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AT A GLANCE COMMENTARY (162/200 words) 

 

Scientific Knowledge on the Subject:  

Differential gene expression and protein analyses have uncovered some of the 

molecular underpinnings of emphysema. However, no studies have assessed alternative 

splicing mechanisms and analyzed proteomic data from recently developed high-throughput 

panels. In addition, although emphysema has been associated with low body mass index 

(BMI), it is still unclear how BMI affects the transcriptome and proteome of the disease. 

Finally, the effectiveness of multi-omic biomarkers in determining the severity of 

emphysema has not yet been investigated. 

 

What This Study Adds to the Field:  

We performed whole-blood genome-wide RNA sequencing and plasma SomaScan 

proteomic analyses in the large and well-phenotyped COPDGene study. In addition to 

confirming earlier findings, our differential gene expression, alternative splicing, and protein 

analyses identified novel biomarkers and pathways of chest CT-quantified emphysema. Our 

mediation analysis detected varying degrees of transcriptomic and proteomic mediation due 
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to BMI. Our supervised machine learning modeling demonstrated the utility of incorporating 

multi-omics data in enhancing the prediction of emphysema.  

 

Keywords: Emphysema; Biomarkers; Transcriptomics; Proteomics; Prediction 

 

 

This article has an online data supplement, which is accessible from this issue’s table of 

content online at www.atjsjournals.org  
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ABSTRACT 1 

 2 

Rationale: Emphysema is a COPD phenotype with important prognostic implications. 3 

Identifying blood-based biomarkers of emphysema will facilitate early diagnosis and 4 

development of targeted therapies. 5 

 6 

Objectives: Discover blood omics biomarkers for chest CT-quantified emphysema and 7 

develop predictive biomarker panels.  8 

 9 

Methods: Emphysema blood biomarker discovery was performed using differential gene 10 

expression, alternative splicing, and protein association analyses in a training set of 2,370 11 

COPDGene participants with available whole blood RNA sequencing, plasma SomaScan 12 

proteomics, and clinical data. Validation was conducted in a testing set of 1,016 COPDGene 13 

subjects. Since low body mass index (BMI) and emphysema often co-occur, we performed a 14 

mediation analysis to quantify the effect of BMI on gene and protein associations with 15 

emphysema. Elastic net models were also developed in the training sample sequentially using 16 

clinical, complete blood count (CBC) cell proportions, RNA sequencing, and proteomic 17 

biomarkers to predict quantitative emphysema. Model accuracy was assessed in the testing 18 

sample by the area under the receiver-operator-characteristic-curves (AUROC) for subjects 19 

stratified into tertiles of emphysema severity.  20 

 21 

Measurements and Main Results: 4,913 genes, 1,478 isoforms, 386 exons, and 881 22 

proteins were significantly associated with emphysema (FDR 10%) and yielded 109 23 

biological pathways. 75% of the genes and 77% of the proteins associated with emphysema 24 

showed evidence of mediation by BMI. The highest-performing predictive model used 25 
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clinical, CBC, and protein biomarkers, distinguishing the top from the bottom tertile of 26 

emphysema with an AUROC of 0.92.  27 

 28 

Conclusions: Blood transcriptome and proteome-wide analyses reveal key biological 29 

pathways of emphysema and enhance the prediction of emphysema.  30 

 31 

Abstract word count: 250/250 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 
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INTRODUCTION 51 

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and 52 

mortality (1). Emphysema, the anatomic destruction of lung parenchyma frequently observed 53 

in COPD subjects, has been independently associated with an increased risk for 54 

cardiovascular disease, lung cancer, and mortality (2-4). Timely diagnosis calls for a blood-55 

based predictive model as it may identify emphysema in subjects where computed 56 

tomography (CT) scans are not clinically indicated. Emphysema blood biomarkers would 57 

also overcome the issues of radiation exposure and false positive findings associated with CT 58 

scans (5). In addition, early disease biomarkers and a stronger understanding of the molecular 59 

basis of emphysema are needed to develop novel personalized therapies to improve the 60 

prognosis of affected individuals (2, 6, 7).  61 

Previous transcriptomic studies have identified emphysema-associated genes (such as 62 

COL6A1, CD19, PTX3, and RAGE) and biological processes (such as innate and adaptive 63 

immunity, inflammation, and tissue remodeling) primarily from gene expression analyses 64 

using lung tissue samples (8-12). However, fewer studies have evaluated the associations of 65 

emphysema with blood transcriptomics, alternative splicing, or proteomics. Alternative 66 

splicing, the regulatory process in which multi-exon human genes are expressed in multiple 67 

transcript isoforms, has been implicated in the pathophysiology of several lung diseases such 68 

as asthma, pulmonary fibrosis, pulmonary arterial hypertension, and COPD (13-19). Protein 69 

levels have also been studied for potential emphysema biomarker identification, and sRAGE, 70 

ICAM1, CCL20, and adiponectin levels in blood and eotaxin levels in bronchoalveolar 71 

lavage fluid were found to be associated with emphysema (20-23), though the protein panels 72 

used for these studies included fewer proteins than the more recently developed panels. 73 

Finally, previous research that used blood-based emphysema predictive models had small 74 

sample sizes and only tested one ‘omic modality at a time (20, 24-27).  75 
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We hypothesized that 1) transcriptomic and proteomic characterization of smokers 76 

would elucidate emphysema pathobiology and yield novel disease biomarkers, 2) many 77 

emphysema associations with transcripts and proteins are influenced by BMI, and 3) multi-78 

omic modeling would provide improved prediction of emphysema relative to readily 79 

available clinical variables. To test these hypotheses, we analyzed whole-blood genome-wide 80 

RNA sequencing (RNA-seq) and plasma SomaScan proteomic data from the large and well-81 

phenotyped COPDGene study. Given the high clinical correlation between emphysema and 82 

BMI (28), we performed mediation analysis to understand the influence of BMI on 83 

emphysema-associated genes and proteins. We also developed machine learning predictive 84 

models for emphysema using transcriptomic and proteomic biomarkers. Some of these results 85 

have been previously reported as an abstract (29) and a preprint (30).  86 

 87 

METHODS 88 

 89 

Study description 90 

 Participants were recruited from the COPDGene study (NCT00608764, 91 

www.copdgene.org), a longitudinal study investigating the genetic basis of COPD. The 92 

COPDGene population consists of 10,371 non-Hispanic white and African American 93 

subjects, 44-90 years old with an average of 44 pack-years of lifetime cigarette smoking 94 

history (31). Subjects had varying degrees of COPD severity, as measured by the Global 95 

Initiative for Chronic Obstructive Lung Disease (GOLD) grading system. COPDGene 96 

obtained 5-year follow-up data and is currently obtaining 10-year follow-up data of available 97 

subjects. Questionnaires, chest CT scans, and spirometry have been gathered at 21 clinical 98 

facilities in the United States. RNA-seq and plasma proteomic measurements were obtained 99 

from a subset of subjects at their 5-year follow-up visit (Visit 2). Each center acquired 100 
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institutional review board approval and written informed consents. In our analyses, we used 101 

the COPDGene Visit 2 data, which included 3,386 subjects with available clinical, RNA-seq, 102 

and SomaScan proteomic data. 103 

 104 

Emphysema quantification 105 

 Using the Thirona software (www.thirona.eu), emphysema was quantified as the 15th 106 

percentile of the attenuation histogram + 1,000 Hounsfield units (HU), corrected for the 107 

inspiratory depth variations using Multi-Ethnic Study of Atherosclerosis normative equations 108 

(predicted lung volume using baseline age, time-varying height, and BMI) (adjusted Perc15 109 

density) (32-34). This correction was made since it had been demonstrated to provide a more 110 

robust measure of longitudinal changes in emphysema (33). 111 

 112 

Training and testing samples 113 

We randomly partitioned our studied cohort into training and testing samples 114 

comprising 70% and 30% of the subjects, respectively.  All association and mediation 115 

analyses, as well as prediction model training, were conducted using the training sample. The 116 

validation of the identified biomarkers and constructed predictive model was carried out in 117 

the testing sample.  118 

 119 

RNA isolation, library preparation, filtering, and normalization 120 

 Illumina sequencers were utilized to obtain gene, isoform, and exon counts from total 121 

blood RNA isolated from Visit 2 participants. Genomic features with very low expression 122 

(average counts per million (CPM) < 0.2 or number of subjects with CPM < 0.5 less than 50) 123 

or extremely highly expressed genes (number of subjects with CPM > 50,000 less than 50) 124 

were filtered out prior to applying trimmed mean of M values normalization from edgeR 125 
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(v3.24.3), which accounts for differences in sequencing depth (35). Counts were transformed 126 

to log2 CPM values and quantile-normalized to further remove systematic noise from the 127 

data.  128 

 129 

Protein measurements and filtering 130 

 At Visit 2, plasma samples were assayed for 4,979 proteins using the SomaScan 131 

Human Plasma 5.0K assay, a multiplex aptamer-based assay (SomaLogic, Boulder, 132 

Colorado) (36).  The SomaScan data was standardized per the SomaLogic protocol to control 133 

for inter-assay variation between analytes and batch differences between plates (37). Samples 134 

with low volume, failed hybridization control, or failed dilution scale were removed. 135 

Proteomic data for 5,670 participants passed quality control. The protein counts were 136 

transformed to log2 RFU (relative fluorescent units) values. 137 

 138 

RNA-seq differential expression, usage, and protein association analyses 139 

We used the limma-voom linear modeling approach (as implemented in limma 140 

v3.38.3) to test for the associations between emphysema and whole blood RNA transcripts 141 

(38, 39). The diffSplice function from limma was used to test for differential usage of 142 

isoforms and exons. While differential expression refers to the change in the absolute 143 

expression levels of a feature, differential usage captures alternative splicing and refers to the 144 

change in the relative expression levels of the isoforms/exons within a given gene. The 145 

associations of the SomaScan proteins with emphysema were tested using multivariable 146 

linear modeling. In the emphysema “primary” model, we adjusted for age, race, sex, pack-147 

years of smoking, current smoking status, forced expiratory volume in one second (FEV1), 148 

complete blood count (CBC) cell proportions, CT scanner model, and library preparation 149 

batch for RNA-seq or clinical center for proteins. The validation rate in the testing sample 150 
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was determined based on a threshold P-value < 0.1 and a consistent direction of effect in the 151 

training and testing datasets. A sensitivity analysis was performed in which the list of 152 

covariates from the primary model was expanded to include BMI. To select biomarkers for 153 

inclusion in the prediction model, we ran additional models only adjusted for the technical 154 

factors (CT scanner model and library preparation batch for RNA-seq or clinical center for 155 

proteins). Multiple comparisons were corrected with the Benjamini-Hochberg method using a 156 

threshold of significance of a false discovery rate (FDR) of 10% (40).   157 

 158 

Mediation analysis 159 

We conducted mediation analysis using the medflex R package (41) to distinguish 160 

how much of the effect of emphysema on gene expression or protein levels acted through 161 

BMI (referred to as the indirect effect) and how much of the effect of emphysema directly 162 

influenced gene expression or protein levels (referred to as the direct effect). The analysis 163 

was performed on the significant genes and proteins identified in the primary association 164 

analysis. A mediated proportion representing the ratio of the indirect effect over the total 165 

effect was computed for each gene with significant total effect. The P-values of the direct, 166 

indirect, and total effects for each biomarker were subject to a threshold significance of 10% 167 

FDR.  168 

 169 

Gene set enrichment analyses 170 

The biological enrichment of the gene sets derived from the gene expression, 171 

transcript usage, and protein association analyses was evaluated using the topGO (v2.33.1) 172 

weight01 algorithm, which accounts for the dependency in the Gene Ontology (GO) topology 173 

(42). We only reported GO pathways with at least three significant genes and an adjusted P-174 

value < 0.005. 175 
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 176 

Predictive modeling  177 

We constructed elastic net models to predict cross-sectional emphysema (43). The 178 

outcome variable was the adjusted Perc15 density. We utilized clinical variables that are 179 

readily available in the primary care setting (age, race, sex, BMI, pack-years of smoking, and 180 

current smoking status), CBC (proportions of neutrophils, eosinophils, monocytes, 181 

lymphocytes, and platelets), and the RNA-seq and proteins that reached statistical 182 

significance in the association analyses performed in the training data (adjusted only for the 183 

scanner model and library preparation batch or clinical center). To determine the top 184 

performing RNA data type to be used in the main models, we first constructed models using 185 

clinical + gene, clinical + isoform, and clinical + exon counts. We then constructed models in 186 

the following order: clinical only, clinical + CBC, clinical + CBC + RNA-seq, clinical + 187 

CBC + proteins, and clinical + CBC + RNA-seq + proteins. The outcome and the predictors 188 

were centered and scaled. The models were trained using 10-fold cross-validation, 189 

minimizing the mean squared error (44) on the left-out fold. After model training on the 190 

continuous emphysema variable, we classified subjects into tertiles of adjusted Perc15 191 

density. We evaluated the predictive performances of the models in the testing sample using 192 

R2 for the continuous emphysema and the area-under-receiver-operator-characteristic curve 193 

(AUROC) for the model accuracy to distinguish subjects in the highest and lowest tertiles of 194 

emphysema severity. We compared the AUROCs with the DeLong test using the pROC R 195 

package (45). Finally, predictors were ranked by the absolute values of their coefficients from 196 

the regression model.  197 

 198 

Statistical analysis 199 
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Data were reported as means with standard deviations or counts with percentages. 200 

Continuous variables were tested with Kruskal-Wallis and categorical variables were tested 201 

with chi-square. Upregulated versus downregulated genes as well as positive versus negative 202 

signs of the protein coefficients are provided with respect to their relationships with adjusted 203 

Perc15 density (i.e., negative coefficients indicate a greater extent of emphysema).  204 

 205 

Additional methods are available in the Supplement.  206 

 207 

RESULTS 208 

 209 

Subject characteristics 210 

 3,386 subjects from COPDGene Visit 2 with complete clinical, RNA-seq, and protein 211 

data were included in our analyses (Figure 1). As shown in Table 1, the included subjects 212 

were mostly non-Hispanic whites with a balanced representation by sex, a mean age of 65, a 213 

mean BMI of 29, and a mean of 41 pack-years of smoking. The subjects’ characteristics did 214 

not significantly differ between the training and testing data, which consisted of 2,370 and 215 

1,016 subjects, respectively. A comparison of subjects with and without missing data showed 216 

that the two groups were largely similar (Table E1). A schematic overview of the analyses 217 

performed is illustrated in Figure E1. 218 

 219 

Differential gene expression analysis 220 

We performed differential gene expression (DGE) analysis in the 2,370 subjects of 221 

the training dataset. 4,913 out of 19,177 genes reached significance at 10% FDR (Table  222 

2 and E2). 2,339 genes were up-regulated and 2,574 were down-regulated with respect to 223 

adjusted Perc15 density (i.e., they have opposite directions for their associations with 224 
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emphysema) (Figure 2A). The GO enrichment analysis identified 44 significantly enriched 225 

biological processes, including neutrophil degranulation, regulation of NF-κB signaling, viral 226 

transcription, T cell proliferation, and regulation of TNF-mediated signaling (Tables 3 and 227 

E3). 228 

 229 

Differential isoform and exon usage analyses 230 

 We next performed differential isoform usage (DIU) and differential exon usage 231 

(DEU) analyses on the training dataset to investigate the changes in relative isoform and exon 232 

levels within single parent genes. Out of 78,837 isoforms and 209,707 exons tested, 1,478 233 

isoforms and 368 exons reached significance (FDR 10%) (Table 2).  The differentially used 234 

isoforms mapped to 1,209 individual genes (Table E4), 45% of which (542/1,209) were also 235 

identified in the DGE analysis. The differentially used exons mapped to 251 genes (Table 236 

E5), 68% of which (171/251) were also differentially expressed. 53% (788/1478) of the 237 

significant isoforms and 66% (244/368) of the significant exons were up-regulated with 238 

respect to adjusted Perc15 density (Figure 2B, 2C). The GO enrichment analyses performed 239 

on the differentially used isoforms and differentially used exons yielded 35 and 13 240 

significantly enriched biological processes, respectively. Top processes included mitophagy, 241 

regulation of NF-κB signaling, negative regulation of WNT signaling, and viral transcription 242 

(Table 3, E6 E7).  243 

 244 

Protein association analysis 245 

 We tested 4,979 SomaScan proteins measured in the training dataset using 246 

multivariable linear regression. 18% (881/4,979) were significantly associated with 247 

emphysema (FDR 10%) (Table E8, Figure E2). Seventeen significantly enriched biological 248 

processes were identified, including pathways related to classical complement pathway and 249 
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WNT signaling (Table E9). Figure 3 summarizes the overlap of the biomarkers and GO terms 250 

between DGE, DIU, DEU, and protein analyses, showing that most of the significant 251 

biomarkers and enriched pathways are unique to each analysis.  252 

 253 

Validation  254 

 We analyzed 1,016 subjects with RNA-seq and proteomic data in the testing sample 255 

to provide independent validation of the emphysema biomarkers identified in the training 256 

sample. We observed that the effect sizes were highly correlated between the analyses 257 

performed in the training and testing data for the DGE, DEU, and protein analyses (Pearson’s 258 

r = 0.80, 0.86, and 0.88, respectively). A lower correlation (r = 0.29) was observed in the 259 

DIU analysis. We further determined whether biomarkers were validated by using a threshold 260 

of (testing) P-value < 0.1 and checking if the training and testing data had a consistent 261 

direction of effect. Respectively, 46% (2,252/4,913), 30% (449/1,478), 60% (233/368), and 262 

47% (416/881) of the DGE, DIU, DEU, and protein biomarkers were validated (Tables E2, 263 

E4, E5, and E8). 264 

 265 

Mediation analysis 266 

  Since severe emphysema is often associated with low BMI, we performed sensitivity 267 

analyses that also adjusted for BMI. We observed that 96% (4,728/4,913) of the genes and 268 

80% (703/881) of the proteins (Figure E3) associated with emphysema from the primary 269 

analysis were no longer significant after adjustment for BMI (Tables E10 and E11). These 270 

observations suggest that BMI mediates many of the emphysema-associated transcriptomic 271 

and proteomic changes. To investigate this, we performed mediation analysis based on the 272 

directed acyclic graph (DAG) (Figure E4) to divide each observed biomarker association into 273 

a direct pathway (emphysema directly affects gene/protein expression) and an indirect 274 
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pathway (emphysema affects gene/protein expression via its effects on BMI). Of the 4,913 275 

differentially expressed genes and 881 proteins that reached significance in the primary 276 

model (i.e., no BMI adjustment), 70% of genes (3,456/4,913) and 61% of proteins (537/881) 277 

showed evidence of mediation with a significant indirect effect and no significant direct 278 

effect (FDR 10%) (Tables E12 and E13).  279 

 280 

Prediction 281 

 To select blood biomarkers for inclusion in cross-sectional predictive models for 282 

emphysema, we performed association analyses in the training dataset, adjusting only for 283 

technical factors, which yielded 13,066 genes, 4,254 isoforms, 2,263 exons, and 1,719 284 

proteins that were used as candidate predictors. To evaluate whether RNA-seq is more 285 

informative at the gene, isoform, or exon level, we trained three separate models (clinical + 286 

gene, clinical + isoform, and clinical + exon). The AUROCs were 0.86, 0.74, and 0.86, 287 

respectively (Table E14 and Figure E5). Although no statistical significance was attained, a 288 

slightly higher AUROC was achieved with the genes compared to exons. Accordingly, we 289 

focused on gene-level quantifications for the subsequent models. We next evaluated the 290 

relative contribution of CBC proportions, genes, and proteins compared to a baseline model 291 

using clinical variables alone. The model using only clinical variables explained 35% of the 292 

variance of emphysema. Substantial improvement was seen from adding gene and protein 293 

data respectively (R2 = 0.38 for clinical + CBC + gene and 0.50 for clinical + CBC + protein, 294 

Table E14). The model with clinical + CBC + gene + protein data did not perform as well as 295 

the model with clinical + CBC + protein data. The same pattern was seen when we evaluated 296 

model performance for distinguishing subjects in the top versus bottom emphysema tertile; 297 

the highest-performing model was the clinical + CBC + protein model with an AUROC of 298 
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0.92. Figure 4 summarizes the model results, and Table E14 summarizes the AUROCs, 299 

alphas, and L1 ratios.  300 

Ranked by absolute beta coefficients, the top-10 predictors of the all-inclusive 301 

(clinical + CBC + gene + protein) model included BMI, sRAGE, and two biomarkers that 302 

have not been previously linked to emphysema (the MIR124-1HG gene and the PSMP 303 

protein) (Figure 5).  304 

 305 

DISCUSSION 306 

 In this study, we performed the largest blood transcriptomic and proteomic profiling 307 

of CT-quantified emphysema to date, including investigations into alternative splicing 308 

mechanisms, identifying thousands of validated blood biomarker associations. The biological 309 

relevance of these findings was assessed through GO pathway analyses, which mostly 310 

demonstrated enrichment for inflammatory pathways and cell differentiation. Mediation 311 

analysis revealed that 70% of the differentially expressed genes and 61% of the associated 312 

proteins are mediated through BMI, implying that blood biomarker associations to 313 

emphysema largely reflect shared biological processes with BMI. We also demonstrated the 314 

utility of incorporating multi-omics data in enhancing the prediction of emphysema. 315 

 In previous biomarker studies of emphysema, the extracellular matrix (ECM), NF-κB, 316 

transforming growth factor beta (TGF-ß), B cell antigen receptor (BCR), and oxidative 317 

phosphorylation pathways were among the most frequently reported emphysema-associated 318 

pathways (8, 46, 47). However, most of these studies focused on a single 'omics modality 319 

(20, 24, 48). Our investigation of blood-based transcriptomic and proteomic biomarkers 320 

supported numerous established emphysema-associated pathways and discovered new ones. 321 

In addition, our alternative splicing analysis for the first time revealed widespread evidence 322 

of alternative splicing associated with emphysema.  323 
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 Most blood biomarker associations with emphysema occur through BMI, as indicated 324 

by the significant mediation of the tested genes and proteins. This suggests that some of the 325 

molecular processes identified in this analysis may be causally related to both emphysema 326 

and BMI. We must keep in mind, though, that our mediation analysis is based on the 327 

following assumptions: no unmeasured confounding of the emphysema-BMI-gene 328 

expression/protein level relationship, no measurement error for the exposure or mediator, and 329 

the arrows in the DAG are correctly specified. While our specified DAG is reasonable based 330 

on prior knowledge, there are other plausible alternatives DAGs, but no currently available 331 

methods to simultaneously test these possibilities. 332 

CT scan is the best non-invasive method for detecting emphysema. However, CT has 333 

several drawbacks, including increased costs, radiation exposure, and high rates of unrelated 334 

false-positive findings (5). Accurate risk prediction tools that use the best available data 335 

sources to stratify patients based on their specific risk profiles could help with more efficient 336 

early and targeted interventions. Until recently, such prediction models were only created 337 

using data from a single 'omics type with or without standard clinical features (49-52). As the 338 

first study to utilize genes, alternative splicing, and proteins combined with clinical and CBC 339 

predictors, we developed models that could classify upper and lower tertiles of emphysema 340 

severity with good accuracy. While alternative splicing predictors were worth exploring, gene 341 

data had a higher AUROC. While genes outperformed clinical and CBC features, protein 342 

predictors yielded the best AUROC across all models.   343 

 From the top 10 predictors of the clinical + CBC + gene + protein model, sRAGE, 344 

which minimizes tissue injury and inflammation, has consistently been recognized as a 345 

candidate emphysema biomarker (5, 10, 53, 54). Not previously connected to emphysema, 346 

PSMP has been implicated in inflammation and cancer development (55, 56) and MIR124-347 
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1HG has been shown to affect Wnt-signaling and inflammation (57-60).Their putative roles 348 

and functions in emphysema require further investigation. 349 

This study has several strengths. The large sample size allowed us to identify many 350 

more significant associations than any previous study, and we could split our sample to allow 351 

for the validation of our findings. This is the first study that has examined alternative splicing 352 

mechanisms in emphysema in addition to differential gene expression and protein association 353 

analyses. Because emphysema often co-occurs with low BMI, we performed mediation 354 

analyses to better understand the relationship between molecular markers, emphysema, and 355 

BMI, providing suggestive evidence of shared biology between emphysema and BMI. 356 

Finally, we were able to improve emphysema prediction models with the use of multi-omic 357 

data. 358 

This study also has several limitations. Complete blood count quantifications do not 359 

capture the variability of the immune cell subpopulations, which limits the ability to localize 360 

these effects to specific cell types. Future studies may address this by using single-cell 361 

transcriptomics data. Limitations to the SomaScan proteomics include the lack 362 

of SOMAmers for small molecules such as desmosine, fibrinogen degradation product (Aa-363 

Val360, a specific product generated by elastase cleavage of fibrinogen), and sphingomyelin, 364 

which have been suggested to be emphysema biomarkers in other studies (37, 60-62). Lastly, 365 

the mediation analysis needs to be viewed as hypothesis-generating since it is based on a 366 

number of assumptions. 367 

 368 

CONCLUSION 369 

 Our transcriptomic and proteomic analyses yielded numerous inflammatory and cell 370 

differentiation pathways connected to emphysema as well as novel potential blood 371 

biomarkers of the disease. While not yet ready to be used in clinical practice, with further 372 
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validation, our prediction model might be helpful as a less invasive indicator of emphysema 373 

severity that could guide patient enrollment in clinical trials. Future research is necessary to 374 

compare blood and lung tissue biomarkers, understand how they change as emphysema 375 

progresses, and evaluate the impact of implementing these predictive models to personalize 376 

and improve patient care.  377 

 378 

 379 

 380 

 381 

 382 
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Table 1. Characteristics of subjects in the training and testing datasets in COPDGene Visit 2. 

  
Training  

(N = 2,370) 
Testing  

(N = 1,016) 
P-value 

Age 65.07 (8.78) 65.42 (8.85) 0.28 
Sex, % male 51.35% 49.80% 0.41 
Race, % NHW 72.87% 76.18% 0.04 
BMI 28.94 (6.33) 28.70 (6.01) 0.31 
Smoking pack-years 41.65 (25.72) 41.23 (25.90) 0.66 
Current Smoker 858 (36.20%) 346 (34.06%) 0.23 

FEV1 (L) 2.22 (0.84) 2.21 (0.85) 0.75 

FEV1, % predicted 80.57 (24.35) 80.52 (24.33) 0.95 
FVC (L) 3.20 (0.95) 3.19 (0.96) 0.88 
Adjusted Perc15 density 85.96 (24.8) 85.72 (24.91) 0.79 
% Segmental airway wall thickness 49.70 (8.37) 49.54 (8.37) 0.62 
Pi10 2.24 (0.57) 2.23 (0.56) 0.54 
GOLD grade  
                                          PRISm  
                       Normal spirometry  
                                                   1 
                                                   2 
                                                   3 
                                                   4 

299 (12.62%) 
996 (42.03%) 
232 (9.79%) 

425 (17.93%) 
209 (8.82%) 
84 (3.54%) 

120 (11.81%) 
415 (40.85%) 
100 (9.84%) 

187 (18.41%) 
95 (9.35%) 
35 (3.44%) 

0.89 

Exacerbation history (%) 14.96% 15.03% 0.73 
SGRQ score 24.94 (24.35) 24.40 (23.11) 0.55 
MMRC dyspnea score  
                                                   0  
                                                   1 
                                                   2 
                                                   3 
                                                   4 

1294 (54.60%) 
284 (11.98%) 
276 (11.65%) 
361 (15.23%) 
155 (6.54%) 

562 (55.31%) 
133 (13.09%) 
117 (11.52%) 
144 (14.17%) 

60 (5.91%) 

0.78 

CAD 199 (8.40%) 74 (7.28%) 0.28 
Diabetes 383 (16.16%) 143 (14.07%) 0.12 
Hypertension 1136 (47.93%) 508 (50.00%) 0.27 
Participant characteristics reported here are from Visit 2, when 'omics data were obtained. 
 
Continuous variables are expressed as means and standard deviations. Categorical variables are expressed as 
absolute values and/or percentages.  
 
Adjusted Perc15 density: Hounsfield units at the 15th percentile of CT density histogram at total lung 
capacity, corrected for the inspiratory depth (per convention, adjusted Perc15 density values are reported as 
HU + 1000); CAD: Self-reported history of coronary artery disease; Exacerbation history: At least one 
COPD exacerbation (acute worsening of respiratory symptoms that required systemic steroids and/or 
antibiotics) in the previous year; FEV1: Forced expiratory volume in one second; GOLD: Global Initiative 
for Chronic Obstructive Lung Disease; GOLD 1: FEV1/FVC < 0.70 and post-bronchodilator FEV1 ≥ 80% 
predicted; GOLD 2: FEV1/FVC < 0.70 and post-bronchodilator FEV1 50-79% predicted; GOLD 3: 
FEV1/FVC < 0.70 and post-bronchodilator FEV1 30-49% predicted; GOLD 4: FEV1/FVC < 0.70 and post-
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bronchodilator FEV1 < 30% predicted; MMRC: Modified medical research council dyspnea scoring system; 
Pi10: Square root of the wall area of a hypothetical airway of a 10-mm internal perimeter; PRISm: Preserved 
Ratio Impaired Spirometry (defined as FEV1/FVC ≥ 0.70 but with FEV1 < 80% predicted); Race: Self-
reports as either non-Hispanic white (NHW) or African American; SGRQ: St. George’s Respiratory 
Questionnaire. 
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Table 2. Top 5 differentially expressed genes (DGE), differentially used isoforms (DIU), and 

differentially used exons (DEU) associated to adjusted Perc15 density.  

  

  
ID 

HUGO  
Gene Name 

Log Fold  
Change 

Average Log 
Expression 

FDR 

DGE 

ENSG00000160179 ABCG1 -0.007 4.907 4x10-19 

ENSG00000138772 ANXA3 0.006 4.825 8x10-17 

ENSG00000164674 SYTL3 -0.004 5.212 8x10-17 

ENSG00000253981 ALG1L13P -0.006 2.721 3x10-15 

ENSG00000169877 AHSP 0.012 4.573 6x10-15 

DIU 

ENST00000432854 DBNL 0.017 -1.701 1x10-20 

ENST00000483180 NFKBIZ -0.015 -1.759 2x10-13 

ENST00000357428 USP33 0.013 -2.868 7x10-13 

ENST00000315939 WNK1 0.012 2.770 5x10-12 

ENST00000339486 RIOK3 0.008 8.065 5x10-12 

DEU 

360147 PSMA1 -0.004 1.511 1x10-7 
413338 FRY 0.004 1.744 2x10-7 
450397 CCNDBP1 -0.004 2.388 3x10-7 
514701 VMP1 0.002 4.936 1x10-6 
510631 ATP6V0A1 0.003 2.087 4x10-6 

Adjusted Perc15 density: Hounsfield units at the 15th percentile of CT density histogram at total lung 
capacity, corrected for the inspiratory depth (per convention, adjusted Perc15 density values are reported 
as HU + 1000). The lower the Perc15 values are, the more CT-quantified emphysema is present. 
 
For the DGE, DIU, and DEU analyses, the covariates used were age, race, sex, pack-years of smoking, 
current smoking status, forced expiratory volume in one second (FEV1), CBC cell count proportions, 
library preparation batch, and CT scanner model. A threshold of FDR 10% was applied. 
 
Genes and isoforms are represented by their Ensembl Gene ID and Ensembl Transcript ID, respectively. 
Exonic part IDs with genomic positions are available in Supplemental Table E2. HUGO Gene Name 
corresponds to the unique gene identified by the Ensembl Gene ID (DGE), and the gene associated with 
the isoform or exon (DIU and DEU). Log fold change values indicate change per unit increase in adjusted 
Perc15. Positive log fold change values represent upregulated genes, while negative ones correspond to 
downregulated ones with respect to adjusted Perc15 density (i.e., they have opposite signs for their 
associations with emphysema). Average log expression is the average of the log-transformed counts of 
the gene in analyzed subjects.  
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Table 3. Selected top 10 gene ontology (GO) biological processes enriched in differentially expressed genes (DGE), differentially used 

isoforms (DIU), and differentially used exons (DEU) associated to adjusted Perc15 density. GO terms were selected based on potential 

biological relevance to emphysema.      

  

GO.ID GO Term 
Total number 

of genes in  
category 

Number of 
adjusted Perc15 

density-associated  
genes in category 

Adjusted  
P-value 

DGE 

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 99 72 2x10-21 

GO:0006413 Translational initiation 185 97 2x10-19 

GO:0000184 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 120 77 5x10-14 

GO:0019083 Viral transcription 174 87 3x10-13 

GO:0043312 Neutrophil degranulation 466 212 9x10-12 

GO:0002181 Cytoplasmic translation 98 44 7x10-7 

GO:0051092 Positive regulation of NF-kappaB transcription factor activity 144 70 3x10-6 

GO:0046718 Viral entry into host cell 111 58 6x10-6 

GO:0042102 Positive regulation of T cell proliferation  84 47 1x10-5 

GO:0010803 Regulation of tumor necrosis factor-mediated signaling pathway 51 25 2x10-5 

DIU 

GO:0006413 Translational initiation 176 35 2x10-5 

GO:0045070 Positive regulation of viral genome replication 32 13 3x10-5 

GO:0043044 ATP-dependent chromatin remodeling 63 13 7x10-5 

GO:0090263 Positive regulation of canonical WNT signaling pathway 107 26 7x10-5 
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GO:0018105 Peptidyl-serine phosphorylation 209 45 1x10-4 

GO:0032092 Positive regulation of protein binding 59 17 1x10-4 

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 94 23 2x10-4 

GO:0000184 Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 118 28 2x10-4 

GO:0090263 Positive regulation of transcription by RNA polymerase II 690 106 3x10-4 

GO:0019083 Viral transcription 172 31 5x10-4 

GO:0019079 Viral genome replication 103 23 5x10-4 

DEU 

GO:0006413 Translational initiation 181 13 1x10-4 

GO:0006995 Cellular response to nitrogen starvation 9 3 0.001 
GO:1904667 Negative regulation of ubiquitin protein ligase activity 9 3 0.001 
GO:1901991 Negative regulation of mitotic cell cycle phase transition 182 8 0.002 
GO:0006614 SRP-dependent cotranslational protein targeting to membrane 94 8 0.002 
GO:0000422 Autophagy of mitochondrion 72 8 0.002 
GO:0071560 Cellular response to transforming growth factor beta stimulus 133 9 0.002 
GO:0045722 Positive regulation of gluconeogenesis 11 3 0.002 
GO:0043124 Negative regulation of I-kappaB kinase/NF-kappaB signaling 38 5 0.002 
GO:0050821 Protein stabilization 142 10 0.002 

Adjusted Perc15 density: Hounsfield units at the 15th percentile of CT density histogram at total lung capacity, corrected for the inspiratory depth (per convention, adjusted 
Perc15 density values are reported as HU + 1000). The lower the Perc15 values are, i.e., the closer to -1,000 HU, the more CT-quantified emphysema is present. 
 
For the DGE, DIU, and DEU analyses, covariates used were age, race, sex, pack-years of smoking, current smoking status, forced expiratory volume in one second (FEV1), 
CBC cell count proportions, library preparation batch, and CT scanner model. 
 
We only reported the GO pathways with at least 3 significant genes. Enriched GO terms were identified using the weighted Fisher’s test P-values < 0.005. Selected GO terms 
with the lowest P-values in the DGE, DIU, and DEU analyses are listed. Total number of genes in category refers to all genes studied that fall under the GO term. The number 
of adjusted Perc15-associated genes in category refers to the genes that reached significance (FDR 10%) in the DGE, DIU, and DEU analyses.   
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Table 4. Mediated proportions and direct, indirect, and total effects of the top 5 most and least mediated differentially expressed genes 

significantly associated to adjusted Perc15 density.  

 

Ensembl Gene ID 
HUGO Gene 

Name 
Mediated  

Proportion 

Direct Effect Indirect Effect Total Effect 
 

Beta 
Coefficient 

 

 
FDR 

 

 
Beta 

Coefficient 
 

 
FDR 

 

 
Beta 

Coefficient 
 

 
FDR  

 

Most mediated 
genes (genes 

with significant 
indirect effect) 

ENSG00000160179 ABCG1 0.822 -0.001 0.324 -0.005 1x10-31 -0.006 2x10-18 

ENSG00000169877 AHSP 0.882 0.001 0.559 0.009 4x10-31 0.011 7x10-15 

ENSG00000118113 MMP8 1.054 -0.001 0.859 0.010 4x10-26 0.009 1x10-9 

ENSG00000158578 ALAS2 0.912 0.001 0.724 0.008 1x10-24 0.009 3x10-11 

ENSG00000119326 CTNNAL1 0.928 0.000 0.795 0.006 3x10-24 0.007 1x10-10 

Least mediated 
genes (genes 

with significant 
direct effect) 

ENSG00000189430 NCR1 -0.124 -0.004 1x10-4 4x10-4 0.318 -0.003 2x10-6 

ENSG00000179841 AKAP5 0.129 -0.004 0.002 -7x10-4 0.199 -0.005 8x10-9 

ENSG00000165071 TMEM71 0.094 -0.001 0.002 -1x10-4 0.374 -0.001 5x10-8 

ENSG00000170298 LGALS9B -0.065 -0.005 0.002 3x10-4 0.642 -0.005 1x10-5 

ENSG00000162909 CAPN2 -0.217 0.001 0.002 -2x10-4 0.128 0.001 5x10-5 

Mediation analysis was performed to distinguish how much of the effect of emphysema on gene expression acted through BMI (referred to as the indirect effect) and how 
much of the effect of emphysema directly influenced gene expression (referred to as the direct effect). Covariates: BMI, sex, age, race, pack-years of smoking, current 
smoking status, and forced expiratory volume in one second (FEV1).  
 
Mediated proportions of top 5 genes are listed along with the coefficients and false discovery rates (FDR) of their direct, indirect, and total effects. Mediated proportion is 
defined as the ratio of indirect effect to the sum of the indirect and direct effects. Genes are sorted in order of decreasing FDR for the total effect.  
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FIGURE LEGENDS 

 

Figure 1. COPDGene Visit 2 participant flow diagram. Abbreviations: AA = African 

American, CBC = Complete blood count, DGE = Differential gene expression, DIU = 

Differential isoform usage, DEU = Differential exon usage, FEV1 = Forced expiratory 

volume, NHW = Non-Hispanic White. 

Figure 2. Volcano plots of the primary model representing (A) differentially expressed genes 

(B) differentially used isoforms, and (C) differentially used exons. Genes significantly 

associated with adjusted Perc15 density appear above the red line marked at FDR 10%. Up-

regulated genes are in blue and down-regulated genes are in red. Isoforms/exons that are not 

differential used are gray and appear below the threshold line. Adjusted Perc15 density: 

Hounsfield units at the 15th percentile of CT density histogram at total lung capacity, 

corrected for the inspiratory depth (per convention, adjusted Perc15 density values are 

reported as HU + 1000). The lower the Perc15 values are, the more CT-

quantified emphysema is present. Upregulated versus downregulated genes are reported with 

respect to adjusted Perc15 density (i.e., they have opposite directions for their associations 

with emphysema). 

Figure 3. (A) Number of significant genes associated with adjusted Perc15 density from the 

differential gene expression (DGE), differential isoform usage (DIU), differential exon usage 

(DEU), and protein association analyses. HUGO gene symbols were used to find the 

intersection of biomarkers between the DGE, DIU, DEU, and protein analyses. Multiple 

proteins may map to a single gene. Therefore, the diagram does not reflect the total number 

of proteins significantly associated with adjusted Perc15 density. (B) Number of significant 

enriched gene ontology (GO) terms from the DGE, DIU, DEU, and protein association 

analyses. Adjusted Perc15 density: Hounsfield units at the 15th percentile of CT density 
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histogram at total lung capacity, corrected for the inspiratory depth (per convention, adjusted 

Perc15 density values are reported as HU + 1000). The lower the Perc15 values are, 

the more CT-quantified emphysema is present. Upregulated versus downregulated are 

reported with respect to adjusted Perc15 density (i.e., they have opposite directions for their 

associations with emphysema). 

Figure 4. The receiver operating characteristic curves for the elastic net prediction models: 

clinical (age, race, sex, BMI, pack-years of smoking, and current smoking status) only, 

clinical + complete blood count (CBC) proportions of neutrophils, eosinophils, monocytes, 

lymphocytes, and platelets, clinical + CBC + genes, clinical + CBC + proteins, and clinical + 

CBC + genes + proteins. The table summarizes the pairwise DeLong P-values of the model 

comparisons. P-values < 0.05 are bolded. 

Figure 5. Top 10 predictors sorted in descending order by the absolute values of their beta-

coefficients from the elastic net model using clinical (age, race, sex, BMI, pack-years of 

smoking, and current smoking status), complete blood count (CBC) proportions of 

neutrophils, eosinophils, monocytes, lymphocytes, and platelets, gene, and protein data. The 

horizontal lines represent the magnitude of the coefficient for each feature. All predictors 

were centered and scaled. 
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