1	Genes associated with depression and coronary artery disease are enriched for
2	inflammation and cardiomyopathy-associated pathways.
3	Kritika Singh ^{1,2} , Hyunjoon Lee ^{3,4,5} *, Julia M Sealock ^{1,2} *, Tyne Miller-Flemming ^{1,2} , Peter
4	Straub ^{1,2} , Nancy J. Cox ^{1,2} , Quinn S. Wells ⁶ , Jordan W. Smoller ^{3,4,5} , Emily C. Hodges ^{2,7} , Lea
5	K. Davis ^{1,2,8,9,10}
6	*These authors contributed equally
7	#Corresponding author
8	¹ Division of Genetic Medicine, Department of Medicine
9	Vanderbilt University Medical Center
10	Nashville, TN, 37232, USA
11	
12	² Vanderbilt Genetics Institute
13	Vanderbilt University Medical Center
14	Nashville, TN, 37232, USA
15	
16	³ Psychiatric and Neurodevelopmental Genetics Unit
17	Center for Genomic Medicine
18	Massachusetts General Hospital
19	Boston, MA, 02114, USA
20	
21	⁴ Center for Precision Psychiatry
22	Department of Psychiatry
23	Massachusetts General Hospital
24 25	Boston, MA, 02114, USA
26	⁵ Stanley Center for Psychiatric Research
27	Broad Institute of Harvard and MIT
28	Cambridge, MA, 02114, USA
29	
30	⁶ Division of Cardiovascular Medicine, Department of Medicine,
31	Vanderbilt University Medical Center,
32	Nashville, TN, 37232, USA
33	
34	⁷ Department of Biochemistry,
35	Vanderbilt University School of Medicine,
-	,,

36	Nashville, TN, 37232, USA
37	
38	⁸ Department of Molecular Physiology and Biophysics
39	Vanderbilt University Medical Center
40	Nashville, TN, 37232, USA
41	
42	⁹ Department of Psychiatry and Behavioral Sciences
43	Vanderbilt University Medical Center
44	Nashville, TN, 37232, USA
45	
46	¹⁰ Departments of Medicine and Biomedical Informatics
47	Vanderbilt University Medical Center
48	Nashville, TN, 37232, USA
49	
50	Total word count of manuscript: 4,656 Words
51	
52	Short Title: Genes shared between depression and CAD

54 Abstract (140 words)

- 55 Background: Depression and Coronary Artery Disease (CAD) are highly comorbid conditions.
- 56 Approximately 40% of individuals who have one diagnosis will also develop the other within
- 57 their lifetime. Prior research indicates that polygenic risk for depression increases the odds of
- 58 developing CAD even in the absence of clinical depression. However, the specific genes and
- 59 pathways involved in comorbid depression-CAD remain unknown.
- 60 Results: We identified genes that are significantly associated with both depression and CAD,
- and are enriched for pathways involved in inflammation and for previous association with
- 62 cardiomyopathy. We observed increased rate of prevalent, but not incident, cardiomyopathy
- 63 cases in individuals with comorbid depression-CAD compared to those with CAD alone in three
- 64 electronic large health record (EHR) datasets.
- 65 Conclusions: The results of our study implicate genetically regulated inflammatory mechanisms
- 66 in depression-CAD. Our results also raise the hypothesis that depression-associated CAD may be
- 67 enriched for cardiomyopathy.

69 Clinical Perspective

- 70 A. What's New?
- 71 1. Gene associations shared between depression and CAD are enriched for prior
- 72 association with cardiomyopathy phenotypes.
- 73 2. Cardiomyopathy is significantly more prevalent in individuals with comorbid
- 74 depression-CAD than in CAD or depression alone.
- 75 B. What are the Clinical Implications?
- 1. Our work suggests that individuals with comorbid depression-CAD may benefit from
- 77 screening for cardiomyopathy.

79	Non-Standard Ab	breviations and Acronyms
	Abbreviation	Definition
	CAD	Coronary artery disease
	CI	Confidence interval
	CAD	Coronary Artery Disease
	CVD	Cardiovascular disease
	EHR	Electronic health record
	GWAS	Genome-wide association study
	ICD	International Classification of Diseases
	LD	Linkage disequilibrium
	MD	Major depression
	MDD	Major depressive disorder
	MHC	Major histocompatibility complex
	MR	Mendelian randomisation
	OR	Odds ratio
	PGS	Polygenic score
	SNP	Single nucleotide polymorphism
	VUMC	Vanderbilt University Medical Center
٥n		

79 Non-Standard Abbreviations and Acronyms

81 Introduction

82 Chronic complex diseases such as cardiovascular disease (CVD) are the primary drivers of premature death among individuals with psychiatric disorders. Approximately 17 to 44 83 84 percent of patients with coronary artery disease (CAD), the most common type of CVD, also 85 have a diagnosis of major depression (MDD), a common mental health diagnosis¹. Several 86 studies suggest that these two conditions are biologically related. A diagnosis of major 87 depression is associated with increased 18-month cardiac mortality among CAD patients; and CAD with comorbid MDD reduces lifespan by 15-20 years^{2–5}. However, despite the frequency 88 and high mortality rate of comorbid CAD with depression and/or MDD, hereafter referred to as 89 (major) depressive CAD or (m)dCAD, the biological relationship between these conditions 90 91 remains poorly understood.

92 Previously, we demonstrated that common genetic risk for depression identified by 93 genome-wide association studies (GWAS) and quantified in the form of polygenic risk scores 94 (PRS), is associated with a diagnosis of CAD and myocardial infarction in a healthcare-based 95 clinical population⁶. High genetic liability to MDD was associated with increased risk of 96 cardiovascular disease even among patients with no history of psychiatric illness and after accounting for cardiovascular disease risk factors⁶. Shared inflammatory processes provide one 97 possible explanation for these findings^{7,8}. Studies show that as CAD progresses, changes in the 98 99 levels of inflammatory biomarkers such as C-Reactive protein (CRP), leukocytes, monocytes and inflammation associated prothrombotic markers including platelets, can be observed^{9–11}. 100 101 Similarly, onset and severity of depression is associated with changes in the levels of immune and inflammatory factors including leukocytes, CRP, and platelets^{12–22}. Neuroinflammation and 102

103 peripheral inflammation are hypothesized to play an important role in both MDD and CAD 104 respectively, providing a potential common biological pathway that may link neuroinflammation in depression together with atherosclerotic inflammation in CAD^{7,8}. 105 106 Consortium efforts over the past decade have yielded results from large genome-wide association studies of depression, and independently, CAD^{23,24}. These studies provide a map of 107 108 statistical associations between common single nucleotide polymorphisms (SNPs) and each 109 diagnosis, respectively. However, the genes that are implicated by these SNP associations must 110 also be identified to define the biological pathways that might be shared between these 111 conditions. Transcriptome wide association scans (TWAS) employ functional data to map SNPs to genes based on their ability to regulate gene expression²⁵. In this study, we first used the 112 113 TWAS method S-MultiXcan to map depression and CAD SNP-associations to the genes they 114 regulate using cross-tissue expression quantitative trait loci (eQTL) annotations²⁵. We then 115 performed a series of enrichment and pathway analyses to characterize the gene set that was 116 significantly associated with both depression and CAD. Our findings suggest that genes 117 associated with both CAD and depression are enriched for both inflammatory pathways and 118 genes previously associated with cardiomyopathy. 119 Next, we developed a clinical hypothesis based on these findings and tested it in three

separate large electronic health records (EHR) data sets –Vanderbilt University Medical Center EHR, All of Us Research Program, and Mass-General Brigham EHR. At each site, we find that the rate of prevalent cardiomyopathy is significantly higher in subjects with (m)dCAD compared to those with CAD alone. Taken together, results of our study link depression and CAD through

- 124 genetically controlled inflammatory mechanisms, and further suggest a relationship between
- 125 (m)dCAD and cardiomyopathy.

126 Materials and Methods

- 127 Genome-wide Association Study Data Coronary Artery Disease
- 128 We utilized publicly available summary statistics from a recently published GWAS of
- 129 CAD as the foundation for our MetaXcan and S-MultiXcan analyses²³. This study included a
- 130 genome-wide meta-analysis of CAD cases and controls from the UK Biobank (UKBB) and
- 131 CARDIoGRAMplusC4D²³. CAD was defined in the UKBB by ICD10 codes (I21 I25), procedural
- 132 codes (K40-K46, K49, K50 and K75), and self-report of heart attack/myocardial infarction,
- 133 coronary angioplasty +/- stent, coronary artery bypass graft surgery, or triple heart bypass.
- 134 Controls were defined by the absence of features used to define cases and the absence of any
- 135 family history of "heart disease". Application of these criteria resulted in 34,541 CAD cases and
- 136 261,984 controls. The second sample used in this meta-analysis was the CARDIoGRAMplusC4D
- 137 GWAS which itself was a meta-analysis of twenty-eight studies of European or South Asian
- descent populations. CAD was operationally defined differently across the cohorts, but all
- definitions relied on clinical or procedural markers of CAD, evidence of myocardial infarction, or
- 140 imaging data consistent with a CAD diagnosis (<u>PMC3679547</u>). The CARDIoGRAMplusC4D GWAS
- 141 included 63,746 CAD cases and 130,681 controls. The meta-analysis of UKBB and
- 142 CARDIoGRAMplusC4D totaled 122,733 CAD cases and 424,528 controls.

143

144 Genome-wide Association Study Data – Depression

145	We used summary statistics from the PGC and UKBB as the base for the MetaXcan
146	analysis of depression ²⁴ . The genome-wide association meta-analysis for depression included
147	170,756 cases and 329,443 controls. These results included summary statistics from a meta-
148	analysis of the 33 cohorts of the Psychiatric Genomics Consortium as described in Wray et al.
149	(2018), (https://doi.org/10.1038/s41588-018-0090-3) and the broad depression phenotype in
150	the full release of the UKBB as described in (Howard et al. (2018),
151	https://doi.org/10.1038/s41467-018-03819-3). The broad depression phenotype in UKBB
152	included self-reported help-seeking behavior for "nerves, anxiety, tension or depression (once
153	at any visit)" from a general practice physician or a psychiatrist. Secondly, a subject was defined
154	as a case if there was a primary or secondary diagnosis of a depressive mood disorder from
155	linked hospital admission records (UK Biobank fields: 41202 and 41204; ICD codes: F32—Single
156	episode depression, F33—Recurrent depression, F34—Persistent mood disorders, F38—Other
157	mood disorders and F39—Unspecified mood disorders). The remaining respondents were
158	classed as controls if they answered "No" to both questions on all assessments. For the PGC
159	sample, cases were those who met international consensus criteria (DSM-IV, ICD-9, or ICD-10)
160	for a lifetime diagnosis of MDD established using structured diagnostic instruments from
161	assessments by trained interviewers, clinician-administered checklists, or medical record
162	review. Controls in most samples were screened for the absence of lifetime MDD (22/29
163	samples) or randomly selected from the population.
164	

165 Statistical Analysis of Genetic Data

166 <u>S-MultiXcan Analysis of Depression and CAD GWAS Summary Statistics</u>

167	Predicted expression models of 22,207 genes across 49 tissues were developed
168	(supplementary materials) as previously described using data from the Genotype Tissue
169	Expression Project ^{25,26} . These models were then used to train gene-based predicted
170	associations for each set of summary statistics described above ^{25,26} . The subsequent
171	associations with CAD and depression were tested using a multivariate regression model
172	(Summary-MultiXcan or S-MultiXcan) which uses cross-tissue eQTL information ²⁵ . S-MultiXcan
173	infers the gene-level MultiXcan association results, using univariate S-PrediXcan results and LD
174	information from a reference panel (i.e., the GTEx data set). Correlations between tissues are
175	accounted for using a pseudo-inverse approach which applies a singular value decomposition
176	(SVD) of the covariance matrix to keep only the components of large variation.
177	We used a Bonferroni correction to adjust the statistical significance threshold for
178	20,971 gene-based tests in the CAD MetaXcan analysis (p < 2.38e-06) and 20,945 gene-based
179	tests in the depression MetaXcan analysis ($p < 2.38e-06$).
180	
181	Enrichment Analysis of Gene-based Association Results (Depression and CAD)
182	After identifying genes associated with either depression or CAD, we determined
183	whether genes associated with both CAD and depression (n=185) were more abundant than
184	expected by chance, based on the number of genes significantly associated with each
185	phenotype independently. We performed a hypergeometric test using the hyper R package and
186	the publicly available website http://nemates.org/MA/progs/overlap_stats.html.
187	
188	Gene Set Enrichment Analyses (GSEA)

189	We used the Gene Set Enrichment Analysis Web-based Tool (<u>http://www.gsea-</u>
190	msigdb.org/gsea/msigdb/annotate.jsp) to functionally annotate the pathways for the 185 genes
191	associated with both depression and CAD. We restricted our analysis to the 'canonical
192	pathways' class with FDR q-values less than 0.05 and the GTEx compendium expression profiles.
193	There were 2,982 pathways, composed of 40,786 genes, tested in the null 'background' set,
194	provided by GSEA.
195	
196	Description of Clinical Populations
197	Vanderbilt University Medical Center (VUMC) Electronic Health Record (EHR)
198	Vanderbilt University Medical Center (VUMC) is a tertiary care center that provides
199	inpatient and outpatient care in middle Tennessee and surrounding communities. The VUMC
200	electronic health record (EHR) system was established in 1990 and includes data on billing
201	codes from the International Classification of Diseases, 9th and 10th editions (ICD-9 and ICD-
202	10), Current Procedural Terminology (CPT) codes, laboratory values, reports, and clinical
203	documentation. A fully de-identified mirror image of the EHR, called the Synthetic Derivative, is
204	available to Vanderbilt faculty for research purposes ²⁷ .
205	
206	Massachusetts General Brigham (MGB) EHR
207	Mass General Brigham (MGB) is a hospital network that includes Massachusetts General
208	Hospital, Brigham and Women's hospital, and other community and specialty hospitals in
209	Boston area. The data source of MGB EHR is MGB Research Patient Data Registry (RPDR;
210	https://rpdrssl.partners.org), an EHR database which spans more than 20 years of data from

211	over 6.5 million patients and includes data on diagnoses (billing codes; ICD-9 and ICD-10 codes),
212	procedures (CPT codes), laboratory values, and clinical notes. Data floors were applied to the
213	MGB RPDR to include only patients with at least one clinical note and three visits since 2005
214	with visit more than 30 days apart.
215	
216	All of Us Research Program
217	We used data from the All of Us Research Program, a multi-ancestry population-based cohort
218	that contains various forms of information on individuals ²⁸ . This data repository enrolls
219	participants 18 years of age or older and contains their demographic and medical record-based
220	information. The data for disease diagnosis was collected using billing codes and was the
221	converted to phecodes.
222	
223	Phenotypic analysis in the Synthetic Derivative
224	Informed by results of the genomic analyses, we first investigated the prevalence of
225	cardiomyopathy in three mutually exclusive groups of patients in the VUMC-EHR including
226	those who had a diagnosis of (1) depression or major depression without comorbid CAD (dep),
227	(2) CAD without comorbid depression (CAD), and (3) CAD with comorbid depression or major
228	depression ((m)dCAD)(Table S1). To reduce missingness of clinical data and enrich the sample
229	for patients who receive their primary care at VUMC, we applied a simple "medical home"
230	heuristic requiring the presence of any five codes on different days over a period of at least
231	three years. We selected the cohort of individuals meeting these criteria who also had not been
232	included in the VUMC BioBank which resulted in a total of 988,002 individuals. The genotyped

sample was held out of this analysis to maintain its independence for future related researchstudies including genomic data.

235	We defined dep-only, CAD-only, and (m)dCAD using phecodes which are higher order
236	combinations of at least two related ICD codes, occurring on two different days, using the R
237	PheWAS package. Specifically, "CAD-only" cases required the presence of phecode 411.4 and
238	absence of 296.2 phecode (N = 47,351), "dep-only" cases included phecode 296.2 and absence
239	of 411.4 phecode (N = 57,069) and (m)dCAD required the presence of a phecode for both CAD
240	and depression (N = 6,725). We next calculated the prevalence of cardiomyopathy, indicated by
241	the presence of one or more of the following phecodes "425.1", "425.11", "425.12", "425.8",
242	"425". We then compared the prevalence of cardiomyopathy diagnoses between each
243	diagnostic group using Pearson's Chi-squared test and Fisher's exact T-test.
244	We then used a logistic regression model to determine whether cardiomyopathy was
245	indeed more prevalent among patients with (m)dCAD, compared to CAD alone, after controlling
246	for potential confounding. Cases were defined as those with cardiomyopathy, controls were
247	those without cardiomyopathy. The exposure was defined as depression, and features known
248	to associate with both depression and cardiomyopathy, age, race, sex, record median BMI, type
249	2 diabetes (T2D; Phecode = 250.2), tobacco use disorder (TUD; Phecode = 318) and
250	hypertension (Phecodes = 401, 415.21, 453), were included as covariates.
251	Next, we used the same regression-based approach to test whether incident
252	cardiomyopathy was increased among individuals with (m)dCAD compared to CAD alone. All
253	individuals with cardiomyopathy coded prior to depression or CAD (N = 14,583) were excluded.
254	Hence the cardiomyopathy exposure was required to be coded after both depression and CAD.

255	This resulted in a total of 2,345 cardiomyopathy cases and 45,330 cardiomyopathy controls. We
256	then fitted two multivariable logistic regression models to test whether depression increased
257	the odds of incident cardiomyopathy among patients with (m)dCAD compared to patients with
258	CAD alone, after adjusting for the same previously described confounders.
259	
260	Sensitivity analyses using Severe Depression.
261	Previous literature points towards progression and worsening of CAD with increasing
262	depression severity. To test whether cardiomyopathy more commonly co-occurred with severe
263	depression, we redefined our exposure using a stricter MDD definition requiring the presence
264	of 296.22 phecode and ICD9/10 codes (Table S8) which dropped the sample size from 57,069
265	depression-exposed patients to 41,423 MDD-exposed patients. The same regression models
266	described above were fitted to the data.
267	
268	Phenotypic Replication in MGB and All of Us Data
269	We replicated the EHR analyses in two external cohorts, All of Us and MGB. We used the
270	same phecode based definitions to define our inclusion and exclusion criteria, case and control
271	labels, and exposures. Sensitivity analyses were similarly performed in these data by restricting
272	the exposure definition to include individuals with only severe depression.
273	
274	
275	
276	Results

277 Genes Associated with Both Depression and CAD

278	We intersected the 22,207 predicted expression gene models with the summary
279	statistics of CAD and depression phenotypes as described above. While the tissues that best
280	predicted gene expression differed between CAD and depression (Figure S4); the mean
281	(Spearman's rank = 0.433), standard deviation (Spearman's rank = 0.565), minimum
282	(Spearman's rank = 0.389), and maximum (Spearman's rank = 0.373) association Z-score
283	statistics demonstrated strong correlation between depression and CAD across all tissues
284	tested (Figure S3).
285	Results from the 20,971 gene-based tests of association with CAD, and 20,945 gene-
286	based tests of association with depression are available in Table S2 and Table S3,
287	respectively ^{23,24} . We identified a total of 1,455 genes significantly associated with CAD (p <
288	2.38e-06) and 928 genes significantly associated with depression (p < 2.38e-06) illustrated in
289	Figures S1 and S2, respectively. We next identified the genes that were significantly associated
290	with both depression and CAD. A total of 20,944 genes were tested in common between
291	depression and CAD, and of these, 185 genes identified by their gene names were significantly
292	associated with both CAD and depression (Figure 2; Table S4). The genes associated with both
293	depression and CAD were distributed across the genome (Figure 2).
294	
295	Enrichment and Pathway Analysis of 185 Genes Associated with Both Depression and CAD
296	We found that there were three times more genes associated with both CAD and
297	depression than expected by chance given the number of genes significantly associated with
298	each phenotype independently (hypergeometric test, p<1.718e-43) (Figure 3). Inflammatory

299	(FDR q-value < 0.05) and cardiomyopathy-associated pathways (FDR q value < 0.05) were
300	overrepresented among genes associated with both CAD and depression (Table 1). Five genes
301	from the shared set of 185 (2.7%) were annotated to cardiomyopathy-associated pathways.
302	Four of the 5 genes (ATP2A2, ITGB4, SGCD, and CACNB4) were annotated to all three
303	cardiomyopathy pathways (Table S4). Thirteen additional genes (7%) were annotated to
304	adaptive immune pathways (Table S4).
305	
306	Clinical Cardiomyopathy in (m)dCAD
307	Analyses performed in the EHR returned significant differences in the prevalence of
308	cardiomyopathy between depression-only, CAD-only and (m)dCAD cohorts (Chisq P < $2.2e-16$)
309	(Table S5). Almost 15% of individuals with (m)dCAD had a cardiomyopathy diagnosis, compared
310	to 11.2% in the CAD cohort and only 1.59 % in the depression cohort. The results remained
311	significant when we compared only the (m)dCAD group to the CAD group (Fisher's exact test p <
312	2.2e-16) (Table S5). We then replicated these findings in the MGH EHR and the All of Us Data.
313	We next restricted the depression phenotype to major depression (phecode 296.22) and
314	observed the same pattern in the prevalence of cardiomyopathy between the groups (Table
315	S6).
316	
317	Prevalence of Clinical Cardiomyopathy after Adjusting for known Confounders
318	Results of the multivariable logistic model indicate that there is a 27% increase in the
319	odds of prevalent cardiomyopathy with a diagnosis of (m)dCAD compared to CAD after

320 adjusting for age, race, sex, hypertension diagnosis, smoking status, type-2-diabetes and BMI

321	(see Methods for details) (p-value = 3.6e-09, OR = 1.27, 95% CI = 1.17-1.3). This finding was
322	replicated in the <i>All of Us</i> (p-value = 0.012, OR = 1.16, 95%CI = 1.03-1.30) and MGH (p-value <
323	2e-16, OR = 1.32, 95%CI = 1.28-1.37) data sets.
324	Sensitivity analyses restricting the criteria for depression to "major depression"
325	preserved the effect estimate and significance of the original finding (OR = 1.14, 95%CI = 1.06-
326	1.26, p = 6.5e-03)(Figure 4). This finding was again replicated in the MGH cohort (OR = 1.23,
327	95%CI = 1.13-1.18, p < 2e-16). While the effect estimate was similar in the <i>All of Us</i> data set, the
328	finding did not reach statistical significance likely due to a reduced sample size (OR = 1.13,
329	95%CI = 0.97-1.32, p-value = 0.12)
330	
331	Rate of Incident Cardiomyopathy in (m)dCAD compared to CAD
332	Lastly, we tested the hypothesis that (m)dCAD is a risk factor for the development of
333	subsequent cardiomyopathy. Using a multivariable logistic regression model, we found no
333 334	<i>subsequent</i> cardiomyopathy. Using a multivariable logistic regression model, we found no increase in the odds of incident cardiomyopathy among (m)dCAD patients compared to CAD
334	increase in the odds of incident cardiomyopathy among (m)dCAD patients compared to CAD
334 335	increase in the odds of incident cardiomyopathy among (m)dCAD patients compared to CAD patients, after adjusting for known confounders in the VUMC EHR (OR = 0.96, 95% CI = 0.84-
334 335 336	increase in the odds of incident cardiomyopathy among (m)dCAD patients compared to CAD patients, after adjusting for known confounders in the VUMC EHR (OR = 0.96, 95% CI = 0.84-1.09, p-value = 0.53) (Figure 5) and in the <i>All of Us</i> data (OR = 0.864, 95%C.I. = 0.730-1.021, p-
334 335 336 337	increase in the odds of incident cardiomyopathy among (m)dCAD patients compared to CAD patients, after adjusting for known confounders in the VUMC EHR (OR = 0.96, 95% CI = 0.84- 1.09, p-value = 0.53) (Figure 5) and in the <i>All of Us</i> data (OR = 0.864, 95%C.I. = 0.730-1.021, p-value = 0.086). In the MGH data, not only did we observe a lack of evidence for increased
334 335 336 337 338	increase in the odds of incident cardiomyopathy among (m)dCAD patients compared to CAD patients, after adjusting for known confounders in the VUMC EHR (OR = 0.96, 95% CI = 0.84- 1.09, p-value = 0.53) (Figure 5) and in the <i>All of Us</i> data (OR = 0.864, 95%C.I. = 0.730-1.021, p- value = 0.086). In the MGH data, not only did we observe a lack of evidence for increased incident cardiomyopathy subsequent to (m)dCAD, in fact we observed that (m)dCAD cases were
 334 335 336 337 338 339 	increase in the odds of incident cardiomyopathy among (m)dCAD patients compared to CAD patients, after adjusting for known confounders in the VUMC EHR (OR = 0.96, 95% CI = 0.84- 1.09, p-value = 0.53) (Figure 5) and in the <i>All of Us</i> data (OR = 0.864, 95%C.I. = 0.730-1.021, p-value = 0.086). In the MGH data, not only did we observe a lack of evidence for increased incident cardiomyopathy subsequent to (m)dCAD, in fact we observed that (m)dCAD cases were significantly <i>less</i> likely to be diagnosed with new onset cardiomyopathy compared to CAD alone

343 = 1.00-1.34, p-value = 0.04). However, again, in the *All of Us* (OR = 0.66, 95% C.I. = 0.51-0.84, p344 value = 9e-4) and MGH (OR = 0.54, 95% C.I. = 0.50-0.58, p-value < 2 e-16) data, the rate of
345 incident cardiomyopathy was lower in (m)dCAD than in CAD alone.

346

347

348 Discussion

Depression and CAD are highly comorbid conditions and the molecular mechanisms 349 350 underlying this common comorbidity remain understudied. Here we present an integrative 351 genotypic approach to identify genes that map to SNP associations for each condition, followed 352 by a phenotypic analysis to test a hypothesis motivated by the genetic findings. By performing a 353 cross-tissue transcriptome-wide association scan using large scale GWAS data for depression 354 and CAD, we identified 185 genes (three time more than expected by chance) that were 355 significantly associated with both depression and CAD. Interestingly, the genes associated with 356 both phenotypes were not necessarily those most strongly associated with depression or CAD 357 independently. On balance, these results suggest that comorbid (m)dCAD may have a partially 358 unique genetic architecture which overlaps a subset of genes associated with depression and 359 CAD.

Pathway analyses indicate that the genes involved in (m)dCAD are enriched for inflammatory and cardiomyopathy-associated pathways. Specifically, we observed an enrichment for adaptive immune system genes which can be understood in the context of previous studies that have highlighted immune dysfunction in both depression and CAD^{15,29–36}. Moreover, research has shown that depression is associated with low-grade chronic

There were six genes ATP2A2, ITGB4, SGCD, CACNB4, ACTN2, and TGFB1 associated with

inflammation whereas CAD has phases of both, acute and chronic inflammation^{36–38}. Hence the
 enrichment of adaptive immune system genes suggests that depression and CAD could be
 linked through exposure to low-grade chronic inflammation.

368

369 both CAD and depression, which are known to be involved in cardiomyopathy (Table S4). 370 Differential expression of ATP2A, which encodes a Ca^{2+} pump on the endoplasmic reticulum, is associated with cardiac phenotypes including dilated cardiomyopathy^{39,,40}; and heterozygous 371 372 conditional knockout mice demonstrate an essential role for ATP2A in neuronal calcium homeostasis resulting in behavioral phenotypes⁴¹. Similarly, *CACNB4* is the one of the most 373 374 abundant voltage-gated calcium channel subunits expressed in the brain where it is critical for 375 presynaptic signaling, and co-located in the heart where early data suggests it may be involved in cardiac contraction^{42–44}. The gene locus was also recently implicated in idiopathic 376 377 cardiomyopathy in individuals of African-American ancestry⁴⁵. ACTN2, a cardiac-specific 378 structural protein, is classically involved in familial hypertrophic, dilated, and arrhythmogenic cardiomyopathy^{46–48} while *TGFB1* is a cytokine with a variety of cellular functions implicated in 379 cardiac hypertrophy and hypertrophic cardiomyopathy along with congenital heart disease^{49,50}. 380 381 Mutations in delta-sarcoglycan (SGCD) result in severe neuromuscular disease in humans and knockout mice develop early progressive cardiomyopathy and dilated cardiomyopathy^{51,52}. 382 383 However, less is known about the impact of differences in expression of these genes (ACTN2, TGFB1, and SGCD) on depression. 384

Interpreted in the context of previous studies, our genetic findings suggest that
 depression and CAD could share low grade chronic inflammation^{36,53–55}. Moreover, genetic

387 results of our study raised the hypothesis that a predisposition to both depression and CAD 388 (clinically observed as (m)dCAD) may further predispose individuals to cardiomyopathy. 389 Canonically, viral infections are considered the most common trigger and cause of 390 inflammatory cardiomyopathy thus leading to immune mechanisms which potentially damage the myocardial function^{56–63}. However, an alternative model consistent with our findings could 391 392 position chronic low-grade inflammation as a shared risk factor for depression, CAD, and 393 cardiomyopathy. We investigated the hypothesis that cardiomyopathy co-occurs more 394 commonly with (m)dCAD than with CAD, by harnessing the power of large-scale electronic 395 health record data at VUMC, MGB, and All of Us. These three systems represent both hospital 396 ascertainment (VUMC and MGB) and volunteer ascertainment (All of Us). Results of these 397 analyses suggest that while prevalent cardiomyopathy does in fact co-occur more frequently 398 with (m)dCAD than with CAD alone, the order of events remains unclear. For example, it 399 remains possible that (a) cardiomyopathy increases the risk of co-morbid depression in CAD, (b) 400 treatment for depression provides some protection against subsequent cardiomyopathy, or (c) 401 both cardiomyopathy and (m)dCAD share additional risk factors. While our work demonstrating 402 the clinical co-occurrence suggests that cardiomyopathy patients may benefit from depression 403 screening, future work is needed to disentangle their precise relationship and inform clinically 404 translatable mitigation strategies.

Despite its strengths, our study is limited by the well-established caveats of EHR based phenotyping which itself suffers from individual bias of the clinician. TWAS analyses rely on SNP-based predictive models of mRNA trained using mostly European-ancestry individuals in GTEx v8 and assumes additivity of SNP effects on gene expression, which ignores the possibility

409	of epistatic and gene-environment interactions. Online pathway tools are prone to knowledge
410	bias in selection of the "validated" genes annotated to pathways.
411	Nevertheless, these analyses highlight the unique genetic and phenotypic architecture
412	of (m)dCAD compared to CAD and depression alone. We add to the literature the observation
413	that prevalent, but perhaps not incident cardiomyopathy, is also more common in patients with
414	(m)dCAD compared to CAD alone. Importantly, this hypothesis was motivated by genetic
415	findings suggesting that the genes associated with both depression and CAD are enriched for
416	pathways with a known role in immune and cardiomyopathy-associated biological processes.
417	This data-driven approach highlights the power of in silico transcriptome-wide studies to
418	motivate hypotheses that can be tested in large EHR databases.
419	
420	Acknowledgements
421	
422	Funding
423	KS is funded by the American Heart Association Fellowship AHA827137. LKD is supported by
424	R56MH120736. JWS and LKD are supported in part by NIMH R01 H118233. JMS is funded by
425	1F31MH124306-01A1. QSW was supported by NIH 1R01HL140074.
426	
427	CTSA (SD, Vanderbilt Resources)

- 428 The deidentified EHR used at VUMC was supported by the National Center for Research
- 429 Resources, Grant UL1 RR024975-01, and is now at the National Center for Advancing

430 Translat	ional Sciences	, Grant 2 UL1	TR000445-06.	. The content is solel	v the responsibility	v of the
--------------	----------------	---------------	--------------	------------------------	----------------------	----------

- 431 authors and does not necessarily represent the official views of the NIH.
- 432

433 <u>BioVU</u>

- 434 The dataset(s) used for the analyses described were obtained from Vanderbilt University
- 435 Medical Center's BioVU which is supported by numerous sources: institutional funding, private
- 436 agencies, and federal grants. These include the NIH funded Shared Instrumentation Grant
- 437 S10RR025141; and CTSA grants UL1TR002243, UL1TR000445, and UL1RR024975. Genomic data
- 438 are also supported by investigator-led projects that include U01HG004798, R01NS032830,

439 RC2GM092618, P50GM115305, U01HG006378, U19HL065962, R01HD074711; and additional

440 funding sources listed at https://victr.vumc.org/biovu-funding/.

441 The All of Us Research Program is supported by grants through the National Institutes of 442 Health, Office of the Director: Regional Medical Centers: 1 OT2 OD026549; 1 OT2 OD026554; 443 1 OT2 OD026557; 1 OT2 OD026556; 1 OT2 OD026550; 1 OT2 OD026552; 1 OT2 OD026553; 1 OT2 OD026548; 1 OT2 OD026551; 1 OT2 OD026555; IAA#: AOD 16037; Federally Qualified 444 445 Health Centers: HHSN 263201600085U; Data and Research Center: 5 U2C OD023196; Biobank: 1 U24 OD023121; The Participant Center: U24 OD023176; Participant Technology 446 Systems Center: 1 U24 OD023163; Communications and Engagement: 3 OT2 OD023205; 3 447 448 OT2 OD023206; and Community Partners: 1 OT2 OD025277; 3 OT2 OD025315; 1 OT2 449 OD025337; 1 OT2 OD025276. In addition to the funded partners, the All of Us Research 450 *Program* would not be possible without the contributions made by its participants.

451

452 **Declarations**

453 <u>Contributions</u>

- 454 K.S. and L.K.D. conceptualized and designed the work. K.S, J.M.S, and H.L. implemented the
- 455 computational procedures and performed data analysis. N.J.C, Q.S.W., and E.C.H provided
- 456 important clinical and intellectual insights. All authors read, edited, and approved the final
- 457 manuscript.
- 458
- 459 <u>Corresponding author</u>
- 460 Correspondence to Lea K. Davis at lea.k.davis@vumc.org
- 461

462 Ethics declarations

- 463 <u>Ethics approval and consent to participate</u>
- 464 This study was reviewed by the VUMC IRB and designated as non-human subjects research
- 465 because of the use of fully de-identified data (IRB# 190418 and IRB# 201609).
- 466

467 <u>Competing interests</u>

- 468 JWS is a member of the Scientific Advisory Board of Sensorium Therapeutics (with equity), and
- 469 has received an honorarium for an internal seminar Tempus Labs. He is PI of a collaborative
- 470 study of the genetics of depression and bipolar disorder sponsored by 23andMe for which
- 471 23andMe provides analysis time as in-kind support but no payments.

472 Supplementary Materials

473 Supplementary Methods

- 474 Supplementary Figure 1
- 475 Supplementary Figure 2
- 476 Supplementary Figure 3
- 477 Supplementary Figure 4
- 478 Supplementary Table 1
- 479 Supplementary Table 2
- 480 Supplementary Table 3
- 481 Supplementary Table 4
- 482 Supplementary Table 5
- 483 Supplementary Table 6

485 References

- 486 1. Kendler, K. S., Gardner, C. O., Fiske, A. & Gatz, M. Major depression and coronary artery
- 487 disease in the Swedish twin registry: phenotypic, genetic, and environmental sources of
- 488 comorbidity. Arch. Gen. Psychiatry **66**, 857–863 (2009).
- 489 2. Glassman, A. H. Depression and cardiovascular comorbidity. *Dialogues Clin. Neurosci.* 9, 9–17
- 490 (2007).
- 491 3. Sullivan, M. *et al.* Depression in coronary heart disease. What is the appropriate diagnostic
- 492 threshold? *Psychosomatics* **40**, 286–292 (1999).
- 493 4. O'Neil, A. et al. Depression is a risk factor for incident coronary heart disease in women: An
- 494 18-year longitudinal study. J. Affect. Disord. **196**, 117–124 (2016).
- 495 5. Weeke, A., Juel, K. & Vaeth, M. Cardiovascular death and manic-depressive psychosis. J.
- 496 Affect. Disord. **13**, 287–292 (1987).
- 497 6. Dennis, J. et al. Genetic risk for major depressive disorder and loneliness in sex-specific
- 498 associations with coronary artery disease. *Mol. Psychiatry* **26**, 4254–4264 (2021).
- 499 7. Mazereeuw, G. et al. Platelet activating factors in depression and coronary artery disease: a
- 500 potential biomarker related to inflammatory mechanisms and neurodegeneration. *Neurosci.*
- 501 Biobehav. Rev. **37**, 1611–1621 (2013).
- 502 8. McCaffery, J. M. et al. Common genetic vulnerability to depressive symptoms and coronary
- 503 artery disease: a review and development of candidate genes related to inflammation and
- 504 serotonin. *Psychosom. Med.* **68**, 187–200 (2006).
- 505 9. Upadhyay, R. K. Emerging risk biomarkers in cardiovascular diseases and disorders. J. Lipids
- **2015**, 971453 (2015).

507 1	10.	Shimokawa.	H., Aarhus	L. L. &	Vanhoutte.	P. M.	Porcine coronary	v arteries with
-------	-----	------------	------------	---------	------------	-------	------------------	-----------------

- 508 regenerated endothelium have a reduced endothelium-dependent responsiveness to
- aggregating platelets and serotonin. *Circ. Res.* **61**, 256–270 (1987).
- 510 11. Brydon, L., Magid, K. & Steptoe, A. Platelets, coronary heart disease, and stress. *Brain.*
- 511 Behav. Immun. **20**, 113–119 (2006).
- 512 12. Huang, M. et al. Longitudinal association of inflammation with depressive symptoms: A
- 513 7-year cross-lagged twin difference study. *Brain. Behav. Immun.* **75**, 200–207 (2019).
- 514 13. Beydoun, M. A. et al. White blood cell inflammatory markers are associated with
- 515 depressive symptoms in a longitudinal study of urban adults. *Transl. Psychiatry* **6**, e895
- 516 (2016).
- 517 14. Kim, J.-M. et al. Changes in pro-inflammatory cytokine levels and late-life depression: A
- 518 two year population based longitudinal study. *Psychoneuroendocrinology* **90**, 85–91 (2018).
- 519 15. Bränn, E. et al. Inflammatory markers in late pregnancy in association with postpartum
- 520 depression-A nested case-control study. *Psychoneuroendocrinology* **79**, 146–159 (2017).
- 521 16. Bremmer, M. A. et al. Inflammatory markers in late-life depression: results from a
- 522 population-based study. J. Affect. Disord. **106**, 249–255 (2008).
- 523 17. Martínez-Cengotitabengoa, M. et al. Peripheral Inflammatory Parameters in Late-Life
- 524 Depression: A Systematic Review. Int. J. Mol. Sci. 17, E2022 (2016).
- 525 18. Gheysarzadeh, A. et al. Serum-based microRNA biomarkers for major depression: MiR-
- 526 16, miR-135a, and miR-1202. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 23, 69 (2018).

- 527 19. Schmidt, H. D., Shelton, R. C. & Duman, R. S. Functional biomarkers of depression:
- 528 diagnosis, treatment, and pathophysiology. *Neuropsychopharmacol. Off. Publ. Am. Coll.*

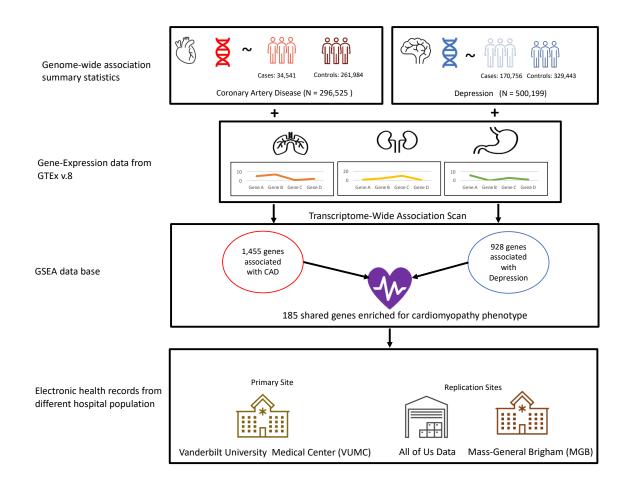
529 *Neuropsychopharmacol.* **36**, 2375–2394 (2011).

- 530 20. Nurden, A. T. The biology of the platelet with special reference to inflammation, wound
- healing and immunity. *Front. Biosci. Landmark Ed.* **23**, 726–751 (2018).
- 532 21. Tsao, C.-W., Lin, Y.-S., Chen, C.-C., Bai, C.-H. & Wu, S.-R. Cytokines and serotonin
- 533 transporter in patients with major depression. *Prog. Neuropsychopharmacol. Biol. Psychiatry*
- **30**, 899–905 (2006).
- 535 22. Pandey, G. N. et al. Hyperactive phosphoinositide signaling pathway in platelets of
- 536 depressed patients: effect of desipramine treatment. *Psychiatry Res.* **105**, 23–32 (2001).
- 537 23. van der Harst, P. & Verweij, N. Identification of 64 Novel Genetic Loci Provides an
- 538 Expanded View on the Genetic Architecture of Coronary Artery Disease. Circ. Res. 122, 433–
- 539 443 (2018).
- 540 24. Howard, D. M. *et al.* Genome-wide meta-analysis of depression identifies 102
- 541 independent variants and highlights the importance of the prefrontal brain regions. *Nat.*
- 542 *Neurosci.* **22**, 343–352 (2019).
- 543 25. Barbeira, A. N. *et al.* Integrating predicted transcriptome from multiple tissues improves
 544 association detection. *PLOS Genet.* **15**, e1007889 (2019).
- 545 26. Lonsdale, J. *et al.* The Genotype-Tissue Expression (GTEx) project. *Nat. Genet.* **45**, 580–
 546 585 (2013).
- 547 27. Bowton, E. *et al.* Biobanks and Electronic Medical Records: Enabling Cost-Effective
- 548 Research. *Sci. Transl. Med.* **6**, (2014).

- 549 28. The All of Us Research Program Investigators. The "All of Us" Research Program. N. Engl.
- 550 *J. Med.* **381**, 668–676 (2019).
- 551 29. McCaffery, J. M. et al. Common genetic vulnerability to depressive symptoms and
- 552 coronary artery disease: a review and development of candidate genes related to
- inflammation and serotonin. *Psychosom. Med.* 68, 187–200 (2006).
- 30. Upadhyay, R. K. Emerging risk biomarkers in cardiovascular diseases and disorders. *J.*
- 555 *Lipids* **2015**, 971453 (2015).
- 556 31. Shimokawa, H., Aarhus, L. L. & Vanhoutte, P. M. Porcine coronary arteries with
- 557 regenerated endothelium have a reduced endothelium-dependent responsiveness to
- aggregating platelets and serotonin. *Circ. Res.* **61**, 256–270 (1987).
- 559 32. Brydon, L., Magid, K. & Steptoe, A. Platelets, coronary heart disease, and stress. *Brain.*
- 560 Behav. Immun. **20**, 113–119 (2006).
- 561 33. Huang, M. et al. Longitudinal association of inflammation with depressive symptoms: A
- 562 7-year cross-lagged twin difference study. *Brain. Behav. Immun.* **75**, 200–207 (2019).
- 563 34. Beydoun, M. A. et al. White blood cell inflammatory markers are associated with
- 564 depressive symptoms in a longitudinal study of urban adults. *Transl. Psychiatry* **6**, e895
- 565 (2016).
- 566 35. Kim, J.-M. et al. Changes in pro-inflammatory cytokine levels and late-life depression: A
- 567 two year population based longitudinal study. *Psychoneuroendocrinology* **90**, 85–91 (2018).
- 568 36. Sealock, J. M. *et al.* Use of the PsycheMERGE Network to Investigate the Association
- 569 Between Depression Polygenic Scores and White Blood Cell Count. JAMA Psychiatry 78, 1365
- 570 (2021).

- 571 37. Twig, G. *et al.* White Blood Cell Count and the Risk for Coronary Artery Disease in Young
 572 Adults. *PLoS ONE* 7, e47183 (2012).
- 573 38. Zebrack, J. S., Muhlestein, J. B., Horne, B. D. & Anderson, J. L. C-reactive protein and
- 574 angiographic coronary artery disease: independent and additive predictors of risk in subjects
- 575 with angina. J. Am. Coll. Cardiol. **39**, 632–637 (2002).
- 576 39. Lu, Q. *et al.* Intranuclear cardiac troponin I plays a functional role in regulating Atp2a2
- 577 expression in cardiomyocytes. *Genes Dis.* S2352304221000611 (2021)
- 578 doi:10.1016/j.gendis.2021.04.007.
- 579 40. Alimadadi, A., Munroe, P. B., Joe, B. & Cheng, X. Meta-Analysis of Dilated
- 580 Cardiomyopathy Using Cardiac RNA-Seq Transcriptomic Datasets. *Genes* **11**, 60 (2020).
- 581 41. Nakajima, K. et al. Brain-specific heterozygous loss-of-function of ATP2A2, endoplasmic
- reticulum Ca2+ pump responsible for Darier's disease, causes behavioral abnormalities and a

583 hyper-dopaminergic state. *Hum. Mol. Genet.* **30**, 1762–1772 (2021).


- 584 42. Coste de Bagneaux, P. *et al.* A homozygous missense variant in CACNB4 encoding the
- 585 auxiliary calcium channel beta4 subunit causes a severe neurodevelopmental disorder and
- 586 impairs channel and non-channel functions. *PLOS Genet.* **16**, e1008625 (2020).
- 43. Andrade, A. *et al.* Genetic Associations between Voltage-Gated Calcium Channels and
 Psychiatric Disorders. *Int. J. Mol. Sci.* 20, 3537 (2019).
- 589 44. Kanehisa, M. *et al.* KEGG for linking genomes to life and the environment. *Nucleic Acids*590 *Res.* 36, D480–D484 (2007).
- 591 45. Xu, H. *et al.* A Genome-Wide Association Study of Idiopathic Dilated Cardiomyopathy in
 592 African Americans. *J. Pers. Med.* 8, 11 (2018).

- 593 46. Good, J.-M. et al. ACTN2 variant associated with a cardiac phenotype suggestive of left-
- 594 dominant arrhythmogenic cardiomyopathy. *Hear. Case Rep.* **6**, 15–19 (2020).
- 595 47. Haywood, N. J. et al. Hypertrophic cardiomyopathy mutations in the calponin-homology
- 596 domain of ACTN2 affect actin binding and cardiomyocyte Z-disc incorporation. *Biochem. J.*
- **473**, 2485–2493 (2016).
- 598 48. Tiso, N. Identification of mutations in the cardiac ryanodine receptor gene in families
- 599 affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). *Hum. Mol.*
- 600 *Genet.* **10**, 189–194 (2001).
- 601 49. Patel, R. et al. Variants of Trophic Factors and Expression of Cardiac Hypertrophy in
- Patients with Hypertrophic Cardiomyopathy. J. Mol. Cell. Cardiol. **32**, 2369–2377 (2000).
- 50. Yadav, M. L., Bhasker, A. N., Kumar, A. & Mohapatra, B. Identification and
- 604 characterization of genetic variants of TGFB1 in patients with congenital heart disease. *Meta*
- 605 *Gene* **31**, 100987 (2022).
- 51. Bauer, R., MacGowan, G. A., Blain, A., Bushby, K. & Straub, V. Steroid treatment causes
- 607 deterioration of myocardial function in the -sarcoglycan-deficient mouse model for dilated
- 608 cardiomyopathy. *Cardiovasc. Res.* **79**, 652–661 (2008).
- 609 52. Rutschow, D. et al. S151A δ-sarcoglycan mutation causes a mild phenotype of
- 610 cardiomyopathy in mice. *Eur. J. Hum. Genet.* **22**, 119–125 (2014).
- 53. Lynall, M.-E. *et al.* Peripheral Blood Cell–Stratified Subgroups of Inflamed Depression.
- 612 Biol. Psychiatry 88, 185–196 (2020).
- 613 54. McNally, L., Bhagwagar, Z. & Hannestad, J. Inflammation, Glutamate, and Glia in
- 614 Depression: A Literature Review. CNS Spectr. **13**, 501–510 (2008).

- 55. Troubat, R. et al. Neuroinflammation and depression: A review. Eur. J. Neurosci. 53,
- 616 151–171 (2021).
- 617 56. Eitel, I. et al. Inflammation in takotsubo cardiomyopathy: insights from cardiovascular
- 618 magnetic resonance imaging. *Eur. Radiol.* **20**, 422–431 (2010).
- 619 57. Adamo, L., Rocha-Resende, C., Prabhu, S. D. & Mann, D. L. Reappraising the role of
- 620 inflammation in heart failure. *Nat. Rev. Cardiol.* **17**, 269–285 (2020).
- 621 58. Maisch, B., Ristic, A. D. & Pankuweit, S. [Inflammatory cardiomyopathy and
- 622 myocarditis]. *Herz* **42**, 425–438 (2017).
- 623 59. Krejci, J., Mlejnek, D., Sochorova, D. & Nemec, P. Inflammatory Cardiomyopathy: A
- 624 Current View on the Pathophysiology, Diagnosis, and Treatment. *BioMed Res. Int.* 2016,
- 625 4087632 (2016).
- 626 60. Tschöpe, C. et al. Myocarditis and inflammatory cardiomyopathy: current evidence and
- 627 future directions. *Nat. Rev. Cardiol.* **18**, 169–193 (2021).
- 628 61. Eitel, I. et al. Clinical characteristics and cardiovascular magnetic resonance findings in
- 629 stress (takotsubo) cardiomyopathy. *JAMA* **306**, 277–286 (2011).
- 630 62. Scally, C. et al. Myocardial and Systemic Inflammation in Acute Stress-Induced
- 631 (Takotsubo) Cardiomyopathy. *Circulation* **139**, 1581–1592 (2019).
- 632 63. Rroku, A., Grahl, S., Landmesser, U. & Heidecker, B. A case report of myocardial
- 633 inflammation in takotsubo syndrome. A chicken-or-the-egg phenomenon. Int. J. Cardiol.
- 634 *Heart Vasc.* **39**, 100958 (2022).
- 635

636 Figures and Tables

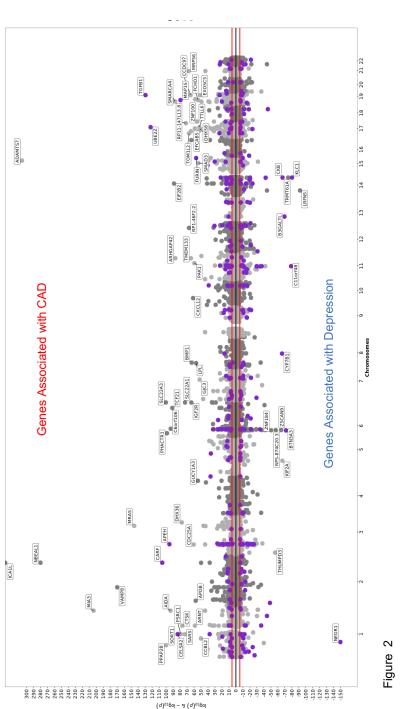
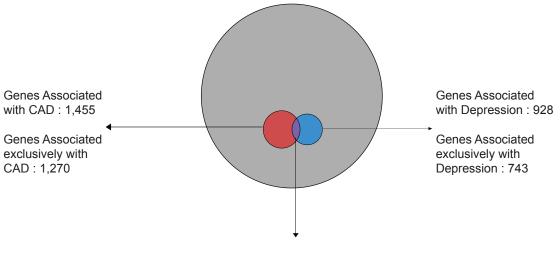

637

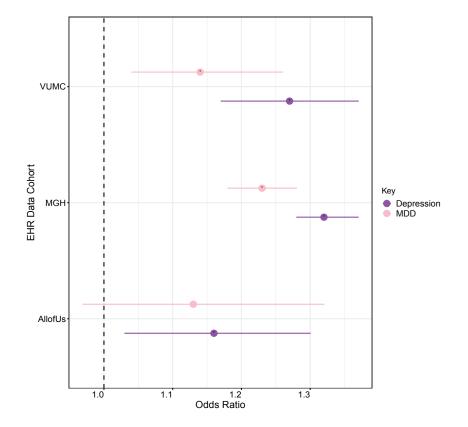
Figure 1


Title: Overall Schematic of the Study

Legend : We performed a transcriptome-wide association study (TWAS) of genetically regulated expression (GReX) using the GTEx v.8 database and genome-wide summary statistics of Depression and Coronary Artery Disease separately. We derived genes that were shared between Depression and CAD, we performed pathway and enrichment analyses. Our results show that genes associated with both depression and CAD are associated with cardiomyopathy associated phenotypes.

Title: Genes associated with Depression and CAD using S-MultiXcan

grouped by chromosome (x-axis) and p value (y-axis) of the association with the phenotype. The top half of the graph are genes associated with CAD and the lower half of the graph represents genes associated with Depression. The purple dots represent the 185 genes shared between Depression and CAD. Genes with -log(p values) greater that 50 are labelled. The light and dark Legend: A Miami plot of genes associated with both Depression and CAD via S-MultiXcan Each data point represents a gene grey represents the non-shared genes on alternating chromosomes with light grey with being the non-shared genes on odd chromosomes and dark grey representing the non-shared genes on the even numbered chromosomes


Genes Shared Between CAD and Depression : 185

3x Enrichment of Shared Association (hypergeometric test p < 1.718e-43

Figure 3

Title : Enrichment test of the genes shared between Depression and CAD

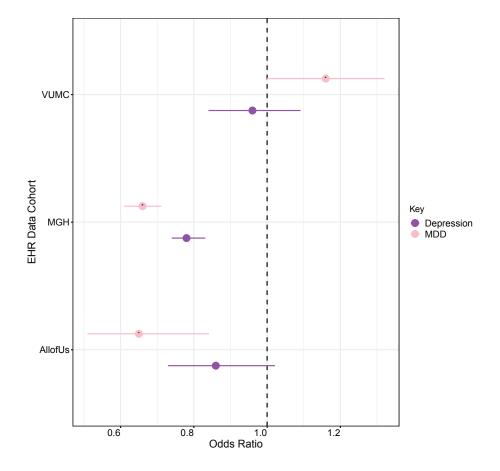

Legend: Eulerr Plot to highlight the results of enrichment test of the genes associated with both depression and CAD. The grey circle represents the set of 20,944 genes that were tested for association with both phenotypes. The red portion represents the 1,270 genes significantly associated with CAD only. The blue portion represents the 743 genes significantly associated with depression only. The purple portion represents the 185 genes associated with both depression and CAD. Red + purple represents all CAD associated genes (1455) and blue + purple represents all genes associated with depression (928).

Figure 4

Title: Forest plot illustrating odds of prevalent cardiomyopathy in (m)dCAD compared to CAD

Legend: The association between (m)dCAD vs CAD and prevalent cardiomyopathy after controlling for race, median age across the medical record, sex, T2D, hypertension, and smoking (ever/never) at each of the three sites (VUMC, MGB, and All of Us). Purple represents results from an analysis in which depression was broadly defined while light pink represents results from an analysis restricted to major depression. Whiskers indicate 95% CIs.

Figure 5

Title: Forest plot illustrating odds of incident cardiomyopathy in (m)dCAD compared to CAD

Legend: The association between (m)dCAD vs CAD and incident cardiomyopathy after controlling for race, median age across the medical record, sex, T2D, hypertension, and smoking (ever/never) at each of the three sites (VUMC, MGB, and All of Us). Purple represents results from an analysis in which depression was broadly defined while light pink

643

Gene Set Name	No. of Genes in the set (K)	Number of Genes in Overlap (k)	k/K	FDR Value
Post-translational protein modification	1435	22	0.0152	1.39e-03
Arrhythmogenic right ventricular cardiomyopathy (ARCV)	76	5	0.0657	1.87e-02
Transport of small molecules	728	13	0.0179	1.87e-02
Hypertrophic cardiomyopathy (HCM)	83	5	0.0602	2.13e-02
Dilated cardiomyopathy	90	5	0.0556	2.62e-02
Adaptive Immune System	825	13	0.0158	3.79e-02

644

645

646

647 Table 1: Gene Set Enrichment Analysis of the Shared Genes

648

649 Legend: We used the 185 genes shared between Depression and CAD as the input for GESA (Canonical Pathways)

browser and identified that the shared genes are associated with immune and cardiomyopathy associated

651 phenotypes. K refers to the number of genes in the GSEA database for that particular pathway. k refers to the

number of genes from our shared 185 gene-set in the particular pathway

653

	Depression (broad)	Major Depression	CAD	Depression and CAD	Major Depression and CAD
Sample sizes					
Total (N)	57,069	41,423	47,349	6,725	4,175
Cardiomyopathy	809 (1.41%)	537 (1.29%)	5,314 (11.22%)	1,001 (14.88%)	589 (14.10%)
Demographics					
Female (%)	68.64	69.1	32.86%	48.91%	47.04%
Median Age, years (IQR)	41(24.5 – 65.5)	39 (22.5 – 55.5)	68 (60 – 76)	65 (56.5-72.5)	64 (56 – 72)
Median BMI (IQR)	27.34	27.28	28.81	29.29	29.68
Underweight	2,071 (3.63%)	1,655 (4.0%)	377 (0.79%)	64 (0.95%)	39 (0.93%)
Normal	17,437 (30.56%)	12,964 (31.3%)	8,673 (18.31%)	1,320 (19.62%)	794 (19.02%)
Overweight	14,154 (24.80%)	10,204 (24.63%)	15,520 (32.77%)	1,979 (29.43%)	1,291 (30.93%)
Obese	19,247 (33.73%)	14,203 (34.28%)	17,423 (36.8%)	2,812 (41.81%)	1,951 (46.73%)
Unknown	4,160 (7.29%)	2,397 (5.78%)	5,356 (11.31%)	550 (8.18%)	100 (2.4%)
Cardiovascular Comorbidities					
Hypertension (N, %)	19,784 (34.66%)	13,513 (32.62%)	38,905 (82.17%)	6,200 (92.2%)	3,837 (91.9%)
Type 2 Diabetes (N, %)	7,452 (13.06%)	5,116 (12.35%)	15,207 (32.11%)	3,227 (47.99%)	2,062 (49.39%)
Tobacco Use Disorder (N, %)	8,363 (14.65%)	6,555 (15.82%)	8,482 (17.91%)	2,399 (35.67%)	1,816 (43.5%)

Table 2: Demographic table for Phenotypes in VUMC

This table describes the demographics for Depression, Major Depression, CAD, Comorbid Depression-CAD and Comorbid Major Depression-CAD in VUMC EHR data.

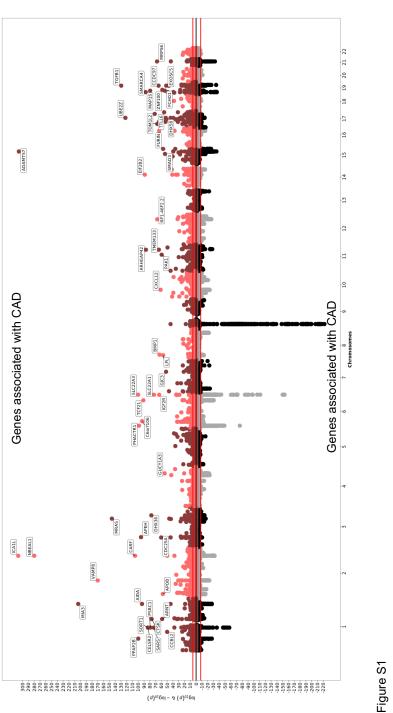
medRxiv preprint doi: https://doi.org/10.1101/2022.10.25.22280854; this version posted November 3, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

656	Supplementary Materials
657	of
658	Genes associated with depression and coronary artery disease are enriched for
659	inflammation and cardiomyopathy-associated pathways.
660	Kritika Singh ^{1,2} , Hyunjoon Lee ^{3,4,5} *, Julia M Sealock ^{1,2} *, Tyne Miller-Flemming ^{1,2} , Peter
661	Straub ^{1,2} , Nancy J. Cox ^{1,2} , Quinn S. Wells ⁶ , Jordan W. Smoller ^{3,4,5} , Emily C. Hodges ^{2,7} , Lea
662	K. Davis ^{1,2,8,9,10}
663	*These authors contributed equally
664	#Corresponding author
665 667 668 669 670 671 672 673 674 675 676 676	 ¹Division of Genetic Medicine, Department of Medicine Vanderbilt University Medical Center Nashville, TN, 37232, USA ²Vanderbilt Genetics Institute Vanderbilt University Medical Center Nashville, TN, 37232, USA ³Psychiatric and Neurodevelopmental Genetics Unit Center for Genomic Medicine Massachusetts General Hospital Boston, MA, 02114, USA
677 678 679 680 681 682 683 684 685 686 685 686 687 688	 ⁴Center for Precision Psychiatry Department of Psychiatry Massachusetts General Hospital Boston, MA, 02114, USA ⁵Stanley Center for Psychiatric Research Broad Institute of Harvard and MIT Cambridge, MA, 02114, USA ⁶Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center,

- 689 Nashville, TN, 37232, USA
- 690
- ⁷Department of Biochemistry,
- 692 Vanderbilt University School of Medicine,
- 693 Nashville, TN, 37232, USA
- 694
- ⁸Department of Molecular Physiology and Biophysics
- 696 Vanderbilt University Medical Center
- 697 Nashville, TN, 37232, USA
- 698
- ⁹Department of Psychiatry and Behavioral Sciences
- 700 Vanderbilt University Medical Center
- 701 Nashville, TN, 37232, USA
- 702
- 703 ¹⁰Departments of Medicine and Biomedical Informatics
- 704 Vanderbilt University Medical Center
- 705 Nashville, TN, 37232, USA

707 Description of Clinical Populations

708 Vanderbilt University Medical Center (VUMC) Electronic Health Record (EHR)

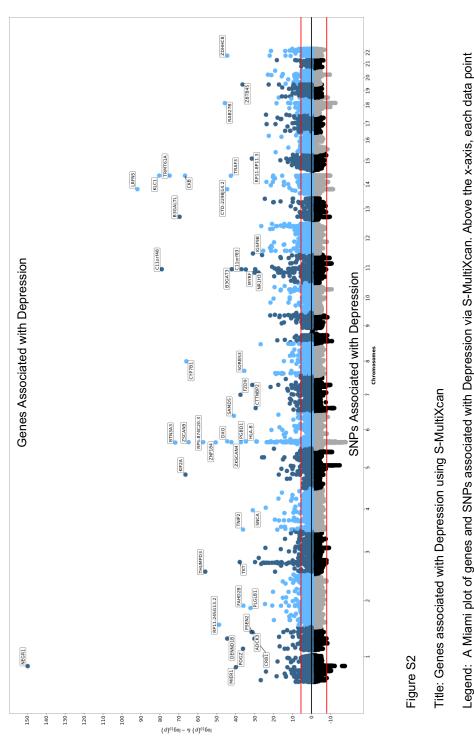

709	Vanderbilt University Medical Center (VUMC) is a tertiary care center that provides
710	inpatient and outpatient care in middle Tennessee and surrounding communities. The VUMC
711	electronic health record (EHR) system was established in 1990 and includes data on billing
712	codes from the International Classification of Diseases, 9th and 10th editions (ICD-9 and ICD-
713	10), Current Procedural Terminology (CPT) codes, laboratory values, reports, and clinical
714	documentation. A fully de-identified mirror image of the EHR, called the Synthetic Derivative, is
715	available to Vanderbilt faculty for research purposes. A data floor (i.e., "medical home")
716	heuristic of any five codes on different days over a period of at least three years was imposed
717	to enrich the sample for primary care.
718	
719	Massachusetts General Hospital (MGH)
720	Mass General Brigham (MGB) is a hospital network that includes Massachusetts General
721	Hospital, Brigham and Women's hospital, and other community and specialty hospitals in
722	Boston area. The data source of MGB EHR is MGB Research Patient Data Registry (RPDR;
772	
723	https://rpdrssl.partners.org), an EHR database which spans more than 20 years of data from
723	https://rpdrssl.partners.org), an EHR database which spans more than 20 years of data from over 6.5 million patients and includes data on diagnoses (billing codes; ICD-9 and ICD-10 codes),
724	over 6.5 million patients and includes data on diagnoses (billing codes; ICD-9 and ICD-10 codes),
724 725	over 6.5 million patients and includes data on diagnoses (billing codes; ICD-9 and ICD-10 codes), procedures (CPT codes), laboratory values, and clinical notes. Data floors were applied to the

728

729 All of Us Research Program

730	All of Us Research Program,	a population-based cohort t	nat contains demographic, EHR,

- and survey information on participants. Participants enroll digitally through the All of Us
- 732 website. After completion of the consent modules and enrollment, participants are given
- radiable several health-measuring surveys to be completed. As of July 2019, the All of Us program had
- enrolled more than 175,000 core participants and more than 230,000 total participants.



Title: Genes associated with CAD using S-MultiXcan

Legend: A Miami plot of genes and SNPs associated with CAD via S-MultiXcan. Above the x-axis, each data point represents a gene grouped by chromosome (x-axis) and p value (y-axis) of the association with the phenotype. The light red and darl red are alternating colors for genes on odd and even chromosomes. Below the x-axis, each data point represents the SNPs associated with CAD from the input GWAS. Genes with -log(p values) greater that 50 are labelled. The black and grey are alternating colors for SNPs on odd and even chromosomes

736 737 738

739 740

represents a gene grouped by chromosome (x-axis) and p value (y-axis) of the association with the phenotype. The light red and SNPs associated with Depression from the input GWAS. Genes with -log(p values) greater that 50 are labelled. The black and dark blue are alternating colors for genes on odd and even chromosomes Below the x-axis, each data point represents the grey are alternating colors for SNPs on odd and even chromosomes

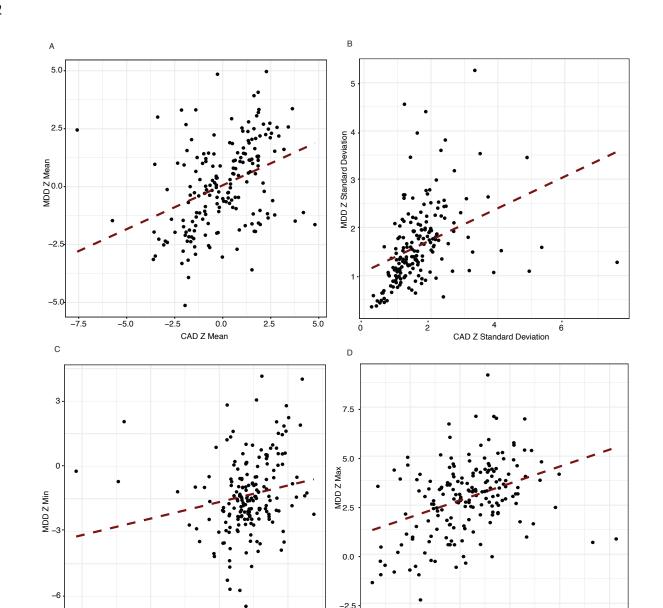


Figure S3

-15

-10

Title: Correlation plots between the test statistics of Depression and CAD for the 185 genes associated with both the phenotypes

-2.5

0.0

2.5

5.0

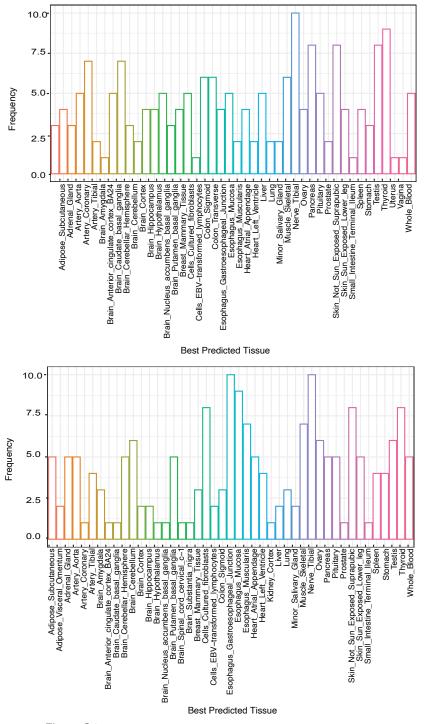
CAD Z Max

7.5

10.0

Legend: (a) Correlation Plot of Z Mean of Depression and CAD for the 185 genes shared between both the phenotypes (Spearman's coefficient = 0.433)

ċ


-5

CAD Z Min

(b) Correlation Plot of Z Standard Deviation of Depression and CAD for the 185 genes shared between both the phenotypes (Spearman's coefficient = 0.565)

(c) Correlation Plot of Z Min of Depression and CAD for the 185 genes shared between both the phenotypes (Spearman's coefficient = 0.389)

(d) Correlation Plot of Z Max of Depression and CAD for the 185 genes shared between both the phenotypes (Spearman's coefficient = 0.373)

Figure S4

Title: Best Predicted Tissue Distribution of Genes Associated between Depression and CAD

Legend: (a) Tissue distribution of Best Predicted Tissue for genes associated with both Depression and CAD using SMultiXcan Results of CAD (b) Tissue distribution of Best Predicted Tissue for genes associated with both Depression and CAD using SMultiXcan Results of Depression