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SUMMARY (250 words) 233 words  

Kabuki Syndrome (KS) is a rare, multisystem disorder with a variable clinical phenotype. 

The majority of KS is caused by dominant loss-of-function mutations in KMT2D (lysine 

methyltransferase 2D). KMT2D mediates chromatin accessibility by adding methyl 

groups to lysine residue 4 of histone 3, which plays a critical role in cell differentiation 

and homeostasis. The molecular underpinnings of KS remain elusive partly due to a 

lack of histone modification data from human samples. Consequently, we profiled and 

characterized alterations in histone modification and gene transcription in peripheral 

blood mononuclear cells (PBMCs) from 33 patients with KMT2D mutations and 36 

unaffected healthy controls. Our analysis identified unique enhancer signatures in 

H3K4me1 and H3K4me2 in KS compared to controls. Reduced enhancer signals were 

present for promoter-distal sites of immune-related genes for which co-binding of 

PBMC-specific transcription factors was predicted; thirty-one percent of super-

enhancers of normal blood cells overlapped with disrupted enhancers in KS, supporting 

an association of reduced enhancer activity of immune-related genes with immune 

deficiency phenotypes. In contrast, increased enhancer signals were observed for 
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promoter-proximal regions of metabolic genes enriched with EGR1 and E2F2 motifs, 

whose transcriptional levels were significantly increased in KS. Additionally, we 

identified approximately 100 de novo enhancers in genes, such as in MYO1F and 

AGAP2. Together, our results underscore the effect of KMT2D haploinsufficiency on 

(dys)regulation of enhancer states and gene transcription and provide a framework for 

the identification of therapeutic targets and biomarkers in preparation for clinical trial 

readiness. 
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INTRODUCTION 

Kabuki Syndrome (KS) is a rare, heterogeneous, congenital malformation disorder that 

follows a broad and variable clinical spectrum characterized by a unique facial gestalt, 

mild to moderate intellectual disability, developmental delays, hearing loss, muscle 

hypotonia, and structural and/or functional anomalies of cardiac, endocrine, renal and 

orthopedic systems.(Niikawa et al. 1981; Kuroki et al. 1981; Adam et al. 2019) 

Abnormal regulation of terminal B-cell differentiation in KS leads to variable immune 

deficiency with low immunoglobulin (IgG and IgA) levels that may be associated with 

inadequate antibody response to vaccines and increased susceptibility to recurrent and 

potentially life-threatening infections.(Y. Li et al. 2011; Micale et al. 2011; Banka et al. 

2012; Ming et al. 2005; Lindsley et al. 2016; Stagi et al. 2016; Adam, Hudgins, and 

Hannibal 2011)  KS occurs in approximately 1:32,000 individuals and currently has no 

approved therapies, despite a significant disease burden.(Adam et al. 2019; Theodore-

Oklota et al. 2022) Although it is known that KS is due to dominant loss-of-function 

mutations in autosomal KMT2D (lysine methyltransferase 2D, 80-90%, KS1, MIM: 

147920) or X-linked KDM6A (lysine demethylase 6A, 5-8%, KS2, MIM: 300867) 

respectively,(Ng et al. 2010; Lederer et al. 2012) its underlying disease mechanisms are 

not fully elucidated. Most importantly, there is a limited understanding of the 
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downstream pathways that are affected in KS and how they relate to the clinical 

phenotype spectrum.  
 

Transcriptional regulation is a highly specialized and temporally orchestrated, tissue-

specific process during early embryogenesis and development, which determines cell 

fate, cell cycle progression, stem cell function, and ultimately normal 

embryogenesis.(Fasciani et al. 2020) The complexity and importance of perfectly 

concerted transcriptional control necessitate a number of regulatory mechanisms, 

including chromatin and histone modifications. The addition or removal of histone 

marks, such as acetyl- and methyl-groups, changes the conformation of chromatin and 

renders genes accessible or inaccessible to transcription factor (TF) 

complexes.(Fasciani et al. 2020) 

 

For gene activation, pioneer TFs, along with other cell-type-specific TFs, recruit KMT2D, 

a lysine histone methyl-transferase to prime enhancer regions through the addition of 

one methyl group (monomethylation) to the fourth lysine of histone 3 (H3K4), thereby 

promoting open chromatin.(Ng et al. 2010; Froimchuk, Jang, and Ge 2017) KMT2D 

associates with WRAD (WDR5, RbBP5, ASH2L, DPY30), KDM6A, NCOA6, PA1, and 

PTIP into one protein complex (ASCOM complex) which is critical for its H3K4 

methyltransferase activity and stabilization of KDM6A (also known as UTX).(Froimchuk 

et al. 2017) Additionally, KMT2D facilitates the binding of the two H3K27 

acetyltransferases CREB-binding protein (CBP) and p300 on enhancers, thereby 

promoting tissue-specific gene expression.  

 

Loss of KMT2D function is therefore expected to alter chromatin states, in particular 

enhancer states, and to subsequently cause gene dysregulation. In addition to the 

association with KS, mutations in KMT2D have been described in association with 

various cancers. Considered a tumor suppressor gene, KMT2D is one of the most 

frequently mutated genes in cancer for reasons yet unknown.(J. Zhang et al. 2015; 

Ortega-Molina et al. 2015) In B-cell lymphoma and leukemia, reduced activity of KMT2D 

leads to tumor proliferation and disruption of tumor suppressor pathways, contrasting 
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other cancers, including breast cancer, in which reduced expression of KMT2D causes 

decreased proliferation, suggesting diverging tissue-type-dependent effects. 

 

There have been recent advances in understanding the specific role of KMT2D in the 

KS disease process.(Fahrner et al. 2019; Carosso et al. 2019; Huisman et al. 2021; 

Bjornsson et al. 2014) Previous studies largely focusing on human blood DNA 

methylation profiles showed that the DNA methylation profiles differ between KS and 

unaffected controls.(Aref-Eshghi et al. 2017, 2018; Sobreira et al. 2017) While 

differentially methylated regions may be useful as future biomarkers, they are of limited 

use for elucidating regulatory mechanisms in KS pathology as KMT2D mutations 

primarily affect histone modifications and only subsequently exert their effect on DNA 

methylation. 

 

In this study, we concomitantly profiled genome-wide histone modification along with 

gene expression in peripheral blood from 33 KS individuals with deleterious KMT2D 

mutations to study the impact on chromatin states and gene regulation. By integrating 

epigenetic and transcriptomic data, we identified changes in histone modification, gene 

regulation and regulatory pathways in KS. Importantly, we found unique chromatin 

changes that may serve as future drug targets or biomarkers, preparing for KS for 

clinical trial readiness.  

 

MATERIAL AND METHODS 

 

Subjects 

Individuals of any age with a molecularly confirmed and clinical diagnosis of KS, due to 

likely pathogenic or pathogenic variants in KMT2D, and age/gender-matched healthy 

controls were eligible to participate in this study following written informed consent. 

Individuals with KMT2D-related disorder due to missense variants in exons 38 and 39 of 

KMT2D,(Cuvertino et al. 2020) as well as individuals with KS affected by an additional 

genetic disorder, were excluded from participation in this study. All subjects were 

deidentified and family IDs are only known to the principle investigator (OB) and the 
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immediate research staff. The study was approved by the Institutional Review Board of 

Boston Children’s Hospital (IRB-A00026691). 

 

The molecular diagnosis of KS was confirmed by genetic testing through CLIA-certified 

clinical laboratories. Parental testing was conducted and showed de novo occurrence of 

KMT2D variants in the majority of cases. The interpretation of variant classification 

reflects the classification reported by the diagnostic laboratory and follows the 

guidelines of The American College of Medical Genetics and Genomics and the 

Association for Molecular Pathology.(Richards et al. 2015) The variant types were 

annotated and the genomic positions were extracted using the Mutalyzer tool.(Lefter et 

al. 2021)  

 

Sample preparation, library construction and sequencing for ChIP-seq data 

 

PBMCs were isolated from NaHep samples using the LymphoprepTM/SepMateTM 

system (StemCell Technologies) according to the manufacturer’s specifications and 

cryopreserved in 10% DMSO v/v FBS. For cell fixation, cells were thawed, counted and 

6 million cells per sample were fixed in a 1% formaldehyde solution for 15 min at room 

temperature. The fixation was stopped using 0.125M Glycine for 5 min and cell pellets 

were washed in 0.5% Igepal in PBS and 1mM PMSF in 0.5% Igepal-PBS. Snap frozen 

cell pellets were then shipped on dry ice to ActiveMotif for chromatin extraction and 

Histone PathTM ChIP-Seq experiments. Sequences were generated on the illumina 

NextSeq 500 platform. Takeda Pharmaceutical, Cambridge, MA, provided financial 

support for the ChIP-Seq experiments. Raw data was returned for further bioinformatics 

analyses as described in the following sections. 

 

Sample preparation, RNA-extraction, library construction and sequencing for 

RNA-seq data 

 

Total RNA was extracted from whole blood following the manufacturer’s protocol for 

PAXgene Blood RNA Kit (Qiagen). Following the assessment of RNA concentration and 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 28, 2022. ; https://doi.org/10.1101/2022.10.25.22280882doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.25.22280882


 

6 

quality (RIN>7.2) by Agilent 2100 or Fragment Analyzer, the illumina TruSeq Stranded 

Total RNA with Ribo-Zero Globin library preparation was used, which includes 

ribosomal RNA and globin mRNA removal. A minimum of 10Gb of 100bp paired-end 

reads were generated per sample. All library preparations and sequencing was 

conducted by BGI Americas on the illumina HiSeq 4000 platform. Raw data was 

returned for further bioinformatics analysis as described in the following sections. 

 

 

Data processing and analysis of ChIP-seq data 

For ChIP-seq data, the reads were mapped to the GRCh38 human reference sequence 

using BWA (Burrows-Wheeler Aligner) with default parameters.(H. Li and Durbin 2009) 

Only uniquely mappable reads were used for the downstream analysis. Significantly 

enriched regions were detected and normalized IP (immunoprecipitation) enrichment 

profiles were generated using MACS2 (Model-bases analysis of ChIP-seq 2) call peak 

function with default parameters.(Feng et al. 2012) To assess the data quality, the FRiP 

(fraction of reads in peaks) scores were calculated and correlations were measured 

between samples. The samples with low FRiP scores or correlation efficiencies were 

excluded from the downstream analysis. 

 

For the principal component analysis (PCA), peaks from each individual (both KS and 

controls) were used to identify the union peak regions. Among the union peak regions, 

the peaks showing consistent signal intensities across both cohorts (KS vs control) were 

excluded after calculating a coefficient of variation (standard deviation over mean). The 

PCA analysis was performed using the read counts in the remaining differing peak sets. 

 

For the detection of differential peaks between groups (KS vs control), Diffbind R 

package was used for the union peak sets.(Ross-Innes et al. 2012; Gupta et al. 2007) 

For visualization of the differential peaks in a heatmap, values in each row were 

normalized. The differential peaks were divided into two groups--a group with increased 

and a group with decreased signals in KS compared to control. For both groups, the 

enriched gene ontology terms were identified using the Great tool with default 
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parameters.(McLean et al. 2010) For motif analysis, the TSS (transcription start site)-

proximal and TSS-distal regions were further defined. TSS information was obtained 

from the UCSC genome browser table for GRCh38. Peaks within a 2 kb distance from 

TSS were defined as TSS-proximal whereas the peaks > 2 kb from TSS were deemed 

TSS-distal. DNA sequences were extracted within a 100 bp window from peak summits 

and known motifs were matched using MEME TOMTOM.(Gupta et al. 2007) We 

obtained the motif sequences for the search from JASPAR (Khan et al. 2018) and 

Jolma et al in 2013.(Jolma et al. 2013) The genomic locations of TF binding were 

predicted using MEME FEMO(Bailey et al. 2009) and used for the pathway enrichment 

analysis for a subset of TFs. To associate increased H3K4me2 sites in KS with respect 

to EGR1 binding, we used the publicly available EGR1 ChIP-seq data set from 

GM12878. To associate changes in histone modifications observed in our KS cohort 

with publicly available DNA methylation changes in KS, DNA methylation data from 

individuals with KS and control were downloaded from Sobreira et al (Sobreira et al. 

2017) (GSE116300) and reanalyzed after performing lift over from hg18 to hg38. 

 

We identified super-enhancers based on the intensity and breadth of H3K27ac signal in 

GM12878 following the methods described in Whyte et al (Whyte et al. 2013) and 

determined the intersection of the top 2000 differential peaks of H3K4me1 and 

H3K4me2 in KS compared with control and the super-enhancer regions. 

 

Analysis of RNA-seq data 

RNA sequence reads were mapped using STAR aligner with default parameters.(Dobin 

et al. 2013) The transcriptional reads for each annotated gene were estimated using 

Htseq.(Anders, Pyl, and Huber 2015) Differentially expressed genes between KS and 

controls were determined using DESeq2 after adjusting for sex, age and batch 

effect.(Love, Huber, and Anders 2014) To associate genes with peaks of H3K4me1/2/3, 

the closest gene was assigned for each peak. If the gene has multiple H3K4me1/2/3 

peaks, the peak with the lowest p-value was assigned to the gene. The TF list was 

obtained from AnimalTFDB.(Hu et al. 2019)  
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To infer transcriptional regulators such as TFs or chromatin regulators underlying 

differential expressions in KS, we used the method by Qin et al (Qin et al. 2020) which 

integrates TF binding sites from public ChIP-seq data in different tissue and cell types 

with differentially expressed genes. Briefly, using ~10,000 available public ChIP-seq 

data sets, the regulatory potential score of each TF is calculated for differentially 

expressed genes with the assumption that the effect of the TF binding on gene 

expression exponentially decays with distance and that the contribution of multiple 

binding sites is additive. We used differentially expressed genes in KS compared to 

control with q-value (or FDR, false discovery rate) = 0.1. 

 

 

 

RESULTS 

Summary of cohort, variants and datasets 

To generate RNA-seq and ChIP-seq data, we collected peripheral blood samples from 

33 KS individuals with mutations in KMT2D (females: 23, mean age: 9.4 years, range: 

0.9-33.3 years) and from 36 healthy individuals as age or sex-matched controls 

(females: 22, mean age: 30.8 years, range: 4.9-64.8 years) from either healthy siblings 

(age-matched), parents (sex-matched) of KS individuals or unrelated age-matched 

healthy children (see details in Table S1).  

 

The variants in KMT2D of our cohort are summarized in Table 1 and Figure 1A.  

The majority of variants were truncating (60.6%) and located before the SET domain, 

suggesting a loss of function of KMT2D. KMT2D has 54 exons. Although the variants 

were found across the KMT2D gene on chromosome 12, the distribution in the genomic 

positions indicates potential mutation hotspots depending on variant types. Frameshift 

variants were more prevalent in exon 10, while splice site variants clustered in introns 

37-38, nonsense mutations in exon 39 and missense mutations in exon 48 (Figure 1B). 

In particular, exons 39 and 48 were most frequently mutated (36%, 12/33), consistent 

with the prior studies. (Hannibal et al. 2011; Banka et al. 2012). A total of 8 variants 

including 6 nonsense mutations (more than half, 6/8) were identified in exon 39, which 
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encodes long polyglutamine tracts, and 4 variants were found in exon 48. Interestingly, 

most missense mutations (5/6) were located in F/Y-rich domains (FYRN and FYRC), 

transcription activation domains involved in TF bindings.(Park et al. 2010) 

 

To characterize the alterations of chromatin and transcriptional states in KS and better 

understand the underlying regulatory mechanisms in KS, we generated histone 

modification profiles using ChIP-seq for H3K4me1, H3K4me2 and H3K4me3 which are 

known to be modified by KMT2D, along with RNA-seq data to study gene transcription. 

The overview of this study design is shown in Figure 1C.  

 

Distinctive enhancer signature in KS 

We hypothesized that mutations in KMT2D will alter chromatin states and thereby affect 

the chromatin landscape in KS. H3K4me1 is found in primed enhancer regions that 

mark regulatory regions for enhancer activation in the later developmental stages or 

stimuli. These H3K4me1 marks will subsequently induce the enrichment for H3K27ac at 

the same enhancer regions. The H3K4me1 marks are typically located in promoter-

distal sites, whereas H3K4me2, which is also associated with enhancer regions, 

enriched at both promoter-proximal regions as well as distal regions. In contrast, 

H3K4me3 is a marker for active promoters. 

 

The principal component analysis for variable genomic regions among individuals 

revealed distinctive enhancer mark profiles of H3K4me1 (Figure S1, Methods) and 

H3K4me2 (Figure 2A), separating KS from control samples with greater distinction for 

H3K4me2. In contrast, H3K4me3 data could not be grouped according to the presence 

of KMT2D mutations. Rather, H3K4me3 data showed a tendency to cluster depending 

on genetic background (Figure S1). Similarly, transcriptional data (Figure S1) did not 

separate KS samples from controls. This suggests that KMT2D mutations affect 

enhancer states to a greater degree than promoter states, and that the enhancer 

signature of KS is different from healthy controls.      

   

Regulatory program underlying altered enhancer signals in KS  
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We further characterized the alterations of enhancer marks H3K4me1 and H3K4me2 in 

KS compared to control. H3K4me2, an enhancer mark, was more distinctive between 

KS and control in PCA analysis. Hierarchical clustering results identified  2149 

significantly changed H3K4me2 sites (814 decreased vs 1335 increased sites, q = 

0.001, Figure 2B, Methods) confirming grouping according to genotypes, which is in 

alignment with the PCA result. Because loss of function of KMT2D is expected to cause 

a decrease of H3K4me2, a higher number of increased sites was unexpected but was 

consistent with a recent report in mouse B-cells.(Luperchio et al. 2021)  

  

Furthermore, detailed examinations of H3K4me2 alterations revealed the association 

with two different target groups. Decreased sites were located at promoter-distal regions 

(Figure 2B) with enrichment of immune-related GO terms (Figure 2C) and were 

predicted to be bound by blood-cell-specific TFs through motif analysis. These blood-

specific TFs, ERG (ETS Transcription Factor), ETS1 (ETS Proto-Oncogene 1), Fli1 

(Friend Leukemia Integration 1) and RUNX1 (Runt-Related Transcription Factor 1), play 

a crucial role in blood differentiation and development (Figure 2B, Table S2). A 

representative of significantly decreased H3K4me2 signals is shown in TLR (Toll-like 

receptor 9, top 4) where the decreased peak is located at the downstream intergenic 

region of the gene (Figure 2D). TLR plays an important role in the immune system and 

is implicated in the pathogenesis of autoimmune diseases.(Baccala et al. 2007) 

Similarly, we observed decreased H3K4me1 signals in promoter-distal sites of immune-

related genes (Figure S2). In general, for the significantly changed H3K4me1 regions (q 

= 0.05), the changes of H3K4me1 signals in KS compared to control were correlated 

well with the changes of H3K4me2 signals (r = 0.92, changes of 99% peaks regions in 

the same direction, Figure S2).  

 

While decreased H3K4me2 signals could be explained by the loss of function of 

KMT2D, the observed increases in H3K4me2 sites were unexpected. Therefore, we 

performed more in-depth analyses to explore underlying mechanisms for the increase in 

H3K4 dimethylation. Contrasting to the GO term associations of decreased H3K4me2 

marks, the increased H3K4me2 peaks were enriched for metabolism-related GO terms 
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and were found near promoter regions with the enrichment of the motifs for TFs 

associated with proliferation and inflammation such as the EGR1 and E2F family 

(Figure 2B, Table S2). The expression changes of the TFs enriched in the increased 

H3K4me2 sites revealed that the expression levels of EGR1 and E2F2 increased by 

more than two-fold in KS patients compared to controls based on RNA-seq data (Figure 

3A). In addition, differential expression of genes involved in cell cycles including E2F3, 

E2F4 and CCND1 were found to be increased, although the changes did not reach 

statistical significance. 

 

We next examined the relationship between EGR1 binding and H3K4me2 changes in 

KS using publicly available EGR1 ChIP-seq data profiled in blood cells (Methods). The 

proportion of increased H3K4me2 sites at the promoter-proximal regions was drastically 

different between EGR1-bound sites and EGR1-unbound sites (Figure 3B). Among the 

EGR1-bound H3K4me2 sites, about 90% were increased in H3K4me2 signals, whereas 

among the H3K4me2 sites not targeted by EGR1, only half (about random expectation) 

showed increased H3K4me2 in KS, which is statistically significant (Odds ratio > 5 and 

p-value < 10-15 by Fisher’s exact test). Furthermore, the EGR1 target genes with the 

increased H3K4me2 showed a significant increase in expression (Figure S2) and were 

enriched in the pathways associated with hypoxia, cell cycles, Notch signaling and 

transcriptional regulation by the RUNX family (Figure S2). Altogether, these results 

suggest that KMT2D haploinsufficiency results in 1) reduced enhancer activity of 

immune-related genes and 2) overexpression of EGR1 and E2F2 associated with more 

open chromatin states, leading to the upregulation of target genes.  

 

 

De novo enhancer sites in KS individuals 

Among the significantly increased H3K4me2 sites, we identified 135 de novo H3K4me2 

peaks in KS (Table S3). One of the examples of de novo H3K4me2 peaks in KS is 

located in the intragenic region of MYO1F (Myosin 1F) (Figure 2D, top increased 

H3K4me2 site in KS compared to control). Several prior studies reported MYO1F as 

one of the most differentially hypomethylated regions in KS samples compared to 
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controls. (Aref-Eshghi et al. 2017; Butcher et al. 2017; Aref-Eshghi et al. 2018; Sobreira 

et al. 2017) Comparisons with the previously published DNA methylation profile 

confirmed that the de novo H3K4me2 peak precisely overlapped with the 

hypomethylation region in KS (Figure 3C). Another example of de novo H3K4me2 sites 

is the gene AGAP2 (ArfGAP With GTPase Domain 2, Figure S3). Similarly, several 

previous studies comparing blood DNA methylation profiles between KS and controls 

reported AGAP2 as one of the hypomethylated regions in KS. The de novo H3K4me2 

peak in AGAP2 overlapped with the hypomethylated region in KS. In general, de novo 

H3K4me2 peaks in KS were less methylated in KS compared to controls based on 

available DNA methylation data (Figure S3). These histone and DNA methylation 

patterns can potentially serve as biomarkers for KS for clinical trial readiness. 

 

Association with super-enhancers 

KMT2D deposits H3K4me1 and H3K4me2 marks at genomic targets, followed by p300 

interaction mediated through the ASCOM complex, along with co-binding of TFs. This 

leads to H3K27ac and a fully active enhancer state. (Xu et al. 2018) The loss of function 

of KMT2D is expected to alter chromatin states in active enhancers as well as super-

enhancers, which is supported by a previous study.(Alam et al. 2020) 

Super-enhancers are a set of enhancers typically identified by the strong and broad 

signals of H3K27ac and are known to play a critical role in development, cell identity 

and disease.(Hnisz et al. 2013; Lovén et al. 2013; Whyte et al. 2013) In our study, we 

found that approximately 31% of super-enhancers in lymphoblast cells (Figure 4A), 

which are defined by H3K27ac (Methods), overlapped with differential H3K4me1 and/or 

H3K4me2 sites in KS individuals compared to normal controls where the H3K4me1/me2 

signal intensities were significantly reduced for the majority of them (Figure 4B). Genes 

whose super-enhancers overlap with differential H3K4me1/2 in KS include several 

important genes previously associated with mechanistically overlapping clinical 

syndromes or presentations. (Figure 4C, Table S4). RAP1A is associated with KS-like 

phenotypes and plays an important role in the RAS/MAPK signaling 

pathway.(Bögershausen et al. 2015; Tsai et al. 2018) CHD7 is a major cause of 

CHARGE syndrome characterized by an overlapping clinical phenotype with 
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KS.(Butcher et al. 2017)  PAX5 is a master regulator in B cells and is known to be a co-

binding factor of KMT2D and implicated in the B cell development defect. (Lindsley et al. 

2016) The results indicate that KMT2D mutations might be associated with disruption of 

a substantial fraction of the super-enhancers, implicated in KS pathogenesis. 

 

Relationship between transcriptional changes and enhancer signal changes 

To explore the expression changes downstream of changes in enhancer signals in KS, 

we examined the correlation between H3K4me2 and transcription changes in KS 

individuals compared to controls (Methods). For the differentially expressed genes (q < 

0.1), the fold changes of H3K4me2 were modest but positively correlated with the fold 

changes of expression levels (Pearson’s r = 0.4), with approximately 70% of genes 

displaying changes of expression and H3K4me2 levels in the same direction as 

illustrated in Figure 5A. The downregulated genes with decreased H3K4me2 signals in 

KS include genes associated with immunity, linking this H3K4me2 signature to the KS 

phenotype. For instance, TNNT1 was reported as one of the 20 most significantly 

dysregulated genes in Mll2 knockout mice and plays a role in musculoskeletal 

development.(Issaeva et al. 2007) IR23R and MXRA8 are implicated in autoimmune 

disease and immune response, respectively.(Peloquin et al. 2016; R. Zhang et al. 2019) 

Several genes including TUSC3 are frequently dysregulated in cancer.(Gu et al. 2016) 

This result indicates that changes in enhancer marks could explain expression changes 

for a majority of the target genes. However, additional factors besides H3K4me2 likely 

also contribute to the transcriptional changes in KS, given that 30% of genes do not 

show expression changes in the same direction as H3K4me2. 

 

Transcriptional regulators underlying expression changes in KS 

In the previous sections, we report that (1) TFs EGR1 and E2F2 experienced 

substantial transcriptional changes in KS and (2) for a subset of genes, their expression 

changes cannot be explained by H3K4me2 changes alone. These observations 

prompted us to search for other TFs, which could globally affect the expression changes 

of the TF target genes. A total of 65 TFs exhibited noticeable expression changes in KS 

patients (q-value < 0.1 or log2 fold change > 1, Figure 5B, Methods) including KLF1, 
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GATA1 and TAL1, master regulators in erythroid cells. A recent study showed the 

association of KLF1 in autoimmune disease.(Teruya et al. 2018) SOX5 is associated 

with differentiation in B cells and T helper 17 cells. Its overexpression is implicated in 

autoimmune disease as well.(Tanaka et al. 2014) YBX TF families are involved in T cell 

differentiation; NFIX and SMAD1 are associated with hematopoietic stem cell 

regulation.(Martynoga et al. 2013) These TF expression changes were significant 

compared to the expectation from the background gene expression changes (p < 10-5  

by rank sum test, Figure S3, Methods). 

 

To infer transcriptional regulators, such as TFs or chromatin regulators, underlying 

differential expressions in KS, we computed regulatory potential scores by integrating 

transcription regulator binding sites from public Chip-seq data and differentially 

expressed genes in KS. In brief, using about 10,000 publicly available ChIP-seq data, 

the regulatory potential by each transcriptional regulator was calculated for differentially 

expressed genes (DEGs, Methods). The top 50 TFs underlying DEGs in KS include 

TAL1, KlF1 and GATA1, master regulators in erythroid cells and SMAD1 for 

hematopoietic cells (Figure 5C). We found KMT2A (lysine-specific methyltransferase 

2A; another methyltransferase for H3K4me), CEBPA (CCAAT enhancer binding protein 

alpha) and KDM1A (lysine-specific histone demethylase 1A) which are associated with 

enhancer function. However, KMT2D itself was not identified, likely due to sparsity in 

available ChIP-seq datasets. EGR1 and RUNX1, which are TFs predicted from the 

differential H3K4me2 sites in Figure 2B, were also included in the list. Therefore, the 

disrupted expression states of these TFs likely regulate downstream differential 

expression in KS. Although the gene expression changes may not be a direct 

consequence of KMT2D gene mutations, these results support that expression changes 

are a consequence of expression changes of TFs in KS. 

 

 

 

DISCUSSION 
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Although KMT2D is the major causal gene for KS and its primary role in chromatin 

states is known, the effect of haploinsufficiency of KMT2D on histone modification and 

subsequent transcriptional (dys)regulation has not been studied in samples from 

patients with KS. To examine the alterations in the chromatin landscape in KS, we 

profiled H3K4 methylation states from blood samples of 33 KS patients with pathogenic 

variants in KMT2D along with transcription data and systematically identified altered 

chromatin and expression states in KS. 

 

Our analysis of H3K4me1/2/3 profiles from KMT2D haploinsufficient patients revealed 

an enhancer landscape (H3K4me1/2) in KS distinctive from unaffected controls. 

Interestingly, the H3K4me2 profile was more impacted compared to H3K4me1, with 

better separation between KS and control groups. Although both H3K4me1 and 

H3K4me2 are associated with enhancers, they target substantially different genomic 

locations as reported in previous studies.(Pekowska et al. 2010)  We also observed a 

small number of KS-specific alterations in H3K4me3 peaks at promoter sites. However, 

in our dataset, the majority of H3K4me3 changes are explained by genetic background 

rather than KMT2D genotype. It is notable that the reported roles of KMT2D in literature 

are somewhat inconsistent, as some studies describe KMT2D as a methyltransferase 

specifically acting on a single mark (e.g., H3K4me3 or H3K4me1), while others describe 

KMT2D to act on enhancer marks (H3K4me1/2) or all forms of H3K4me.(Fahrner et al. 

2019; Carosso et al. 2019; Huisman et al. 2021; Zhang et al. 2015; Ortega-Molina et al. 

2015) Despite the variations and discrepancies in the literature, most studies report 

greater changes in H3K4me1/2 than H3K4me3. In line with the reported literature, our 

results show that KMT2D haploinsufficiency has a greater impact on H3K4me1/2, thus 

enhancer states. 

 

More specifically, we found distal enhancer signals of immune-related genes or immune 

pathways were frequently reduced in KS, suggesting dysregulation of the associated 

immune-related genes/pathways, thus linking the distal enhancer states with the 

immunodeficiency phenotype frequently observed in individuals with KS. In addition, we 

observed promoter-proximal enhancer signals to be increased in genes associated with 
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proliferation, inflammation and metabolism pathways, which is in line with previous 

studies in lymphoma, which showed that loss of KMT2D promotes proliferation and 

tumorigenesis. In contrast, results from the mouse Kmt2d model indicated that Kmt2d 

haploinsufficiency in neuronal cells might also affect metabolic pathways but in the 

opposite direction, leading to reduced proliferation. Taking together our and previous 

findings, a conclusion is emerging that the effect of KMT2D haploinsufficiency might be 

tissue- and cell-type specific.    

 

Based on the active enhancer mark of H3K27ac profiled in GM12578, we showed that 

approximately one third of super-enhancer regions overlapped with altered enhancer 

regions in KS when compared to control, suggesting a potential impact on the regulation 

of super-enhancers in KS. Prior studies on the role of KMT2D in super-enhancers 

during tumorigenesis showed that KMT2D plays a role in maintaining super-enhancers 

of tumor suppressors and that the loss of KMT2D resulted in dysregulation of glycolytic 

genes in tumors.[reference] Our observations indicate possible disruptions of super-

enhancer regulation in KS to also occur in the non-cancer context, where they are not 

limited to tumor suppressors or glycolytic genes. Many of the genes associated with 

disturbed super-enhancers in KS included genes with immune functions or B-cell 

differentiation. Intriguingly, super-enhancer regions of the genes implicated in KS-like 

phenotypes, such as RAP1A and CHD7, overlapped with altered enhancers in KS, 

implying a possible mechanical link with KS. Further studies are required to determine 

the extent of the impact on super-enhancers using H3K27ac profiled in KS individuals 

by haploinsufficiency of KMT2D and the functional studies on the super-enhancers of 

these genes.  

 

Despite the variations in the mutational landscape of KMT2D, the resulting phenotypes 

in the enhancer landscape, in particular in H3K4me2, were more consistent among KS. 

In the current study of 33 individuals, we did not observe a clear correlation between 

variant types and phenotypes in chromatin or transcriptional landscape in KS. Future 

studies using a larger number of samples and profiles might allow us to detect the  

association between genomic variations in KMT2D and chromatin phenotypes. 
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Our RNA-seq comparison between  KS and control revealed that a significant number 

of TFs, which are expressed in our cohort and experienced transcriptional changes, are 

involved in differentiation and key regulation of blood cells. A recent study in B-cells of 

the mouse Kmt2d model also indicated the association between Kmt2d 

haploinsufficiency and overall expression changes in TFs.(Luperchio et al. 2021) 

Although the precise estimation of expression changes of TFs in KS was limited by the 

heterogeneity of cell populations in our blood samples, our results support the 

association of transcriptional changes in TFs with dysregulation of blood cell 

differentiation, including known B-cell differentiation defects reported in KS 

phenotype(Pilarowski et al. 2020; Lindsley et al. 2016), as well as a broader range of 

dysregulation of the TF target genes in general.     

 

It is pertinent to note that the data in this study represents the average signals across 

different cell types, making it challenging to gain insights into cell-type-specific 

regulation mechanisms. Profiling chromatin accessibility and transcription at a single 

cell level using emerging sequencing techniques in the future will allow us to better 

understand the regulation mechanism underlying KS in a cell-type-specific manner and 

to uncover novel cell types, genes and pathways that contribute to the KS etiology as 

well as biomarkers.  

 

In summary, we present the first genome-wide chromatin maps of histone modifications 

from a large number of KS individuals with KMT2D mutations. Our analysis suggests 

unique enhancer signatures in KS with significant changes in gene regulation and 

regulatory pathways associated with immune, cell cycle, and proliferation as well as TF 

dysregulation in KS (Figure 6). The KS-specific chromatin changes may serve as future 

drug targets or biomarkers.  
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FIGURE LEGENDS 

Figure 1. Summary of KMT2D mutations from KS individuals and datasets 

generated from this study. A. Proportions of KMT2D variant types from our KS cohort.  

Red, frame shift; blue, nonsense; green, missense; orange, splice site mutations. B. 

Variants and their mutation types across the KMT2D gene from our KS cohort. The 

genomic positions of each mutation site are shown along with the KMT2D gene where 

the transcription start direction is indicated with an arrow. The leftmost position indicates 

the transcription start site (TSS). (2) denotes mutations from two KS individuals. FYRN: 

F/Y-rich N-terminus domain, FYRC: F/Y-rich C-terminus domain. The same color codes 

are used as in A. C. Overview of this study design. 

 

Figure 2. Alterations of enhancer state in KS individuals compared to controls. A. 

PCA analysis of variable H3K4me2 peaks for KS and control. Each dot represents an 

individual sample. Blue, KS; gray, control. B. Differential H3K4m2 peaks between KS 

and control. Left:  row-normalized H3K4me2 signal heatmap of differential signals 

between KS and control. The hierarchical clustering results are shown on the top of the 

heatmap plot. Blue, high signal intensity; yellow, low signal intensity. Middle: distribution 

of distances of the differential peaks from TSSs. Right: top TF motifs predicted in 

differential H3K4me2 peaks between KS and control. Orange, decreased H3K4me2 

peaks in KS compared to control; green, increased peaks in KS. C. Top gene ontology 

(GO) terms enriched for differential H3K4me2 peaks between KS and control. D. 

Representative of differential H3K4me2 sites between KS and control. Left: a 

representative of decreased H3K4me2 peaks in KS for TLR9. Blue, KS; gray, control. A 

gray box indicates significantly decreased H3K4me2 peaks in KS. An arrow indicates 

the transcriptional direction. Right: a representative of increased H3K4me2 peaks in KS 

for MYO1F. A gray box indicates significantly increased H3K4me2 peaks in KS.     
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Figure 3. Increased H3K4me2 sites in KS compared to control. A. Expression 

changes of EGR1 and E2F2 in KS whose motifs were most enriched for increased 

H3K4me2 peaks in KS compared to control. The bar graph shows the expression levels 

of these genes significantly increased in KS. P-values from a negative binomial model. 

B. Fraction of the increased H3K4me2 peaks in KS for EGR1 targets vs. non-EGR1 

targets. P-values by Fisher’s exact test. C. Differential DNA methylation profile of 

MYO1F. From the top, H3K4me2 profiles from KS individual and its control, and 

differential DNA methylation profile between KS and control, respectively. An arrow 

indicates the transcriptional direction. A gray box indicates the genomic regions 

overlapping with significantly increased H3K4me2 peaks and hypomethylated regions in 

KS compared to control. 

 

Figure 4. Association between altered enhancer sites in KS and super-enhancer 

regions. A. Fraction of super-enhancers overlapping with altered H3K4me1 and/or me2 

peaks in KS compared to control. B. Fold changes of altered signals of H3K4me1 and 

H3K4me2 within the super-enhancers. P-value by t-test. C. H3K27ac signal intensities 

for active enhancers. Gray, non-super-enhancers; black, super-enhancers; blue, super-

enhancers overlapping with altered H3K4me1/me2 in KS.    

 

Figure 5. Transcriptional changes in KS. A. Relationship between H3K4me2 signal 

changes and expression changes in KS compared to control. Each dot represents each 

gene with significant expression changes (q = 0.1). Blue, changes in H3K4me2 and 

expression levels in the same direction; gray, changes in H3K4me2 and expression 

levels in the opposite direction. The blue line shows the regression line with a Pearson 

correlation efficiency of r value (r = 0.4). B. Volcano plot of expression changes in KS 

compared to control for TFs. Blue, TFs exhibiting substantial transcriptional changes in 

KS with q-value < 0.1 or fold changes > 2; gray, rest of TFs expressed in blood. Light 

blue circle, ZNF family; green, erythroid cell master regulators; yellow, hematopoietic 

cell regulators; orange, cell cycle genes; blue, B, Th and T cell regulation; purple, 

dysregulated gene in other tissues. C. Transcription factors regulating differentially 

expressed genes in KS compared to control. The y-axis represents the significance of 
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prediction based on binding from public ChIP-seq data near the differentially expressed 

genes. The x-axis shows the significance of expression changes in KS for the gene. 

Blue, top 50 regulators underlying differentially expressed genes in KS; red,  top 50 

regulators underlying differentially expressed genes in KS and showing greater than 2-

fold changes in expressions. 

 

Figure 6. Molecular processes underlying dysregulation in KS. Schematic diagram 

for the underlying transcriptional regulation program in KS. Haploinsufficiency of KMT2D 

directly affects the KMT2D targets for enhancers/super-enhancers along with blood cell 

regulating TFs for immune-related genes. Upregulation of cell cycle genes, indirectly 

caused by haploinsufficiency of KMT2D, is associated with more open chromatin states 

near target gene promoters, resulting in the upregulation of metabolic genes. Finally, 

multiple dysregulated TFs affect a vast number of the target genes, which subsequently 

causes changes in blood cell differentiation.        
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TABLES 

 

Table 1. Features of subjects and mutations in KMT2D 

** indicates a twin. 

Subject Sex Age at 
enrollmen
t 

KMT2D variant (NM_003482.3) Variant type Genomic 
position 
in hg19  

Parental origin 

S1 male 4-10 years c.839+1del, intron 6 splice site 12:494472
59 

n.d. 

S2 femal
e 

0-3 years c.12844C>T (p.Arg4282*), exon 39 nonsense 12:494256
44 

de novo 

S3 male 0-3 years c.5104C>T (p.Arg1702*), exon 21 nonsense 12:494380
67 

maternal 

S4 male 11-15 
years 

c.13450C>T (p.Arg4484*), exon 39  nonsense 12:494250
38 

n.d 

S5 femal
e 

16-30 
years 

c.6183+3G>T, intron 29 splice site 12:494356
97 

n.d 

S6 femal
e 

11-15 
years 

c.16437del (p.Asn5480Thrfs*7), exon 
53 

frameshift 12:494159
10 

n.d. 

S7 male 16-30 
years 

c.9703_9704del (p.Lys3235Aspfs*15), 
exon 34 

frameshift 12:494314
35 

n.d. 

S8 femal
e 

11-15 
years 

c.10740+1G>A, intron 38 splice site 12:494278
49 

n.d. 

S9 femal
e 

0-3 years c.2657del (p.Pro886Leufs*44), exon 
10 

frameshift 12:494448
13 

de novo 

S10 femal
e 

16-30 
years 

c.7481dup (p.Ala2496Serfs*10), exon 
31 

frameshift 12:494340
73 

de novo 

S11 femal
e 

11-15 
years 

c.13689C>T (p.Pro4563=), exon 41 likely to 
affect 
splicing 

12:494245
34 

n.d. 

S12 male 0-3 years c.15641G>T (p.Arg5214Leu), exon 48  missense 12:494201
08 
 

de novo 

S13 male 11-15 
years 

c.16052G>A (p.Arg5351Gln), exon 50 missense 12:494183
61 

n.d. 

S14 femal
e 

4-10 years c.6086del (p.Pro2029Leufs*18), exon 
28  

frameshift 12:494358
96 

n.d. 
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S15 male 11-15 
years 

c.12395del (p.His4132Profs*10), exon 
39 

frameshift 12:494260
93 

n.d. 
 

S16 femal
e 

4-10 years c.13450C>T (p.Arg4484*), exon 39 nonsense 12:494250
38 

n.d. 

S17 femal
e 

16-30 
years 

c.10507+2T>G, intron 37  splice site 12:494281
91 

n.d. 

S18 male 4-10 years c.12592C>T (p.Arg4198*), exon 39 nonsense 12:494258
96 

de novo 

S19 male 4-10 years c.2533del (p.Arg845Glyfs*85), exon 10 frameshift 12:494449
38 

n.d. 

S20 femal
e 

0-3 years c.10507+2T>G, intron 37 splice site 12:494281
91 

n.d. 

S21 femal
e 

11-15 
years 

c.11263C>T (p.Gln3755*), exon 39 nonsense 12:494272
25 

n.d. 

S22 femal
e 

16-30 
years 

c.10813C>T (p.Gln3605*), exon 39 nonsense 12:494276
75 

de novo 

S23 femal
e 

0-3 years c.6295C>T (p.Arg2099*), exon 31  nonsense 12:494352
58 

de novo 

S24 femal
e 

31-50 
years 

c.16469_16472del 
(p.Lys5490Argfs*18), exon 53 

frameshift 12:494158
76_49415
879 

de novo 

S25** femal
e 

4-10 years 
 

c.15467A>G (p.Tyr5156Cys), exon 48 missense 12:494202
82 

de novo 

S26** femal
e 

4-10 years c.15467A>G (p.Tyr5156Cys), exon 48 missense 12:494202
82 

de novo 

S27 femal
e 

0-3 years c.5645-2A>G, intron 25 splice site 12:494366
63 

maternal 

S28 femal
e 

16-30 
years 

c.15536G>A (p.Arg5179His), exon 48 missense 12:494202
13 

n.d. 

S29 femal
e 

0-3 years c.349C>T (p.Gln117*), exon 3 nonsense 12:494483
62 

de novo 

S30 femal
e 

11-15 
years 

c.8859_8861delinsCA 
(p.Lys2953Asnfs*51), exon 34 

frameshift 12:494322
78_49432
280 

n.d. 

S31 male 4-10 years c.16295G>A (p.Arg5432Gln), exon 51 missense 12:494164
16 

de novo 

S32 male 4-10 years c.2713del (p.Glu905Asnfs*25), exon 
10 

frameshift 12:494447
56 

de novo 
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S33 femal
e 

4-10 years c.11386_11411del 
(p.Gln3796Cysfs*207), exon 39 

frameshift 12:494270
80_49427
105 

n.d. 
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