUC (79%) compared to that from a single modality (sMRI only model: 

accuracy = 69%, AUC = 63%; clinical/demographic only model: accuracy = 72%, AUC = 70%). 

The clinical/demographic only model achieved slightly higher accuracy than the sMRI only 

model, especially for detecting ASD Good toddlers (i.e., specificity). sMRI had the highest 

accuracy in detecting ASD Poor toddlers (i.e., sensitivity). Fig. S6 displays the contribution 

(weight) of each intake clinical/demographic and sMRI feature to predicting the language 

outcome of ASD toddlers. 

 
 
Figure 4 Accuracy, sensitivity (for detecting ASD Poor), specificity (for detecting ASD 

Good), and AUC values of clinical/demographic only, sMRI only, clinical/demographic + 

sMRI models for predicting ASD Good versus Poor language outcome. Features used in each 

model were collected at the intake visit (the earliest clinical visit, mean age = 2.5 years). 

Language outcome was evaluated at 3-4 years of age. 

Discussion 
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In this study, we surveyed the volume, thickness, and surface area of all regions across the brain 

to observe which size measures were reproducibly altered in ASD toddlers compared to TD 

toddlers. Identified brain regions are mainly involved in receptive and expressive language, 

social and face processing (bank STS, middle temporal, superior temporal, medial orbitofrontal, 

caudal anterior cingulate, posterior cingulate, pars opercularis, caudal middle frontal)57-67 . 

Additional regions included those involved in motor, behavioral, cognitive, and language control; 

primary visual processing and interhemispheric communication (cerebellum; primary visual 

cortex, corpus callosum)68-75. Morphometrically, we observed alterations in regional volume, 

thickness, and surface area relative to global measures.  Thus, by first factoring out brain size, 

differentially increased or decreased growth in different anatomic measures in ASD-relevant 

language, social, face processing and behavior regulation regions were differentially isolated and 

highlighted. Cortically, frontal lobe and midline structures tended to be smaller or thinner in 

ASD than TD; lateral temporal regions tended to be larger or thicker in ASD. Outside the cortex, 

larger callosal subregion volume and smaller cerebellum were observed. The majority of the 

identified GMV and cortical thickness alterations were replicated in an independent cohort. 

Importantly, larger (i.e., more aberrant) GMV in LH fusiform, LH and RH middle temporal were 

related to more severe ADOS symptoms and/or poorer Mullen cognitive (ELC, ratio RL, and 

ratio VR) performance in ASD toddlers. These relationships were significantly stronger in the 

ASD compared to TD group. Of clinical relevance, the identified brain features measured at 

intake (mean age = 2.5 years), when included in a predictive model along with clinical and 

demographic features, markedly improved the accuracy for classifying good vs. poor language 

outcome for toddlers with ASD at 3-4 years of age. 

The identified regional alterations were largely consistent with previous findings. Studies have 

found that young children 2,14,15,17, adolescents, and adults 76 with ASD show GMV enlargement 

in the temporal lobe, especially in the superior, middle temporal and fusiform gyri 77. Increased 

cortical thickness in left hemisphere superior temporal cortex (LH STC) also appears to be a very 

strong and replicable finding in the literature, as evident in other large-scale studies in primarily 

adolescents and adults 78,79. The current results showcase that increased LH STC thickness is 

present even earlier in ASD in toddlerhood and with larger effect sizes than studies in older ASD 

individuals. This developmentally-ubiquitous increase in cortical thickness of LH STC may yield 

insight about early development processes that contribute to cortical thickness (e.g., proliferation 
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of excitatory neuronal cell types in different cortical layers). Furthermore, given that normative 

brain charts indicate that cortical thickness tends to peak in early childhood followed by slow 

decline over the lifespan 80, and so, these ASD toddler results combined with others in older 

ASD samples would indicate that increased early developmental cortical thickening combined 

with attenuated cortical thinning of LH STC may be a robust and key neural feature of ASD 

neurodevelopment. Given the observations of early developmental functional abnormalities in 

LH STC for language 33,34,81, these converging results may implicate that atypical structural 

development and underlying genomic mechanisms affecting LH STC 34,35 may perturb the ability 

of this region to develop functional specialization for processes like language and social-

communication. 

GMV reduction in the cerebellum has been well-documented for individuals with ASD spanning 

from childhood to late adulthood 25-27. Postmortem studies also revealed that subjects with ASD 

showed decreased number 82 and reduced size 83 of Purkinje cells in the cerebellar hemisphere 

and vermis. The identified volume increase in CC in ASD toddlers aligned with the finding that 

infants with ASD had significantly increased SA and thickness in CC starting at 6 months of age, 

and the increase was particularly robust in the anterior CC at both 6 and 12 months 22. Other 

studies 21-24 suggest that CC in individuals with ASD likely undergoes overgrowth at early ages 
22, followed by abnormally slow or arrested growth, and later shows a reduction in adulthood 23,24. 

Our results of SA reduction in the orbitofrontal cortex and posterior cingulate were supported by 

a recent study led by Ecker 84. Moreover, the identified alterations in thickness aligned with the 

finding by Zielinski et. al. 85 that individuals with ASD showed reduced thickness in the bilateral 

caudal middle frontal and the left pars opercularis during childhood and adolescence as well as in 

the right pars opercularis during adulthood.  

By first factoring out brain size, we revealed abnormal cortical patterning in multiple ASD-

relevant language, social, face processing and behavior regulation regions. This abnormality was 

manifest in a complex map of differentially increased or decreased GM volume, surface area and 

thickness and highlights the presence of dysregulated cortical growth.  These different early-age 

regional alterations of cortical attributes may be the result of progressive dysregulation in 

multiple neural processes and stages, consistent with prenatal multi-process, multi-stage models 

of ASD 86,87.  This advances our recent finding of atypical anterior-posterior and dorsal-ventral 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.25.22281531doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.25.22281531
http://creativecommons.org/licenses/by-nc-nd/4.0/


genetical cortical patterning in ASD toddlers with poor language and social outcomes35. In that 

study, atypical gene co-expression included genes involved in prenatal cortical patterning; all 

progenitor cell types involved in symmetrical and asymmetrical cell division that can alter 

surface area and cortical thickness; and excitatory neurons, oligodendrocyte precursors, 

endothelial cells, and microglia that may affect thickness. Thus, effects span multiple prenatal 

stages and growth processes, that we hypothesize lead to the multiple growth deviances in 

volume, surface area, and thickness across key cortical regions that we report here. 

One mechanism that could be involved in these effects is the overactivity of a prenatal multi-

pathway gene network, a gene dysregulation presented in ASD-derived prenatal progenitors and 

neurons and related to ASD social symptom severity88. This gene network, the DE-ASD 

Network, is composed of differentially expressed (DE) genes in ASD toddlers, and includes 

PI3K-AKT, RAS-ERK, Wnt, and Insulin receptor signaling pathways and upstream regulatory 

ASD risk genes. These signaling pathways normatively have a strong impact on prenatal brain 

patterning and development because they regulate proliferation, neurogenesis, differentiation, 

migration, neurite outgrowth, and synaptogenesis87,89-93. The Overactivity of gene expression in 

this DE-ASD Network is present in ASD vs. typical toddler progenitors and neurons and is 

greater in ASD toddlers who have more severe social symptoms88. Based on BrainSpan data 

(http://www.brainspan.org), this network normatively expresses during the first and second 

trimesters in multiple cortical areas during cortical patterning and progenitor cell division and 

neurogenesis88. Future studies should focus on the relationships between gene dysregulation in 

this DE-ASD Network in living ASD toddlers, brain cortical organoid models, and the toddlers’ 

neural and clinical phenotype to test this potential mechanism. 

We found that toddlers with ASD who had more aberrant brain measures also showed more 

severe symptoms and poorer cognitive performance. The identified brain-behavior associations 

largely aligned with previous findings. Recently, Grecucci and colleagues 31 reported that larger 

GMV in an autism-specific structural network (including fusiform and middle temporal gyri) 

was related to higher ADOS subscales (social affect and restricted and repetitive behavior) and 

total scores. Rojas et. al. 25 also reported that GMV in the temporal region was positively 

associated with ADI-R Social and Communication total score. A study led by Dziobek reported 

that increased cortical thickness in the fusiform gyrus was related to impairments in face 
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processing in individuals with ASD 32, consistent with our result that fusiform GMV was 

negatively related to the Mullen ratio VR score. 

The identified brain regions were highly valuable for characterizing prognosis. The sMRI-

clinical/demographic combined model achieved the highest accuracy for classifying ASD Good 

vs. ASD Poor, which was consistent with our previous finding that a multimodal model 

outperformed any single modality model 33. Integrating multiple modalities can take full 

advantage of both modality-unique and complementary information from other modalities that is 

key for parsing ASD heterogeneity. Notably, though sMRI model had the highest accuracy 

(sensitivity) for detecting ASD Poor, the accuracy for ASD Good was low. There were two 

possible reasons: 1) our samples included more ASD Poor than ASD Good toddlers, resulting in 

better detection of ASD Poor characteristics than that of ASD Good; and 2) the features input to 

SVM were more pronounced in ASD Poor than ASD Good in general (See supplemental Tables 

S1-S3), although a few showed reversed patterns. 

The findings presented in this study should be considered in context with its strengths and 

limitations. Using brain regions showing significant ASD vs. TD differences as input for SVM 

reduced the likelihood of overfitting of the model. However, we may have missed other features 

that were important for discriminating ASD Good from ASD Poor. Future research should 

include a full exploration of all FreeSurfer features and training a more comprehensive model to 

improve the accuracy for detecting ASD Good. Another limitation is that while a majority of the 

identified brain alterations were replicated, further replication with larger samples is still 

necessary, especially for regions showing SA differences. 

In summary, ASD toddlers showed GM alterations in regions mainly involved in language, 

social, face processing, and primary visual cortex. Most of the identified GM alterations were 

replicated in an independent cohort. Moreover, the identified GM alterations were associated 

with greater ASD symptom severity and cognitive impairments and showed great potential as 

prognostic biomarkers for language outcome prediction. 
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