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Abstract
The literature of human and other host-associated microbiome studies is expanding rapidly,
but systematic comparisons among published results of host-associated microbiome
signatures of differential abundance remain difficult. We present BugSigDB, a
community-editable database of manually curated microbial signatures from published
differential abundance studies, accompanied by information on study geography, health
outcomes, host body site, and experimental, epidemiological, and statistical methods using
controlled vocabulary. The initial release of the database contains >2,500 manually curated
signatures from >600 published studies on three host species, enabling high-throughput
analysis of signature similarity, taxon enrichment, co-occurrence and co-exclusion, and
consensus signatures. These data allow assessment of microbiome differential abundance
within and across experimental conditions, environments, or body sites. Database-wide
analysis reveals experimental conditions with the highest level of consistency in signatures
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reported by independent studies and identifies commonalities among disease-associated
signatures including frequent introgression of oral pathobionts into the gut.

Main

Despite substantial progress in experimental techniques and computational methods for

culture-independent profiling of the human microbiome, the analysis and interpretation of

microbial differential abundance studies remains challenging. A large body of experimental

and observational studies on humans and in animal models has reported associations

between host-associated microbiomes and the onset, progression, and treatment of a

variety of diseases including atherosclerosis1, cardiovascular diseases2, cancers3, and

diabetes4. This growing body of published results provides opportunities for synthesis of

accumulated knowledge, identification of common patterns across different diseases and

exposures, and interpretation of new studies by comparison to previous results. However,

without a systematic catalog of published differential abundance results, even identical

microbial signatures reported in different research fields are unlikely to be noticed. Even

within research fields, systematic review in the absence of a catalog or common reporting

of differential abundance results are time-consuming, static, and generally do not

summarize all taxa reported.

This situation has parallels to early challenges in the interpretation of differential gene

expression analysis5, which have been addressed in the field by Gene Set Enrichment

Analysis (GSEA). GSEA allows the comparison of coherent expression patterns among

predefined gene signatures that share a biological function, property, or that were
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identified together by a previous study6,7. GSEA is a key tool in gene expression data

analysis6, with a wide range of subsequent methods8 to account for correlations between

genes9, redundancy of functional annotation10, different types of null hypothesis11, and the

application of GSEA for the analysis of genomic regions12, metabolomic data13, and disease

phenotypes14.

Analogously, differential microbial abundance analysis can yield lists or “signatures” of

microbial clades at multiple taxonomic levels that are associated with a phenotype of

interest. The properties shared by these clades are often not obvious, but could include

common environmental exposures, metabolic or ecological requirements, or physiological

characteristics. Although nascent attempts to apply concepts of GSEA to results of

microbiome differential abundance analysis exist15–18, major obstacles have prevented their

broad utility and adoption. The most significant obstacle has been the lack of

comprehensive databases of signatures designed for enrichment analysis, such as those

available for GSEA including GO19, KEGG20, MSigDB21,22, and GeneSigDB23. Several databases

provide significant information on microbial physiology and morphology24–27, but are not

designed for enrichment analysis and, by design, exclude the vast majority of

experimentally-derived microbial signatures associated with cancer, inflammation, diet, or

other conditions studied in human and other host-associated microbiome research.

This study provides two main contributions to enable high-throughput comparison of

published microbial signatures. First, it describes BugSigDB, a database of published

microbial signatures of sufficient scale and diversity to capture replicable patterns of
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differential abundance across a broad spectrum of the host-associated microbiome

literature. BugSigDB provides curated published signatures of differentially abundant

microbes associated with a wide range of health outcomes, pharmaceutical usage (e.g.

antibiotics), experiments on animal models, randomized clinical trials, and microbial

attributes, and is built on the technology of Wikipedia to allow community contributions,

revisions, and review for quality control. Second, we provide a systematic analysis of the

results reported by hundreds of published microbiome studies, identifying replicated

patterns even across 16S amplicon and shotgun sequencing approaches, demonstrating

that interpretation of new microbiome studies can be supported by systematic comparison

to previously published signatures. Database-wide analysis revealed common patterns of

microbe co-occurrence and mutual exclusivity within signatures, and identified antibiotic

treatment and HIV infection as the experimental conditions with the highest level of

consistency in signatures reported by independent studies. “Bug set” enrichment analysis

of 10 individual-participant colorectal cancer-associated fecal microbiome datasets (N =

663) detected published meta-analysis signatures used as positive controls, supporting

direct application of methods adapted from gene set analysis as well as taxonomy-aware

enrichment methods. This analysis also identified commonalities among signatures of other

diseases, including elevated frequency of oral pathobionts in the gut, and identified the

most common patterns of co-occurrence and mutual exclusion across all conditions, related

conditions, or uniquely to one condition. Together, the BugSigDB database and analysis

methods described here improve the interpretation of new microbiome studies by

systematic comparison to published microbial signatures.
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Results

A curated database of published microbial signatures

BugSigDB comprises a comprehensive database of manually-curated, host-associated

microbial signatures from published microbiome studies, currently of human, mouse, and

rat (Figure 1). The database has been simultaneously developed and expanded over the

course of 4+ years with contributions from more than 25 curators trained in-house,

currently containing >2,500 microbial signatures extracted from >600 scientific articles

(Figure 1A). The curated papers cover two decades of microbiome research, with the

majority of studies being published in the last 5 years (459 / 628 articles, 73.1%,

Supplementary Figure S1). Among them are microbiome studies of participants frommore

than 50 different countries, with more than 50% of the studies originating from China and

the USA (201 and 157 studies, respectively; Figure 1B).

Studying microbiome samples from 14 broad body areas comprising more than 60 refined

anatomical sites according to the UBERON Anatomy Ontology28 (Supplementary Table S1),

the majority of studies in BugSigDB analyzed gut (440 / 628 studies, 70.1%), oral (80

studies, 12.8%), and vaginal microbiome samples (59 studies, 9.4%, Figure 1C). The

signatures are generated by both 16S amplicon sequencing (92.5%) and metagenomic

shotgun sequencing (MGX, 7.5%, Table 1), and contain taxonomic levels from phylum to

strain standardized based on the NCBI Taxonomy29 (Supplementary Figure S2). BugSigDB is

implemented as a semantic MediaWiki30 web interface available at https://bugsigdb.org,

supporting data entry, semantic validation, quality control, and web-based programmatic
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access to annotations for studies, experiments, signatures, and individual taxa

(Supplementary Figure S3 and Methods, Section Data entry, validation, and access).

Most of the roughly 1,400 unique taxa contained in BugSigDB are reported as differentially

abundant in fewer than 5 signatures (1,009 of 1,370 unique microbes, 69.5%, Figure 1D).

Conversely, genera Streptococcus, Prevotella, Bacteroides, and Lactobacillus are each

reported as differentially abundant in more than 100 signatures, reflecting the large

number of species belonging to these genera and paralleling previous observations of gene

signatures with certain genes being reported disproportionately often as differentially

expressed31. Signatures contain 6 microbes on average, with roughly 55% of the signatures

containing 5 or more microbes (Figure 1E).

Study conditions associated with each signature are classified according to the

Experimental Factor Ontology (EFO32, Figure 1F), with large proportions associated with

different types of cancer (23.1%), anatomical system diseases such as asthma and

endometriosis (22.6%), and metabolic diseases such as obesity and diabetes (15.3%).

Apart from different disease categories, substantial proportions of signatures in BugSigDB

are also associated with diet (6%), use of antibiotics (4.8%), and birth delivery mode

(vaginal vs. C-section, 4.1%). These distributions approximately reflect the human

microbiome literature. Non-human host species remain under-represented although the

database can support any host organism.
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Condition-specific associations were investigated for the 10 most-reported taxa (Figure

1G). For instance, signatures containing the Bacteroides genus are related to metabolic

disease (21%) more frequently than are all signatures (13%) (p = 0.003, χ2 = 8.4, df = 1,

two-sided proportion test); Bacteroides is similarly enriched in signatures of antibiotic

exposure (11% of Bacteroides-containing signatures being of antibiotics exposure vs 5% of

all signatures; p = 0.0009, χ2 = 11.2, df = 1). BugSigDB makes such commonalities across

groups of related studies straightforward to identify, and provides for continuous updates

of these associations as the database grows.

Curated metadata and common practices in microbiome research

BugSigDB provides curated metadata at the level of Study (study design and

automatically-generated citation information), Experiments within a Study that each define

one contrast for differential abundance analysis (such as characteristics about subjects, lab

analysis, statistical analysis, as well as alpha diversity), Up to two Signatures within an

Experiment, each of which contains one or more Taxon (see Table 1 for summary statistics

of Studies and Experiments and Methods Section Definition of semantic concepts for details

of the design). In this manuscript we use “study group” to refer to cases in case-control

studies, the exposed group in exposure-control studies, and whichever group corresponds

to the condition of interest with increased microbial relative abundance in other

comparisons of two sample groups.

Signatures are available primarily from observational study designs: case-control (281

studies, 44.7%) and cross-sectional studies (171 studies, 27.2%) were most prevalent,
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while prospective cohort studies (66, 10.5%), time-series/longitudinal studies (51, 8.1%),

laboratory studies (29, 4.6%), randomized controlled trials (28, 4.4%), and meta-analyses

(6, 0.9%) are also present. Subject information includes host species (95.9% human out of

1,223 experiments), location, condition, body site (Figure 1), antibiotics exclusion criteria

(median exclusion time = 60 days), and sample size in study and control sample groups

(median total sample size = 25).

A survey of statistical methods most frequently applied for differential abundance testing in

BugSigDB revealed that nonparametric tests such as Wilcoxon-family tests and the related

LEfSe software33 were most frequently used, whereas recently suggested tools for

differential abundance tests accounting for the compositionality of microbiome data34 were

rarely used (Supplementary Results S1.1). Furthermore, when stratifying experiments by

body site and condition, oral and vaginal samples were frequently reported with increased

alpha diversity in the study group, as opposed to samples from the GI tract which were

frequently found with decreased alpha diversity in the study group (Supplementary Tables

S2-S4).

Conditions with replicable microbiome changes across studies

BugSigDB facilitates meta-analysis of differential abundance studies and enables the

identification of experimental conditions and disease phenotypes where microbiome

changes replicate across studies. Focusing on 1,194 signatures derived from human fecal

samples in 311 published studies, we computed signature similarity within conditions and

assessed whether the resulting similarity exceeds the similarity of randomly sampled
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signatures (Figure 2). This simultaneously determines whether signatures of the same

phenotype reproduce across studies, and whether different phenotypes share similar

microbial signatures.

To do this, we applied two alternative approaches for computing similarity between

signatures: (1) the more restrictive Jaccard index35 based on pairwise overlaps between

signatures harmonized to genus level, and (2) the more sensitive semantic similarity36

based on taxonomic distance between signatures of mixed taxonomic levels (see Methods,

Section Signature similarity). Hierarchical clustering of signature similarity for both

similarity measures was in good agreement, reflecting the dominance of genera reported so

far in BugSigDB, but demonstrated better resolution using semantic similarity compared to

the sparse results obtained from the application of Jaccard similarity (Supplementary

Figure S4). The advantages of semantic similarity may grow as taxonomic ranks in

BugSigDB become more mixed due to increased reporting of species-level results made

possible by shotgun metagenomics.

To assess replication by independent studies of the same condition, we compared semantic

similarity between signatures reported for a single condition to the similarity of randomly

sampled signatures in repeated simulation, and ranked conditions based on the resulting

empirical p-value (Figure 2A). Differential abundance signatures of antibiotic treatment

and HIV infection were among the most consistent, each investigated by 5 or more studies

in BugSigDB37–48. Closer inspection of signatures of decreased abundance after antibiotics

treatment (semantic similarity = 0.64, one-sided resampling p-value = 0.0005, Figure 2D

9

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2023. ; https://doi.org/10.1101/2022.10.24.22281483doi: medRxiv preprint 

https://paperpile.com/c/IVNThu/8pvrk
https://paperpile.com/c/IVNThu/eYHti
https://paperpile.com/c/IVNThu/HjX5s+C23xv+e3z6k+qd20A+cRlmd+GWEZs+hExcp+0vJTs+MO52I+YUei5+LK8p0+p1QkK
https://doi.org/10.1101/2022.10.24.22281483
http://creativecommons.org/licenses/by-nc/4.0/


and E, Supplementary Figure S5) were enriched for genera of fastidious anaerobes that are

often short-chain fatty acid producers, and displayed frequent loss of Bifidobacterium and

Blautia, in agreement with previous reports49. On the other hand, signatures of decreased

abundance of HIV-infected individuals versus healthy controls (semantic similarity = 0.68,

resampling p-value = 0.002, Figure 2B and C, Supplementary Figure S6) displayed a loss of

abundant members of healthy gut microbial communities as typically observed for diseases

associated with GI inflammation50, but also resembling a response to antibiotics treatment,

a likely side effect of antibiotics often being prescribed for HIV-positive patients to prevent

or treat opportunistic and associated infections51. Additional examples of replicable

microbiome shifts between studies included similarity (i) among fecal signatures of

decreased abundance in patients with COVID-19, displaying alterations associated with

intensive care units and antibiotics treatment52 (Supplementary Figure S7), and (ii) among

stomach signatures of patients with gastric cancer driven by consistently increased

abundance of Streptococcus, Lactobacillus, and Prevotella (Supplementary Figure S8).

Bug set enrichment analysis of colorectal cancer signatures

We integrated BugSigDB signatures with the manually curated metagenomic datasets from

curatedMetagenomicData53 in order to systematically benchmark enrichment

methods from the EnrichmentBrowser package7,54 and evaluate whether

top-performing gene set enrichment methods can be directly applied to microbiome data.

We applied two enrichment methods that have performed well in previous benchmarking

of gene set analysis methods7 - Over-Representation Analysis (ORA11), and Pathway
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Analysis with Down-weighting of Overlapping Genes (PADOG31) - to 10 colorectal cancer

datasets from curatedMetagenomicData. We performed enrichment analysis of all

microbiome signatures from BugSigDB simultaneously, employing as “spike-in” controls

two signatures of the colorectal cancer-associated fecal microbiome, derived previously by

two independent meta-analyses of individual-participant data55,56 from 8 of the studies

included in this dataset (Figure 3). The two signatures based on meta-analysis are thus

expected to be among the most enriched of all microbiome signatures: in the 8 training

studies for the meta-analyses due to their shared utilization in both datasets, and in the

remaining two independent studies due to the relevance and large sample size of the

colorectal cancer signatures. The two meta-analysis signatures can thus also be considered

robust against spurious signals from studies with small sample sizes that were not included

in the analysis (Supplementary Results S3.2, Supplementary Tables S5 and S6).

ORA analysis of 647 BugSigDB signatures yielded 19 signatures enriched in contrasts

employing 662 colorectal cancer samples and 653 control samples from 10 datasets (FDR <

0.05, one-sided Fisher’s exact test, Figure 3A). Only signatures containing 5 or more genera

associated with any condition were included. The two positive control spike-in signatures

from Thomas et al., 201955 and Wirbel et al., 201956 were top-ranked as expected. Other

enriched signatures included colorectal cancer signatures from Wu et al., 201357 and Allali

et al., 201858. These are notable because neither study was included in the 10 datasets from

which the meta-analysis signatures were computed. Additionally, both were based on 16S

amplicon sequencing, whereas the meta-analysis signatures were based on shotgun

sequencing. This analysis therefore also provides a proof of concept for integrating
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species-level signatures from shotgun metagenomic data with genus-level signatures

derived from 16S amplicon profiles (see Methods, Section Bug set enrichment analysis),

while also providing independent replication of the signatures from Thomas et al., 201955

and Wirbel et al., 201956.

The presence of 11 enriched signatures (58%) from saliva samples from studies of oral

diseases such as gingivitis, peptic esophagitis, and oral carcinoma, is consistent with recent

reports that oral to gut microbial introgression is a feature of colorectal cancer59, and with

periodontal diseases being a well-established risk factor for CRC60,61. Frequently

overlapping genera between the enriched signatures include Fusobacterium,

Porphyromonas, and Peptostreptococcus, all displaying strongly increased abundance in

colorectal cancer patients relative to healthy controls (Figure 3B).

Although these findings demonstrate the usefulness of ORA as a fast and effective

enrichment method for microbiome signatures, the method has known shortcomings in the

presence of correlated features62 or an inappropriately large feature universe63. The PADOG

method, a top performer in several independent assessments7,64,65, is theoretically superior,

as it applies sample permutation to preserve correlations and, by working on the full

abundance matrix, does not require thresholding on differential abundance or the

definition of a feature universe. In addition, the method downweights frequently

overlapping microbes between signatures (such as those displayed in Figure 1D), leading to

increased sensitivity and the identification of more specific signatures for the phenotype

under investigation.
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We therefore benchmarked PADOG against ORA in each of the 10 individual-participant

shotgun metagenomics datasets of colorectal cancer, and compared the rankings of the two

spike-in signatures from the meta-analyses of Thomas et al., 201955 and Wirbel et al.,

201956 (Figure 3C). On average, PADOG ranked the spike-in signatures better than ORA,

although the difference was statistically significant only for the spike-in signature from

Thomas et al., 2019 (p = 0.049, two-sided Wilcoxon signed-rank test, Figure 3D). This

difference was largest for datasets with smaller sample sizes, where the lack in power was

more detrimental for ORA than for PADOG (Supplementary Figure S9).

Despite the apparent effectiveness of established gene set enrichment methods for

application to microbiome data, these methods were not developed with microbiome data

in mind34,66. Competitive Balances for taxonomic Enrichment Analysis (CBEA18) is a recent

taxonomic enrichment method specifically developed for microbiome data that accounts

for compositionality via application of an isometric log-ratio transformation of relative

abundance data for the computation of sample-level enrichment scores. Benchmarked

against ORA and PADOG in the CRC setting (Figure 3C), CBEA tended to rank the spike-in

signature from Thomas et al., 2019, significantly higher than ORA (p = 0.021, Wilcoxon

signed-rank test), but did not display a notable performance gain over PADOG (p = 0.92,

Figure 3D).
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Microbe co-occurrence and mutual exclusivity within signatures

BugSigDB enables the exploration of compositional patterns within signatures of

differential abundance for different body sites. Focusing on 1,194 signatures of fecal

microbiomes from 311 published studies, we analyzed patterns of co-occurrence and

mutual exclusivity for individual microbes and groups of microbes (Figure 4). Inspection of

the top 20 genera most frequently reported as differentially abundant in signatures from

fecal samples (Figure 4A) revealed genera predominantly belonging to the phyla Firmicutes

(13 genera) and Bacteroidetes (4 genera), in agreement with those being the dominant

phyla of the human gut microbiome67,68. Among the 20 were Bacteroides, Prevotella, and

Ruminococcus, three dominant gut genera that are highly variable in relative abundance69

and have a large effect on gut microbiome clustering70.

When comparing the proportions of signatures where these genera were reported either

with increased or decreased abundance in the study sample group (panel “Abundance in

Group 1” in Figure 4A), the genera most disproportionately increased in the study group

were Enterococcus (64 out of 73 signatures, 87.7%), Lactobacillus (73/105, 69.5%),

Veillonella (50/74, 69.4%), and Streptococcus (83/128, 66.4%). Pathogenicity of certain

Streptococcus and Enterococcus species is well documented71,72, whereas Lactobacillus and

Veillonella are typically considered to be commensal gut microbiota of limited

pathogenicity73,74. Genera instead decreased in the study group were Roseburia (77/103,

74.8%), a beneficial gut organism with established anti-inflammatory activity75; and

Alistipes (61/88, 69.3%), for which protective and harmful associations with a range of

diseases have been described76.
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To elucidate the extent to which frequency of differential abundance in disease phenotypes

can be explained by prevalence in the healthy gut microbiome, we contrasted these findings

with the prevalence of these genera in 9,623 stool samples from healthy adult controls of

68 different studies in curatedMetagenomicData (panel “Prevalence” in Figure 4A). We

observed a strong negative correlation between prevalence, measured as the percentage of

control samples in which the genus is observed at non-zero relative abundance, and the

proportion of BugSigDB signatures in which the genus is reported with increased

abundance in disease (r = -0.84, p = 3 · 10-6, two-sided Pearson correlation test, Figure 4C).

This indicates that across the many diseases and exposures present in BugSigDB,

high-prevalence genera tend to be lost in study groups relative to controls, and

low-prevalence genera have increased abundance in the study group. This was particularly

apparent for Enterococcus, a genus of low prevalence in healthy samples (13%), that was

reported almost exclusively with increased abundance in the diseased group (64 out of 73

signatures, 88%). Presence of Enterococcus, accompanied by exclusion of other genera of

the Clostridia class (below), may therefore be considered as a commonly reported

“dysbiotic” signature.

The human gut is a complex ecosystem where microbes compete and cooperate77. To

investigate which of these interactions are associated with disease, we next studied

patterns of co-occurrence and mutual exclusivity for the top 20 genera most frequently

reported as differentially abundant. For each pair of microbes we counted the number of

signatures where both microbes were reported with either the same or opposite direction
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of change in relative abundance (top and bottom heatmap in Figure 4A). This resulted in

clusters of co-occurrence driven primarily by functional and phylogenetic similarity, with

frequent co-occurrence of genera of the phylum Bacteroidetes and blocks of positive

associations in the class Clostridia (top red heatmap in Figure 4A, third cluster from top to

bottom). On the other hand, clusters of mutual exclusivity displayed clear signs of the

established Firmicutes-Bacteroidetes gradient in gut microbiomes67 and a strong negative

association between Bacteroides and Prevotella within the phylum Bacteroidetes, as

previously reported78 and also observed in healthy samples (r = -0.49, p < 2.2 · 10-16,

two-sided Spearman correlation test, bottom blue heatmap in Figure 4A, third cluster from

top to bottom). Overall, these patterns largely recapitulated correlation of these genera in

healthy adult stool samples (Figure 4B), arguing against the existence of specific

disease-promoting interactions between these genera. Exceptions were patterns of

pronounced mutual exclusivity within the class Clostridia in signatures associated with

disease, as observed for Clostridium, Enterococcus, and Streptococcus, which were not

observed in healthy samples.

Shared and exclusive patterns in pooled microbial signatures

BugSigDB provides opportunities for the discovery of microbial biomarkers and

re-assessment of previous findings across a much larger and more heterogeneous data

source than previously possible. To identify similarities between microbial shifts within

and across body sites, we aggregated signatures for one body site at a time, and within body

sites for one condition at a time (see Methods, Section Signature pooling). To account for
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differences in sample size between studies, we applied a voting approach where each taxon

of a pooled signature obtained a weight based on the aggregated sample size of reporting

studies, and performed hierarchical clustering based on pairwise similarity between the

weighted meta-signatures (Figure 5). Clustering of 27 meta-signatures, representing body

sites studied by at least 2 studies in BugSigDB and generated from 1,909 individual

signatures of either increased or decreased differential abundance in the study group,

resulted in two major body site clusters: a cluster primarily composed of oral and nasal

sites, and a cluster dominated by vaginal and gastrointestinal sites (Figure 5A). This

clustering was largely invariant to the similarity measure used for clustering

(Supplementary Figure S10), confirming the expected dominant effect of host body site of

origin, and in particular, the availability of oxygen.

Within body-site clustering of fecal meta-signatures of 34 different conditions, studied by at

least 2 studies in BugSigDB and generated from 504 signatures of increased relative

abundance in the study group, revealed similarities in reported differential abundance

patterns between disease phenotypes (Figure 5B). This included similarities in microbial

shifts for (i) HIV infection and different gastrointestinal cancers, both characterized by

chronic inflammation of the GI tract and microbial signatures that point to shared

pathogenic pathways including tryptophan catabolism and butyrate synthesis79, (ii) chronic

kidney disease and autism, linked through deleterious copy number variants80,81 and

pathogenic gut microbiota-derived metabolites produced by species of the Clostridia

class82,83, and (iii) type 2 diabetes and schizophrenia, consistent with observations that

people with schizophrenia are at increased risk of type 2 diabetes, and conversely, that
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traditional risk factors for type 2 diabetes are common in people with schizophrenia and

can affect the gut microbiome, especially obesity, poor diet, and sedentary lifestyle84. A

strong enrichment of genera of the Clostridia class drove the similarity between the

meta-signatures of Hashimoto’s thyroiditis (12 out of 14 genera, 85.7%, p = 2.1 · 10-05,

two-sided proportion test) and chronic fatigue syndrome (11/17, 64.7%, p = 0.003).

Chronic fatigue is common in patients with Hashimoto's thyroiditis; the disorder affects the

thyroid gland, potentially also through a gut microbiota-driven thyroid-gut-axis85, reducing

thyroid hormone production which causes extreme fatigue86.

Genera reported as differentially abundant exclusively in one condition, in particular those

replicated by independent studies, are candidates for condition-specific biomarkers

(Supplementary Figure S11, prioritized by relative sample size). This included an exclusive

abundance increase of the genus Hungatella for colorectal cancer, which is notable given a

reported role of Hungatella hathewayi in driving host colonic epithelial cell promoter

hypermethylation of tumor suppressor genes in colorectal cancer87. On the other hand, an

exclusive decrease in abundance was observed for Marvinbryantia in type 2 diabetes, for

which a reduction in Marvinbryantia through treatment with glucagon like peptide-1

(GLP-1) receptor agonist drugs such as Liraglutide has been shown to contribute to

treatment success4.

Discussion

We compiled published signatures of microbial differential abundance in the BugSigDB

database, assessed applicability of GSEA methods for enrichment analysis of microbial
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signatures, and identified common patterns of co-occurrence and mutual exclusion in

differential abundance results across a broad sample of the human microbiome literature.

BugSigDB is a Semantic MediaWiki that allows contribution, review, and correction by the

microbiome research community and is usable through its web interface and through bulk

exports compatible with all major GSEA software. It supports any taxon and any host

species present in the NCBI Taxonomy, and therefore non-human hosts and studies of

viromes and eukaryotes. BugSigDB has been initially seeded by ~25 trained curators with

more than 2,500 manually curated signatures from the figures, tables, main text, and

supplementary material of more than 600 primary publications, providing a broadly

relevant collection of machine-readable knowledge of microbial differential abundance.

Manually curated metadata includes study design, geography, health outcomes, host body

sites, and experimental and statistical methods. Initial analyses of the database 1) identify

human diseases with the highest consistency among independently published signatures of

differential abundance, 2) demonstrate the capability of established GSEA methods to

prioritize CRC signatures in the analysis of individual-participant CRC datasets while

adding to evidence of frequent introgression of oral pathobionts into the gut, 3)

demonstrate that the prevalence of genera in fecal microbiomes of control populations is

strongly correlated with being reported as decreased across diverse study conditions, 4)

confirm the broad relevance of the Firmicutes-Bacteroidetes gradient in shaping common

patterns of co-occurrence and mutual exclusivity in the published microbiome literature

while also identifying other less dominant patterns, 5) and define sample size-adjusted

consensus signatures of body sites and conditions that can simplify and clarify future

analyses.
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There is concern over replicability of human microbiome studies due to numerous sources

of variation in complex experimental and computational quantification pipelines88,89. We

propose an approach based on semantic similarity that can be used in systematic reviews

to evaluate replication of differential abundance signatures of mixed taxonomic levels

reported by independent studies, even when different laboratory methods such as 16S

amplicon sequencing vs. MGX were employed. This taxonomy-aware framework provides

an effective assessment of the replicability of microbiome differential abundance signatures

for subsets of the literature, allowing ranking of the relative replicability of microbiome

signatures consisting of different taxonomic levels across many disease phenotypes. We

identified signatures associated with antibiotics treatment and chronic inflammation of the

GI tract as having the highest level of consistency or replication in signatures reported by

independent studies.

We pooled signatures across host body sites and experimental conditions to expand the

analysis of replicability also to the ~45% of signatures containing fewer than 5 taxa that are

too small individually to be effectively compared between studies. Using a voting approach

that weights each taxon by sample size of reporting studies, we constructed consensus

“meta-signatures” revealing shared and specific patterns of gut dysbiosis by disease

phenotype. These meta-signatures provide a framework for simplifying the interpretation

of results from future studies in the context of the published literature, distinguishing

specific from generic results, and informing enrichment tests by defining a universe of

reported abundance changes for a body site or condition of interest.
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Although single-species biomarkers are of primary interest for therapeutic interventions,

they are not sufficient for capturing complex ecological patterns of co-occurrence and

mutual exclusivity and interactions between microbes that may be relevant to health and

disease. Inspection of published signatures in BugSigDB is an alternative approach to

studying ecological patterns that complements the analysis of co-occurrence and

co-exclusion in individual-participant metagenomic profiles. In agreement with previous

results53 but across a much larger corpus of microbiome studies, we confirmed

co-exclusions not specific to disease such as the phylum-level Firmicutes-Bacteroides

gradient and the genus-level Bacteroides-Prevotella gradient within the Bacteroides phylum.

On the other hand, patterns of mutual exclusivity for Clostridium, Enterococcus, and

Streptococcus genera were specific to disease-associated signatures and not detectable in

healthy samples. To distinguish between disease markers and common false positives in

biomarker discovery, we compared stool signatures of disease conditions to prevalence in

~10,000 stool specimens from healthy participants. Across the many diseases and

exposures present in BugSigDB, prevalent genera in healthy fecal microbiomes tend to be

reported with decreased abundance in diseased-associated fecal microbiomes. On the other

hand, genera of low prevalence in healthy fecal microbiomes such as Enterococcus, tend to

be reported with increased abundance in the disease group. Genera such as Lactobacillus

and Veillonella, which are both prevalent in the stool of healthy individuals and frequently

reported as increased in many study conditions, are more likely false positives or at least

are not well suited as candidate biomarkers. Future work can employ stratification of
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BugSigDB signatures by experimental, cross-sectional, and longitudinal study designs to

better infer causality.

BugSigDB enables systematic comparison of microbial signatures from new microbiome

studies to previously published results. Although concepts of gene set enrichment analysis

are applicable, microbiome data presents new challenges including smaller signature sizes,

taxonomic relationships between features, and mixed-taxonomy signatures. We therefore

benchmarked two gene set enrichment methods (ORA11 and PADOG31) that performed well

in previous benchmarking7 and a recent taxonomic enrichment method (CBEA18) developed

specifically for microbiome data. Valid application of gene set enrichment methods is

limited to analysis at a single taxonomic level, and ORA further requires defining a realistic

feature “universe” and significance threshold for differential abundance; nonetheless, all

methods performed well in prioritizing signatures of CRC across numerous CRC datasets.

As PADOG addresses both (i) shortcomings of ORA in the presence of inter-microbe

correlation, and (ii) compositional bias in signature databases with certain taxa occurring

more frequently than others, typically a result of technical or biological sampling bias66,90,

we recommend PADOG over ORA for the routine application of enrichment analysis to

microbial signatures, especially for datasets with smaller sample sizes where a lack in

power typically hinders detecting individually differentially abundant features. Recently

emerging microbiome-specific enrichment methods such as CBEA18 have the advantage of

taking into account the compositional nature of microbiome data; however, they lack the

independent benchmarking and implementation of major GSEA approaches. Although we

found CBEA to be a sound alternative to ORA and PADOG, we did not observe notable gains
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of applying CBEA over PADOG in the CRC benchmark setup, indicating that basic study

characteristics such as sample size and, to a lesser extent, accounting for correlation within

microbial signatures, have a larger impact on identifying relevant signatures in practice

than mitigating effects of compositionality.

BugSigDB is a large and diverse collection of the currently available literature on microbial

differential abundance, and thus also represents certain limitations inherent to the

currently available literature. Since more than 90% of the studies included in the first

release of BugSigDB are based on 16S amplicon sequencing, enrichment analyses were

performed at the genus level. However, some genera are functionally heterogeneous, such

as streptococci, which groups deadly pathogens with common commensals and useful

food-fermenting species. Species- and strain-level variations are neglected, although they

can contribute to functional differences between individuals that are important in a clinical

context91,92. With the availability of more shotgun sequencing studies in the future, it will be

possible to perform enrichment analysis at higher taxonomic resolution up to the species or

strain level. Furthermore, studies included in BugSigDB are heterogeneous in their design

and execution, including antibiotics exclusion time frames ranging from current use to

within the previous year. Restoration of baseline microbial composition following antibiotic

treatment typically takes around 1 month in children and 1.5 months in adults, although

several common species of the gut microbiome might take substantially longer49,93.

Inclusion of this and other study information in BugSigDB allows further investigation and

sensitivity analysis into potential sources of heterogeneity in the literature. We anticipate

that broader adoption of the recently developed STORMS reporting guidelines for human
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microbiome studies94 will contribute to more efficient extraction of information from the

literature for BugSigDB.

Although natural language parsing programs have potential to complement the manually

curated information in BugSigDB, the majority of the curated information is too complex for

currently available text mining algorithms. Natural language parsing programs typically

extract patterns from unstructured text on a sentence-by-sentence basis95,96, but BugSigDB

standardizes microbial signatures and associated experimental, epidemiological, and

statistical methods from diverse Figures, Tables, Supplements, and textual descriptions that

often span multiple sentences. This places many key results outside the current capabilities

of text mining applications and necessitates manual curation, but improvements in machine

learning, using BugSigDB as a gold-standard dataset, may enable more efficient extraction

of published microbiome methods and results in the future. Moreover, automated

contributions of signatures from differential abundance software via the BugSigDB API can

streamline standardized reporting of results. As the community contributes additional host

species and signatures of microbial physiology and morphology, BugSigDB will dynamically

expand, leading to complementary insights and improvements to the systematic

interpretation of microbiome studies.
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Tables

Table 1. Overview of curated metadata annotations in BugSigDB. Note that the unit in the

count column is the number of studies for study design, and the number of experiments for all

other variables. BugSigDB defines experiments as semantic units within studies based on a

defined set of characteristics about subjects, lab analysis, statistical analysis, and alpha

diversity (see Methods, Section Definition of semantic concepts).

Count Percentage

STUDIES

Study design

- Case-control 281 44.7

- Cross-sectional 171 27.2

- Prospective cohort 66 10.5

- Longitudinal 51 8.1

- Laboratory experiment 29 4.6
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- Randomized control trial 28 4.4

- Meta-analysis 6 0.9

EXPERIMENTS

Subjects

Host species

- Homo sapiens 1173 95.9

- Mus musculus 44 3.6

- Rattus norvegicus 6 0.5

Location of subjects

- China 350 28.7

- USA 350 28.7

- ​​Italy 51 4.2

- Spain 48 3.9

- South Korea 42 3.5

- Other (56 more) 378 31.0
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Body site

- Feces 694 56.9

- Saliva 40 3.3

- Uterine cervix 40 3.3

- Vagina 36 2.9

- Mouth 29 2.4

- Other (67 more) 380 31.2

Condition

- Obesity 103 8.5

- COVID-19 74 6.1

- Antimicrobial agent 64 5.3

- Diet 55 4.5

- Human papillomavirus infection 42 3.4

- Other (173 more) 877 72.2

Antibiotics exclusion

- 0-2 weeks 64 5.2
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- 2 weeks - 1 month 216 17.6

- 1-3 months 265 21.6

- More than 3 months 89 7.3

- Not reported 591 48.3

Lab analysis

Sequencing type

- 16S 1117 92.5

- MGX 91 7.5

Sequencing platform

- Illumina 810 67.4

- Roche454 180 15

- Ion Torrent 87 7.2

- RT-qPCR 77 6.4

- Other (12 more) 48 4.0

16S variable region

- V3-4 363 36.7
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- V4 297 30.0

- V1-3 90 9.1

- V1-2 63 6.4

- V4-5 44 4.4

- Other (16 more) 133 13.4

Statistical analysis

Statistical test

- Mann-Whitney (Wilcoxon) 339 29.2

- LEfSe 330 28.4

- Kruskal-Wallis 94 8.1

- DESeq2 85 7.3

- t-test 73 6.3

- Other (36 more) 240 20.7

Multiple hypothesis correction

- Yes 576 48.6
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- No 608 51.4

Significance threshold

- 0.05 1049 88.1

- 0.1 68 5.7

- 0.01 28 2.4

- 0.001 12 1.0

- Other (18 more) 34 2.8

Alpha diversity

- Increased 187 15.3

- Decreased 229 18.7

- Unchanged 410 33.4

- Not reported 399 32.6

Figure legends
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Figure 1: BugSigDB – a curated database of experimentally-derived microbial

signatures. (A) BugSigDB is a community-editable collection of published microbiome

studies reporting differentially abundant host-associated microbiota (including bacteria,

archaea, fungi, protists, and viruses) that currently includes >2,500 microbial signatures

extracted from >600 scientific articles over the course of 4+ years. These papers report

microbiome studies of (B) participants representing different countries and

ethnogeographies, and (C) microbiome samples from different human body sites. (D)

Number of signatures associated with a specific microbe, with the top 10 most frequently

reported microbes annotated. BugSigDB signatures contain taxonomic levels from phylum
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to strain, standardized based on the NCBI Taxonomy29. (E) Signature sizes, with more than

50% of the signatures containing 5 or more microbes. (F) Percentage of signatures

annotated to major disease categories when classifying the study condition associated with

each signature according to the Experimental Factor Ontology32. (G) The top 10 most

frequently reported microbes and the number of associated signatures, stratified by disease

category.

Figure 2. Analysis of signature similarity in BugSigDB identifies conditions with
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replicable microbiome changes across studies. (A) Signature similarity analysis for

conditions from at least two studies for the same body site. Signatures were stratified by

direction of abundance change into signatures with decreased abundance (Decreased

panel, left) and increased abundance (Increased panel, right) in the study group. Conditions

are divided into two groups: conditions with highest reproducibility for signatures of

decreased abundance (Top10 Decreased panel, top) and increased abundance (Top10

Increased panel, bottom) in the study condition. Shown is the nominal p-value (x-axis,

negative log scale) obtained from testing whether the semantic similarity of signatures for

each condition (y-axis) exceeds the semantic similarity of randomly sampled signatures

(one-sided resampling test). The size of each dot corresponds to the number of studies

investigating a condition. (B-E) Example exploration of two top ranked conditions in more

detail: fecal signatures of decreased abundance for patients with HIV infection (B,C), and

fecal signatures of decreased abundance for patients treated with antibiotics (D,E). (B,D)

Semantic similarity between signatures. Each node corresponds to a signature. The size of

each node is proportional to the number of taxa in a signature. More similar signatures are

connected by shorter and thicker edges. (C,E)Microbial contents of the signatures shown in

panels B and D (y-axis) delineating the genera contained in these signatures (x-axis).

Signatures are clustered by semantic similarity and the relative frequency of each genus

across signatures is indicated by a color scale. Display of contained taxa is restricted to

genera occurring in at least two signatures (full signatures are shown in Supplementary

Figure S5 and S6).
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Figure 3. Bug set enrichment analysis reveals associations of the humanmicrobiome

with colorectal cancer and other disease phenotypes. (A) Overrepresentation analysis

(ORA) of BugSigDB signatures with differentially abundant genera between 662 colorectal

cancer samples and 653 control samples pooled from 10 published metagenomic datasets.

Each dot corresponds to an enriched published signature from BugSigDB (FDR < 0.05,

one-sided Fisher’s exact test, color scale). The size of each dot corresponds to the number

of differentially abundant genera in a signature, given as a proportion on the x-axis. * Prior

meta-analytic signatures from Thomas et al., 201955 and Wirbel et al., 201956 which

reported differentially abundant species and genera from meta-analysis of 8 colorectal
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cancer datasets. These act as positive controls, as several of the datasets being tested for

enrichment were included at the time these signatures were derived. (B) Differentially

abundant genera (x-axis) in the top 15 enriched signatures (y-axis) from the

overrepresentation analysis in (A). The x-axis is sorted by occurrence frequency of each

genus in decreasing order, the y-axis is sorted by Jaccard similarity between signatures. (C)

Percentile of ranks (y-axis) of both meta-analytic signatures for ORA, pathway analysis with

down-weighting of overlapping genes (PADOG), and competitive balances for taxonomic

enrichment analysis (CBEA) relative to all signatures when applied to the 10 published

metagenomic datasets individually (x-axis). # Datasets not included as training sets in the

meta-analyses of Thomas et al., 2019, and Wirbel et al., 2019. (D) Assessment of

statistically significant differences of the percentile ranks on the n=10 independent

datasets shown in (C) between the three methods using a two-sided Wilcoxon’s

signed-rank test. Box plots show median (vertical line), interquartile range (IQR, box) and

±1.5× IQR (whiskers).
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Figure 4. Microbe co-occurrence and mutual exclusivity in BugSigDB reveals

recurrent groups of taxa within signatures of differential abundance. (A)

Microbe-microbe co-occurrence and mutual exclusivity across 1,194 signatures of fecal

microbiomes from 311 published studies. “Abundance in Group 1” shows the top 20 genera

most frequently reported as differentially abundant in the study group of these signatures.

Stars indicate microbes which tend to be predominantly unidirectional, i.e. reported

specifically with increased or decreased abundance in the study group (based on a >2-fold

difference in proportions). “Prevalence” shows the prevalence of these genera in 9,623

healthy adult stool samples pooled from 68 different studies. The top heatmap shows

co-occurrence between these top 20 genera, i.e. in howmany signatures these microbes are
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reported together as differentially abundant with the same direction of abundance change

(i.e. occurring together in either the signature of increased or decreased abundance). The

bottom heatmap shows mutual exclusivity between these top 20 genera, i.e. in how many

signatures these microbes are reported as differential abundant with opposite direction of

abundance change (i.e. one microbe in the signature of increased abundance and the other

in the signature of decreased abundance, or vice versa). (B) Spearman correlation between

the top 20 genera in healthy adult stool samples as indicated by circles of varying size in A.

(C) Proportion of signatures where each of the top 20 genera was reported with increased

abundance in the study group (y-axis) against the prevalence of these genera (x-axis) in

healthy adult stool samples as shown in A. Correlation coefficient and p-value of a

two-sided Pearson correlation test are shown at the top. The error bands indicate the

95%-confidence interval of the linear regression fit.
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Figure 5. Pooled genus-level microbial signatures display robust body-site specificity

and shared and exclusive patterns of gut dysbiosis between disease phenotypes. A)

Clustering of 27 meta-signatures (y-axis) representing host body sites studied by at least 2

studies in BugSigDB and generated from 1,909 individual signatures. The clustering shows

a separation of vaginal and gastrointestinal sites (top) from oral and nasal sites (bottom). A

total of 560 different genera (x-axis) colored by phylum were observed across the

meta-signatures. The number of genera in each meta-signature is shown in the barplot on
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the left. The following three panels display representative genera that frequently occur

across meta-signatures (“shared”), predominantly occur in either cluster of body sites

(“compartmentalized”), or were reported in only one body site as differentially abundant

(“exclusive”). The size of each dot corresponds to the relative sample size of studies

reporting a genus as differentially abundant. B) Clustering of fecal meta-signatures drawn

from 34 different conditions, each represented by at least 2 studies in BugSigDB and

generated from 504 individual signatures with increased abundance in the study group.

The clustering shows a separation of cancer phenotypes (top) from non-neoplastic diseases

(bottom). A total of 248 different genera colored by phylum were observed across the fecal

meta-signatures. The number of genera in each meta-signature is shown in the barplot on

the left.
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Methods

Definition of semantic concepts (study, experiment, signature, taxon)

Taxon: a taxon, or taxonomic unit, is a unit of any rank (i.e. kingdom, phylum, class, order,

family, genus, species, strain) designating a microbial organism or a group of microbial

organisms.

Signature: a microbial signature or set refers here to a simple unordered list of microbial

clades (taxa) sharing a common property or response to a study condition.

Experiment: BugSigDB defines experiments as semantic units within studies and records key
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characteristics about subjects, lab analysis, statistical analysis, and alpha diversity. For

subjects, this includes host species, location, condition, body site, antibiotics exclusion, and

sample size in study and control sample groups. To define the two sample groups that are

contrasted for differential abundance, BugSigDB records the diagnostic criteria applied to

define the specific condition / phenotype represented in the study group. Recorded lab

analysis fields include sequencing type (16S or MGX) and sequencing platform (such as

Illumina or Roche454). For 16S rRNA sequencing, the 16S variable region is also recorded.

For the statistical analysis, recorded fields include (i) the statistical test or computational

tool applied for differential abundance testing, (ii) whether multiple testing correction has

been applied to adjust for an inflation of false positive findings, (iii) the significance

threshold used to render taxa as differentially abundant, (iv) confounding factors that have

been accounted for by stratification or model adjustment; and (v) factors on which subjects

have been matched on in a case-control study, if applicable.

Study: BugSigDB collects and standardizes microbial signatures from published 16S and

MGX microbiome studies. Studies are categorized by study design and each study is

associated with a study identifier such as a PubMed ID and/or a DOI, depending on

whether studies are indexed in PUBMED.

Data entry, validation, and access

BugSigDB is implemented as a semantic MediaWiki1 web interface available at

https://bugsigdb.org. It supports data entry, semantic validation, and web-based

programmatic access to annotations for studies, experiments, signatures, and individual

taxa. The semantic wiki (i) enforces data entry to follow the nomenclature of the NCBI
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Taxonomy Database2, (ii) enforces metadata annotation of signatures to follow established

ontologies and controlled vocabulary for body site3, disease condition4, and type of

evidence, (iii) provides an API to access all signatures, potentially filtered on taxonomy and

metadata attributes, and (iv) allows commenting and error reporting on data elements and

relationships. The data curation interface provides type-forward autocomplete to assist

with valid data entry (including validation against the NCBI Taxonomy2, Experimental

Factor Ontology4, UBERON Anatomy Ontology3, and administrator-defined controlled

vocabulary for other fields such as statistical test and sequencing methods), to facilitate

organization, filtering, and comparison of signatures. External contributions from the

community, including signatures, annotations, and comments, are supported similarly to

Wikipedia. Quality of contributions is controlled by tagging contributions as verified after

review by a trusted editor, a method for flagging suspect entries, and the option to exclude

from analysis unreviewed contributions or based on elements of study quality such as

sample size, suspected contamination, paper retraction, batch effects, uncontrolled

confounding, or a combination of these factors. In addition to standard semantic

MediaWiki quality control tags on study level, custom methods are available for flagging

taxa according to prevalence in frequently investigated host body sites, inclusion in

published contamination blacklists5,6, and absence of known association with a host.

Signatures can be searched and browsed by study and experimental attributes, and by

individual taxa, at bugsigdb.org. Bulk export of all signatures and associated metadata is

available in plain-text formats for use in any programming language and software

(including .csv, and the .gmt standard used by GeneSigDB7 and MSigDB8) of the current
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database version or as weekly and semi-annual snapshots. The companion bugsigdbr

R/Bioconductor package (bioconductor.org/packages/bugsigdbr) provides advanced

features such as ontology-based filtering, limitation of taxonomic level, look-up of

individual signature and taxon pages, and conversion to application-centric formats. The

exported files are compatible with most enrichment software and are included by default in

our lab’s EnrichmentBrowser R/Bioconductor package9 to facilitate a large number of

GSEA methods and visualizations. The BugSigDBStats R package continuously

integrates with bugsigdb.org and provides weekly updated database statistics in an HTML

report page (https://waldronlab.io/BugSigDBStats).

Signature similarity

Signature similarity was computed based on two different measures: (1) Jaccard index based

on pairwise overlaps between signatures harmonized to genus level, and (2) semantic

similarity between signatures of mixed taxonomic levels. Pairwise calculation of Jaccard

similarity for genus-level signatures was carried out using the

calcJaccardSimilarity function of the BugSigDBStats package. Genus-level

signatures from BugSigDB were obtained using bugsigdbr’s getSignatures

function. Taxonomic clades given at a more specific taxonomic level (species or strain) were

transformed by cutting the taxonomic tree at the genus level. The Jaccard index, also

known as the Jaccard similarity coefficient, is defined as the size of the intersection divided

by the size of the union of two input signatures A and B:

(1)𝐽(𝐴, 𝐵) =  |𝐴 ∩ 𝐵|
𝐴 ∪ 𝐵| |

Note that by design 0 ≤ J(A, B) ≤ 1.
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Semantic similarity was computed based on Lin’s measure of semantic similarity10 as

implemented in the ontologySimilarity package from the ontologyX R package

series11. Measures of semantic similarities have been proposed for comparing concepts

within a taxonomy12, with numerous applications for biomedical ontologies13. Of note,

semantic similarity has conceptual parallels with the computation of UniFrac distance14.

Here, individual taxa can be considered nodes of the NCBI Taxonomy when represented as a

directed acyclic graph. Computing semantic similarity between two taxa corresponds then

to computing a topological similarity such as the shortest path linking the two taxon nodes.

More specifically, computing Lin’s measure of semantic similarity between two taxa

corresponds to computing the information content of the lowest common ancestor (LCA) of

the two taxa10. The more frequently a taxon occurs, i.e., the higher its probability of being an

ancestor of other taxa in the taxonomy, the lower its information content. If the LCA of two

taxa corresponds to a taxon at a higher taxonomic level, these taxa are not very similar and

this is reflected in a low information content of their LCA. Given pairwise semantic

similarities between individual taxa, semantic similarity between two signatures (i.e. two

taxon sets) is then obtained using a best-match average combination approach15, where

each taxon of the first signature is paired with the most similar taxon of the second one and

vice-versa.

Bug set enrichment analysis

Metagenomic datasets providing species-level relative abundance for fecal microbiomes of

colorectal cancer patients and healthy controls were obtained from

curatedMetagenomicData 3.016. Relative abundance proportions were multiplied by
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read depth and rounded to the nearest integer prior to obtain integer read counts

compatible with bulk RNA-seq tools for differential expression and gene set enrichment

analysis. For genus-level analysis, species-level counts were summed across branches using

the splitByRanks function from the mia package. Given a recent assessment that

reported good performance of bulk RNA-seq tools for microbiome data17, differential

abundance analysis was carried out following the limma-trend approach18. Read counts

were transformed to log counts-per-million (CPMs) using edgeR’s cpm function with a

prior count of 3 to damp down the variances of logarithms of low counts19. Genus-level and

species-level microbial signatures from BugSigDB were obtained using bugsigdbr’s

getSignatures function. To keep signatures meaningfully sized, taxonomic clades given

at the species- or strain level were transformed by cutting the taxonomic tree at the genus

level. ORA and PADOG were carried out as implemented in the EnrichmentBrowser

package9. CBEA was carried out as implemented in the CBEA package20.

Taxon co-occurrence

Genus-level signatures from BugSigDB were obtained using the getSignatures function

of the bugsigdbr package. Signatures were filtered by body site for fecal samples and

stratified by direction of abundance change (increased / decreased). The top 20 most

frequently occurring genera in the resulting signatures were reported. Prevalence of these

genera was computed as percentage of healthy adult stool samples in which the genus was

observed at non-zero relative abundance in metagenomic datasets from

curatedMetagenomicData 3.016. The correlation between prevalence in healthy
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samples and the proportion of signatures with increased abundance for the top 20 genera

was assessed using Pearson’s correlation test as implemented in the cor.test function of

the stats package. Taxon co-occurrence in signatures associated with disease was

contrasted against Spearman rank correlation of the top 20 genera in healthy samples using

the cor function of the stats package.

Signature pooling

Signatures were pooled for one body site at a time, and within body sites for one condition

at a time, as implemented in the getMetaSignatures function of the bugsigdbr

package. Taxa within a pooled signature were weighted based on the aggregated sample

size of the studies that reported this taxon as differentially abundant, divided by the total

sample size of studies contributing to the pooled signature. Resulting weighted

meta-signatures were clustered by semantic similarity, where the weights were

incorporated into the best-match average combination approach13 as implemented in the

weightedBMA function of the BugSigDBStats package. Analysis was restricted to body

sites and conditions studied by at least two studies in BugSigDB and containing at least 5

taxa in the resulting pooled signature. Robustness of the clustering was evaluated by

comparing to rank-biased overlap21.

Data Availability

BugSigDB is available via a Semantic MediaWiki web interface at https://bugsigdb.org,

under open-source and open-data licenses described at
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https://bugsigdb.org/Project:About. Weekly and semi-annual snapshots are provided in

plain text file formats at https://github.com/waldronlab/BugSigDBExports for

cross-language and cross-application compatibility; unprocessed snapshots are available as

csv files at https://bugsigdb.org/Help:Export. The companion bugsigdbr R/Bioconductor

package provides advanced data manipulation, including ontology-aware and

taxonomy-aware features (https://bioconductor.org/packages/bugsigdbr). The NCBI

Taxonomy database is available at https://www.ncbi.nlm.nih.gov/taxonomy. The

Experimental Factor Ontology is available at https://www.ebi.ac.uk/efo. The UBERON

Anatomy Ontology is available at https://www.ebi.ac.uk/ols/ontologies/uberon.

Code Availability

Source code and open issue tracking are provided at

https://github.com/waldronlab/BugSigDB. Statistical analysis was carried out using R22

and Bioconductor23 and is reproducible using the code provided on GitHub24.
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