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Abstract 
Understanding various subpopulations in chronic kidney disease can improve patient care and aid in 
developing treatments targeted to patients’ needs.  Due to the general slow disease progression, 
electronic health records, which comprise a rich source of longitudinal real-world patient-level information, 
offer an approach for generating insights into disease.  Here we apply the open-source ConvAE 
framework to train an unsupervised deep learning network using a real-world kidney disease cohort 
consisting of 2.2 million US patients from the OPTUM® EHR database.  Numerical patient 
representations derived from ConvAE are used to derive disease subtypes, inform comorbidities and 
understand rare disease populations.  To identify patients at high risk to develop end-stage kidney 
disease, we extend a validated algorithm classifying disease severity to hypothesize subpopulations of 
rapid chronic kidney disease progressors.  We demonstrate that using a combination of data-driven 
methods offers a powerful exploratory approach to understand disease heterogeneity and identify high-
risk patients who could be targeted for early therapeutic intervention to prevent end-stage kidney disease.   

Introduction 
Electronic health records (EHR) comprise a rich source of longitudinal real-world patient-level information, 
consisting of a variety of different data types, including demographics, medical history, medications, 
laboratory test results and free-text clinical notes.  There are many examples analyzing EHR data to 
generate knowledge about diseases (Chen and Sarkar 2014).  In particular, large-scale population-based 
studies have been instrumental to uncover relationships between diseases (Dong et al. 2021) and to 
understand disease progression patterns (Jensen et al. 2014; Westergaard et al. 2019).   

Using EHRs for clinical research poses several analytic challenges (Wei and Denny 2015, Goldstein 
2020), as the data were collected for routine clinical care and were not designed for research purposes.  
To identify an accurate set of patients with a given condition, one can employ electronic phenotyping 
which uses sophisticated algorithms to label which patients have a given medical condition.  Phenotyping 
algorithms have been developed for a variety of diseases and many definitions can be found in the 
Phenotype KnowledgeBase (PheKB) (Kirby et al. 2016).  However, electronic phenotyping is time 
consuming and requires extensive collaboration with experts having domain knowledge.   

Recent data-driven approaches have proposed a more scalable approach to defining homogeneous 
patient subpopulations. Longitudinal patient health information, as captured in EHRs, has been used by a 
variety of statistical or machine learning approaches to identify groups with similar patient patterns (Basile 
and Ritchie 2018; Allam et al. 2021).  EHR phenotyping can be considered as an unsupervised machine 
learning problem to cluster similar patients (Drysdale et al. 2017; Fereshtehnejad et al. 2017; Zhang et al. 
2019; Z. Xu et al. 2020).  A subset of such methods employs patient representation learning, which 
transforms high-dimensional sequences of medical events into a numerical representation (Si et al. 
2021).  A method employing a convolutional autoencoder (ConvAE) recently demonstrated the ability to 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.25.22280440doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.10.25.22280440
http://creativecommons.org/licenses/by-nd/4.0/


derive disease sub-types from EHRs at scale (Landi et al. 2020a).  Using patients’ sequences of historical 
medical codes, the method identifies groups of similar patients, representing disease subtypes.  The 
disease subtypes were shown to be clinically meaningful and interpretable in terms of comorbidities, 
disease progression and symptom severity. 

In this paper we apply data-driven approaches including both machine-learning methods deriving patient 
representations and electronic phenotyping algorithms to understand a chronic kidney disease (CKD) 
population.  CKD is a chronic disease with significant unmet medical need (Torreggiani et al. 2021) and 
comprises a heterogeneous set of disorders, with multiple factors contributing to the disease, various 
comorbidities (Shafi and Coresh 2019), as well as variable disease progression rates (Go et al. 2018; 
Tsai et al. 2017; Remuzzi, Benigni, and Remuzzi 2006).  We apply the open-source ConvAE framework 
(Landi et al. 2020a) to train an unsupervised deep learning architecture using a real-world kidney disease 
cohort consisting of 2.2 million US patients from OPTUM® EHR database, which consists of 
observational data obtained from a variety of healthcare providers, including primary and secondary care.  
We demonstrate the utility of these patient representations to derive CKD subtypes, inform comorbidities 
and understand rare disease populations.  We extend a validated CKD staging electronic phenotype 
(Shang et al. 2021) to derive CKD progression labels which we correlate with patient representations to 
derive hypotheses of rapid CKD progressor sub-types.  Applying patient representation learning to a large 
observational CKD cohort offers a powerful exploratory approach to understand disease and hypothesize 
high risk patient sub-populations, with the aim of improving patient care and developing treatments 
targeted to patients’ needs.  Due to the limited capacity for kidney regeneration(Yang, Liu, and Fogo 
2014), identification of high-risk CKD patients who could be targeted for early therapeutic intervention is 
vital to prevent end-stage kidney disease.   

Results 
A cohort of 2.2 million patients was extracted from the OPTUM® EHR database, a US-based patient 
population, with selection criteria detailed in Table 1 and patient characteristics described in Table 2.  
Patients were selected to have at least one kidney disease related diagnosis or procedure code as well 
as a minimal follow-up duration of 2 years and multiple serum creatinine measurements from which 
estimated glomerular filtration rate (eGFR) was calculated.  The resulting population consisted of patients 
with an average length of follow-up of 10 years, an average of 29 serum creatinine measurements, 
roughly balanced by gender and enriched for Caucasian race.   
 
We fit the ConvAE (Landi et al. 2020b) model using patients’ sequence of diagnosis and procedure 
codes.  For each patient, the method yields a 100-dimensional numerical vector, or embedding.  Using k-
means clustering, we clustered patients, determining the optimal number of clusters using the elbow 
method (Thorndike 1953), identifying 5 clusters (Supplementary Figure 1).  We visualize the different 
patients and their clusters using a uniform manifold approximation and projection for dimension reduction 
(UMAP) (McInnes, Healy, and Melville 2018) projection of the patient-level embeddings into two 
dimensions, as shown in Figure 1.   
 
To interpret each cluster, we selected the top over- and under-enriched terms and compare the term 
frequencies in each cluster, as shown in Figure 2.  Briefly, Group 0 is enriched for outpatient visits, 
immunizations and screenings, whereas Group 1 is enriched for acute events, including acute renal 
failure and sepsis.  Group 2 is enriched for chemotherapy as well as surgical pathology.  Group 3 is 
enriched for heart disease codes including congestive heart failure and atrial fibrillation.  Group 4 is 
enriched for emergency department visits, infusions, pain, anxiety and injections.  A full list of term 
frequencies and descriptions can be found in Supplementary Table 2. Applying the ConvAE method to 
generate patient-level embeddings, we generate visual and interpretable summaries that aid in 
understanding different facets of this CKD disease population.   
 
We further overlaid annotations on the UMAP plots, to yield insights into sub-populations.  We highlight 
patients with polycystic kidney disease (PKD), as shown in Figure 3.  We see that a large proportion of 
PKD patients are overlapping the Group 3 cluster enriched for heart disease codes.  This is consistent 
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with literature reporting PKD patients to be at increased risk for cardiac complications(Ecder 2013).  
Another cluster of PKD patients visible from Figure 3 can be found in the lower right quadrant of the 
UMAP plot.  We can compare these two regions of enriched PKD patients, examining terms which are 
under or over-enriched, as shown in Figure 4.  Terms which are differentially enriched between the two 
clusters characterize the differences between the two groups.   
 
We additionally characterized the population in terms of disease progression to examine which patients 
underwent rapid progression to end stage renal disease (ESRD) within a given timeframe.  We used 
disease progression quantitative labels, representing the probability of a patient experiencing end stage 
renal disease (ESRD) within a given timeframe.  Such labels were derived by adapting a validated CKD 
staging electronic phenotype (Shang et al. 2021) which derived a combination of rules based on 
laboratory measurements, diagnosis and procedure codes to determine a patient’s CKD disease stage 
(see Methods for further details).  Using the probability of progressing from CKD stage 4 to kidney failure 
within 5 years, we identify groups of patients who rapidly progress to ESRD, as seen in Figure 4.  
Selecting a sub-population enriched in fast progression to ESRD from the bottom portion of the UMAP 
plot, we examine terms which are under or over-represented, comparing the region of interest to the 
complement, as shown in Figure 5.  These enriched terms represent hypotheses for factors associated 
with rapid CKD progressors.   
 

Methods 
Optum® de-identified Electronic Health Record dataset, from a US-based patient population, was used, 
which combines data from a variety of healthcare organizations.  We selected patients in the integrated 
delivery network (IDN) to mitigate against missing data, with the assumption that most healthcare 
interactions would be met within the network and therefore captured in the database.   

To select a kidney disease cohort, we selected all patients with at least one of the diagnosis or procedure 
codes listed in Supplementary Table 1.  We required a minimal ≥ 2 year follow-up period and a minimal 
number (≥ 15) of serum creatinine measurements.   

For each patient in the kidney disease cohort, we extracted diagnosis and procedure codes.  ICD9/ICD10 
diagnosis codes were mapped to Snomed when possible and otherwise the original codes were retained.  
CPT4 procedure codes were used.  Diagnosis and procedure codes were preprocessed using the same 
approach described in (Landi et al. 2020b).  Briefly, the filtering score is the product of two terms:  (i) the 
proportion of patients with at least one occurrence of a given code and (ii) number of occurrences of a 
given code in a patient’s trajectory divided by the total number of codes for that patient, summed across 
all patients.  All diagnosis and procedure codes with a filtering score below 1e-8 were excluded.  For each 
patient’s sequence of medical codes, we removed duplicates and performed random shuffling within time 
windows of 15 days.   Patient sequences of medical codes were subsequently chopped into 
subsequences of fixed length L = 32 to train the ConvAE model.   

ConvAE was trained on pre-processed diagnosis and procedure codes.  ConvAE was trained on 60% of 
the data, validated using 20% of the data and a remaining 20% was withheld for testing purposes.  The 
optimal number of training epochs was determined by minimizing the test set cross entropy loss.  ConvAE 
fits an autoencoder which learns a lower-dimensional numerical representation from the input of 
sequential medical codes.  Consequently, for each patient, the learned 100-dimensional embedding was 
extracted given the sequence of medical codes.  When patients had multiple 32-length feature 
sequences, the average was used.   

In order to cluster patients, the 100-dimensional embeddings were projected to 10 dimensions using 
UMAP, a scalable non-linear dimension reduction technique which has been shown to preserve the 
global structure of the data (McInnes, Healy, and Melville 2018).  K-means clustering was used to 
determine the clusters.  For visualization purposes, the 100-dimensional embeddings were projected to 2 
dimensions using UMAP.  Code enrichments were considered for codes with frequency at least 1%.   
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CKD disease progression was determined by adapting a validated CKD staging electronic phenotype 
(Shang et al. 2021) which derived a combination of rules based on laboratory measurements, diagnosis 
and procedure codes to determine a patient’s CKD disease stage.  Whereas the published CKD staging 
electronic phenotype classifies a patient’s CKD disease stage at the most recent timepoint, we adapted 
this algorithm to derive a CKD disease stage at all timepoints.  

We used eGFR measurements calculated using CKD-EPI formula.  As in (Shang et al. 2021), we used 
their annotated set of codes to distinguish abnormal kidney function that is caused by acute kidney injury 
or other acute conditions from abnormal kidney function due to chronic conditions.  eGFR values co-
occurring with such acute events were therefore masked for chronic kidney disease trajectory modeling.  
A loess curve was fit to the remaining eGFR values that did not co-occur with specific acute events.  For 
each patient and for each day, we classified the CKD stage based on the loess predicted eGFR value 
and other clinical information to date.  We identified the first day of a CKD stage in a monotonic fashion.  
For example, if a patient was classified as having CKD stage 4 on a given date, and classified as having 
CKD stage 3 on a later date, the latter CKD stage 3 was  ignored and it was  assumed that the patient 
had CKD stage 3 at some timepoint prior to CKD stage 4.  We examined the time from a patient’s first 
occurrence of a given CKD stage to end stage renal disease.  When no end stage renal disease was 
observed, the time was considered censored.   

To correlate embedding visualizations with variables of interest (PKD or the probability of ESRD within a 
timeframe), we performed loess smoothing using the logit probabilities.  Regions of interest were defined 
in a heuristic way.  For the subpopulation of PKD patients, we selected all patients corresponding to 
regions of the UMAP plot where logit probability > 4, either in the upper or lower portion of the UMAP plot.  
For the subpopulation of patients rapidly progressing to ESRD, we selected all patients in the lower 
portion of the UMAP plot where logit probability > 8.   

Discussion 
This study presents an approach to understand a chronic kidney disease population and generate 
hypotheses about disease sub-types.  It applies a machine learning approach to derive numeric patient 
representations from sequences of clinical patterns in electronic health records.  We propose a visual, 
exploratory data-driven approach to understand heterogeneity in CKD and to identify potential factors 
leading to rapid progression of CKD to ESRD.  This exploratory approach identifies a high-risk patient 
population that could be targeted for early intervention to prevent loss of kidney function.  The 
development and application of algorithms using vast electronic health record datasets have the potential 
to yield data-driven insights into disease populations.   

Machine learning approaches together with algorithms relying on expert clinical knowledge offer a 
powerful approach to define and explore phenotypes.  Machine learning algorithms are capable of 
handling a large number of features and can identify complex patterns in the data.  Although the lack of 
labeled data in observational EHR databases is a significant challenge, we can take advantage of the 
vast amount of patient-level data to aggregate signals.  We took advantage of both expert knowledge 
used to define specific phenotype labels as well as the large population size, over which we averaged the 
signals.  The use of unsupervised methods rather than supervised methods, which focus on a specific 
prediction task, has the promise to capture a broad set of information that can be used to understand 
various aspects of disease.   

There are several limitations to our approach.  Identifying patients from EHRs is susceptible to selection 
biases.  Only those patients with sufficient data collected in the EHR database were included in our study.  
Another limitation is that the identified potential risk factors are selected regardless of the timing of the 
event.  Confirmatory studies would be needed to test whether a factor is predictive of the outcome of 
interest.   
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We envision several future advancements that could aid in understanding EHR sub-populations.  The 
development of analysis frameworks that combine both expert curated phenotypes and machine learning 
methods would take advantage of existing knowledge as well as the data-driven learning approaches.  
The ConvAE unsupervised patient representation learning approach can be compared with other 
approaches, such as self-supervised approaches which use pseudo-tasks such as masking and 
predicting information (Devlin et al. 2018) from which numeric representations could also be derived.  
Alternatively, supervised or weakly supervised approaches could also result in useful learned patient-level 
representation signals.  Having accessible datasets annotated by disease subtypes would greatly aid in 
the development and evaluation of such methods.  

The development of models which can flexibly handle longitudinal data and can incorporate a variety of 
data types, such as biomarkers, genetics or gene expression may generate more in-depth understanding 
of individual differences and ultimately enable personalized medicine.  Widespread adoption of EHRs 
would aid in having disease populations from multiple geographies represented, ultimately leading to 
better insights into diseases.   
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Figures 
 

 

Figure 1:  UMAP projection of patient-level embeddings colored by cluster membership for K=5 clusters.  A random 
1% of patients are plotted to avoid over-plotting.  
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Figure 2:  Heatmap displaying the proportion of patients with a given code for each of the K=5 clusters.  The top 10 
codes with largest absolute differences are shown here.  A full list can be found in Supplementary Table 2. 
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Figure 3:  Displaying enrichment of Polycystic kidney disease patients with respect to the UMAP projections of 
patient-level embeddings.   
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Figure 4:  Heatmap displaying the proportion of patients with a given code.  The top 20 codes with largest absolute 
differences between the two regions enriched for PKD patients are shown here.  Group 0 refers to patients belonging 
to the upper cluster and Group 1 refers to patients belonging to the lower cluster seen in Figure 3.   
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Figure 5:  Displaying the logit probability of progressing from CKD stage 4 to kidney failure within 5 years with respect 
to the UMAP projections of patient-level embeddings.   
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Figure 6:  Heatmap displaying the proportion of patients with a given code.  The top 10 codes with largest absolute 
differences between the fast kidney failure progressors compared to the complement are shown here.   

Tables 
Criteria Number of patients 
All patients 104,114,518 
IDN indicator = 1 87,669,592 
Kidney disease 
diagnosis/procedure codes 

6,243,647 

≥ 2 year follow-up 
≥ 15 serum creatinine 
measurements 

2,219,789 

Table 1:  Cohort selection criteria applied to Optum EHR.  Kidney disease diagnosis/procedure codes are listed in 
Supplementary Table 1 

 

 

Characteristic  N = 2,219,7891 
Sex Female 

1,131,438 (51%) 

 Male 1,087,480 (49%) 
Race African American 310,293 (15%) 
 Asian 27,958 (1.3%) 
 Caucasian 

1,772,361 (84%) 

 Unknown 109,177 
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Ethnicity Hispanic 105,234 (5.0%) 
 Not Hispanic 

2,005,759 (95%) 

 Unknown 108,796 
Age Age last active 72 (61, 83) 
 Unknown 62 
Follow-up Follow-up years 10.1 (7.4, 12.8) 
Serum creatinine Number measurements 29 (20, 48) 
1n (%); Median (IQR) 

Table 2:  Characteristics of the kidney disease cohort.   

Supplementary figures 
Supplementary figure 1:  Elbow plot 

 

Supplementary tables 
Supplementary Table 1:  Kidney disease diagnosis/procedure codes used for selecting the patient cohort.  The set of 
codes consists of diagnosis codes relating to prerenal injury, chronic kidney disease, acute kidney injury, dialysis, 
kidney transplant or other kidney disease and procedure codes relating to dialysis or kidney transplant published in 
(Shang et al. 2021).   

Supplementary Table 2:  The proportion of patients with a given code for each of the K=5 clusters.   

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.25.22280440doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.25.22280440
http://creativecommons.org/licenses/by-nd/4.0/


 

References 
Allam, Ahmed, Stefan Feuerriegel, Michael Rebhan, and Michael Krauthammer. 2021. “Analyzing Patient 

Trajectories With Artificial Intelligence.” Journal of Medical Internet Research 23 (12). 
https://doi.org/10.2196/29812. 

Basile, Anna Okula, and Marylyn De Riggi Ritchie. 2018. “Informatics and Machine Learning to Define the 
Phenotype.” Https://Doi.Org/10.1080/14737159.2018.1439380 18 (3): 219–26. 
https://doi.org/10.1080/14737159.2018.1439380. 

Chen, Elizabeth S., and Indra Neil Sarkar. 2014. “Mining the Electronic Health Record for Disease 
Knowledge.” Methods in Molecular Biology (Clifton, N.J.) 1159: 269–86. https://doi.org/10.1007/978-
1-4939-0709-0_15. 

Devlin, Jacob, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. “BERT: Pre-Training of Deep 
Bidirectional Transformers for Language Understanding.” NAACL HLT 2019 - 2019 Conference of 
the North American Chapter of the Association for Computational Linguistics: Human Language 
Technologies - Proceedings of the Conference 1 (October): 4171–86. 
https://doi.org/10.48550/arxiv.1810.04805. 

Dong, Guiying, Jianfeng Feng, Fengzhu Sun, Jingqi Chen, and Xing Ming Zhao. 2021. “A Global 
Overview of Genetically Interpretable Multimorbidities among Common Diseases in the UK 
Biobank.” Genome Medicine 13 (1). https://doi.org/10.1186/S13073-021-00927-6. 

Drysdale, Andrew T., Logan Grosenick, Jonathan Downar, Katharine Dunlop, Farrokh Mansouri, Yue 
Meng, Robert N. Fetcho, et al. 2017. “Resting-State Connectivity Biomarkers Define 
Neurophysiological Subtypes of Depression.” Nature Medicine 23 (1): 28–38. 
https://doi.org/10.1038/NM.4246. 

Ecder, Tevfik. 2013. “Cardiovascular Complications in Autosomal Dominant Polycystic Kidney Disease.” 
Current Hypertension Reviews 9 (1): 2–11. https://doi.org/10.2174/1573402111309010002. 

Fereshtehnejad, Seyed Mohammad, Yashar Zeighami, Alain Dagher, and Ronald B. Postuma. 2017. 
“Clinical Criteria for Subtyping Parkinson’s Disease: Biomarkers and Longitudinal Progression.” 
Brain : A Journal of Neurology 140 (7): 1959–76. https://doi.org/10.1093/BRAIN/AWX118. 

Go, Alan S., Jingrong Yang, Thida C. Tan, Claudia S. Cabrera, Bergur v. Stefansson, Peter J. Greasley, 
and Juan D. Ordonez. 2018. “Contemporary Rates and Predictors of Fast Progression of Chronic 
Kidney Disease in Adults with and without Diabetes Mellitus.” BMC Nephrology 19 (1). 
https://doi.org/10.1186/s12882-018-0942-1. 

Goldstein, Benjamin A. 2020. “Five Analytic Challenges in Working with Electronic Health Records Data 
to Support Clinical Trials with Some Solutions.” Clinical Trials 17 (4): 370–76. 
https://doi.org/10.1177/1740774520931211. 

Jensen, Anders Boeck, Pope L. Moseley, Tudor I. Oprea, Sabrina Gade Ellesøe, Robert Eriksson, 
Henriette Schmock, Peter Bjødstrup Jensen, Lars Juhl Jensen, and Søren Brunak. 2014. “Temporal 
Disease Trajectories Condensed from Population-Wide Registry Data Covering 6.2 Million Patients.” 
Nature Communications 5 (June). https://doi.org/10.1038/NCOMMS5022. 

Kirby, Jacqueline C., Peter Speltz, Luke v. Rasmussen, Melissa Basford, Omri Gottesman, Peggy L. 
Peissig, Jennifer A. Pacheco, et al. 2016. “PheKB: A Catalog and Workflow for Creating Electronic 
Phenotype Algorithms for Transportability.” Journal of the American Medical Informatics 
Association : JAMIA 23 (6): 1046. https://doi.org/10.1093/JAMIA/OCV202. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.25.22280440doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.25.22280440
http://creativecommons.org/licenses/by-nd/4.0/


Landi, Isotta, Benjamin S. Glicksberg, Hao Chih Lee, Sarah Cherng, Giulia Landi, Matteo Danieletto, Joel 
T. Dudley, Cesare Furlanello, and Riccardo Miotto. 2020a. “Deep Representation Learning of 
Electronic Health Records to Unlock Patient Stratification at Scale.” Npj Digital Medicine 3 (1). 
https://doi.org/10.1038/s41746-020-0301-z. 

———. 2020b. “Deep Representation Learning of Electronic Health Records to Unlock Patient 
Stratification at Scale.” Npj Digital Medicine 2020 3:1 3 (1): 1–11. https://doi.org/10.1038/s41746-
020-0301-z. 

McInnes, Leland, John Healy, and James Melville. 2018. “UMAP: Uniform Manifold Approximation and 
Projection for Dimension Reduction,” February. https://doi.org/10.48550/arxiv.1802.03426. 

Remuzzi, Giuseppe, Ariela Benigni, and Andrea Remuzzi. 2006. “Mechanisms of Progression and 
Regression of Renal Lesions of Chronic Nephropathies and Diabetes.” Journal of Clinical 
Investigation. https://doi.org/10.1172/JCI27699. 

Shafi, Tariq, and Josef Coresh. 2019. “Chronic Kidney Disease: Definition, Epidemiology, Cost, and 
Outcomes.” Chronic Kidney Disease, Dialysis, and Transplantation: A Companion to Brenner and 
Rector’s The Kidney, January, 2-22.e3. https://doi.org/10.1016/B978-0-323-52978-5.00001-X. 

Shang, Ning, Atlas Khan, Fernanda Polubriaginof, Francesca Zanoni, Karla Mehl, David Fasel, Paul E. 
Drawz, et al. 2021. “Medical Records-Based Chronic Kidney Disease Phenotype for Clinical Care 
and ‘Big Data’ Observational and Genetic Studies.” Npj Digital Medicine 4 (1). 
https://doi.org/10.1038/s41746-021-00428-1. 

Si, Yuqi, Jingcheng Du, Zhao Li, Xiaoqian Jiang, Timothy Miller, Fei Wang, W. Jim Zheng, and Kirk 
Roberts. 2021. “Deep Representation Learning of Patient Data from Electronic Health Records 
(EHR): A Systematic Review.” Journal of Biomedical Informatics 115 (March): 103671. 
https://doi.org/10.1016/J.JBI.2020.103671. 

Thorndike, Robert L. 1953. “WHO BELONGS IN THE FAMILY?*” 18 (4). 

Torreggiani, Massimo, Antoine Chatrenet, Antioco Fois, Jean Philippe Coindre, Romain Crochette, 
Mickael Sigogne, Samuel Wacrenier, et al. 2021. “Unmet Needs for CKD Care: From the General 
Population to the CKD Clinics—How Many Patients Are We Missing?” Clinical Kidney Journal 14 
(10): 2246–54. https://doi.org/10.1093/CKJ/SFAB055. 

Tsai, Ching Wei, I. Wen Ting, Hung Chieh Yeh, and Chin Chi Kuo. 2017. “Longitudinal Change in 
Estimated GFR among CKD Patients: A 10-Year Follow-up Study of an Integrated Kidney Disease 
Care Program in Taiwan.” PLoS ONE 12 (4). https://doi.org/10.1371/journal.pone.0173843. 

Wei, Wei Qi, and Joshua C. Denny. 2015. “Extracting Research-Quality Phenotypes from Electronic 
Health Records to Support Precision Medicine.” Genome Medicine 2015 7:1 7 (1): 1–14. 
https://doi.org/10.1186/S13073-015-0166-Y. 

Westergaard, David, Pope Moseley, Freja Karuna Hemmingsen Sørup, Pierre Baldi, and Søren Brunak. 
2019. “Population-Wide Analysis of Differences in Disease Progression Patterns in Men and 
Women.” Nature Communications 10 (1). https://doi.org/10.1038/S41467-019-08475-9. 

Xu, Danqing, Chen Wang, Atlas Khan, Ning Shang, Zihuai He, Adam Gordon, Iftikhar J. Kullo, et al. 2021. 
“Quantitative Disease Risk Scores from EHR with Applications to Clinical Risk Stratification and 
Genetic Studies.” NPJ Digital Medicine 4 (1). https://doi.org/10.1038/S41746-021-00488-3. 

Xu, Zhenxing, Fei Wang, Prakash Adekkanattu, Budhaditya Bose, Veer Vekaria, Pascal Brandt, Guoqian 
Jiang, et al. 2020. “Subphenotyping Depression Using Machine Learning and Electronic Health 
Records.” Learning Health Systems 4 (4). https://doi.org/10.1002/LRH2.10241. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.25.22280440doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.25.22280440
http://creativecommons.org/licenses/by-nd/4.0/


Yang, Hai Chun, Shao Jun Liu, and Agnes B. Fogo. 2014. “Kidney Regeneration in Mammals.” Nephron. 
Experimental Nephrology 126 (2): 50. https://doi.org/10.1159/000360661. 

Zhang, Xi, Jingyuan Chou, Jian Liang, Cao Xiao, Yize Zhao, Harini Sarva, Claire Henchcliffe, and Fei 
Wang. 2019. “Data-Driven Subtyping of Parkinson’s Disease Using Longitudinal Clinical Records: A 
Cohort Study.” Scientific Reports 9 (1). https://doi.org/10.1038/S41598-018-37545-Z. 

  

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.25.22280440doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.25.22280440
http://creativecommons.org/licenses/by-nd/4.0/

	Abstract
	Introduction
	Results
	Methods
	Discussion
	Acknowledgements
	Figures
	Tables
	Supplementary figures
	Supplementary tables
	References

