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Abstract

While both molecular and phenotypic data are essential when interpreting genetic variants, predic-
tion scores (CADD, PolyPhen, and SIFT) have focused on molecular details to evaluate pathogenic-
ity — omitting phenotypic features. To unlock the full potential of phenotypic data, we devel-
oped PhenoScore: an open source, artificial intelligence-based phenomics framework. PhenoScore
combines facial recognition technology with Human Phenotype Ontology (HPO) data analysis to
quantify phenotypic similarity at both the level of individual patients as well as of cohorts. We
prove PhenoScore’s ability to recognize distinct phenotypic entities by establishing recognizable
phenotypes for 25 out of 26 investigated genetic syndromes against clinical features observed in
individuals with other neurodevelopmental disorders. Moreover, PhenoScore was able to provide
objective clinical evidence for two distinct ADNP-related phenotypes, that had already been es-
tablished functionally, but not yet phenotypically. Hence, PhenoScore will not only be of use to
unbiasedly quantify phenotypes to assist genomic variant interpretation at the individual level,
such as for reclassifying variants of unknown clinical significance, but is also of importance for

detailed genotype-phenotype studies.
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. 1 Introduction

> A significant portion of individuals with clinically and genetically heterogeneous rare diseases, such
s as neurodevelopmental disorders (NDD), has been molecularly diagnosed in the last decade using
+  whole-exome sequencing (WES) [I-4]. Clinical WES data interpretation relies on filtering and
s prioritization for rare genetic variants in disease-gene panels, which are subsequently interpreted
s in the context of the patient’s clinical presentation [5]. Whereas this strategy is essential to identify
7 the disease-causing variant(s), it is estimated that, depending on the number of genes included in
s the panel, dozens of variants are prioritized as diagnostic noise [6] — and this number is expected
o to rise even more in the coming years with technological innovations such as genome sequencing
1 finding their way into the diagnostic arena [7-9].

1 At the molecular level, several computational methods, such as MutationTaster [10], PolyPhen
12 [L1], SIFT [12], CADD score [13], have been designed to predict variant pathogenicity. These tools
13 use diverse approaches, such as looking at the impact of the variant on protein structure (Muta-
1 tionTaster, PolyPhen), taking conservation into account (MutationTaster, PolyPhen, SIFT) — or
15 trying to incorporate multiple sources of genomic information (CADD score). At the phenotypic
16 level, headway has been made by introducing Human Phenotype Ontology (HPO), systematically
v capturing the presence of features observed in individuals with rare diseases [14]. However, equiv-
18 alent to molecular tools, algorithms using these HPO data to quantify phenotypic HPO similarity
19 between individuals with genetic disorders would provide significant benefits to diagnose rare dis-
2 ease. Such a quantitative phenotypic score could for instance assist with the interpretation of
2 genetic variants of unknown clinical significance (VUS), which constitute 10-30% of all variants
2 clinically assessed [4, 15]. Reducing the number of VUSs is of essence since studies have shown that
22 not all individuals and families respond similarly to the result of a VUS test-result, and usually do
2o not fully comprehend its meaning [16, 17], potentially leading to frustration, and/or distress due
»  to the uncertainty involving a possible diagnosis and course of disease. Importantly, VUSs have
2 also been shown to inflict inappropriate medical decisions [18, 19].

27 Next to reclassifying VUSs, quantifying phenotypic HPO similarity at the cohort level could also
s help to provide further steps towards personalized medicine by automatically recognizing distinct
20 phenotypic subtypes leading to more tailored clinical prognosis [20—-22].

30 A branch of science that could assist in objectively quantifying phenotypic data is artificial in-
a  telligence (AI). AT has dramatically reformed the manner clinical data are processed and analyzed
» in recent years, with the Al revolution in medicine starting in pathology and radiology [23-26]. In
1 genetics, these new techniques have been employed in assisted interpretation of genomic variants
1 [27-29] and combining molecular and phenotypic evaluations, mainly looking at methods to use

» phenotypic data in HPO to automatically prioritize genetic variants [30-36]. Furthermore, ad-
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3 vances in computer vision have led to the application of facial recognition technology in clinical
w genetics [37—42]. Facial recognition is able to assist in the recognition of (neuro)developmental
3 syndromes, since the development of the brain and facial shape are closely linked [43-46] — and
s therefore, it comes as no surprise that a significant part of genetic disorders have distinct facial
w features [47]. However, not all genetic syndromes have a clear, recognizable facial gestalt, which
o hinders methods solely looking at facial features. Moreover, a syndromic phenotype often includes
2 more than ‘just the face’. Whereas tools have previously looked at either combining molecular
i data with either HPO, or alternatively, with facial features [1, 39], an important area has been left
s unexplored, which combines the facial- and HPO data into an Al-framework to predict phenotypic
»s  similarities without the need for genomic data input. Therefore, we developed PhenoScore: a next-
s generation open-source phenomics framework combining facial recognition technology with clinical

w features, quantitatively collected in Human Phenotype Ontology (HPO) from deep phenotyping.

« 2 Results

o 2.1 The PhenoScore framework

so PhenoScore is a framework that currently consists of two modules: a component that extracts
si1 the facial features from a 2D facial photograph and a second module that takes HPO-based phe-
> notypic similarity into account (Figure 1). The Al-based framework joins these results in three
53 outputs: a Brier score and corresponding p-value, defining the individual’s clinical similarity to
s« the syndrome assessed; a facial heatmap, highlighting important facial features for the syndrome;
s and, a visualization of the most important other (non-facial) clinical features. In the training
ss phase of PhenoScore, at first an age-, sex-, ethnicity- matched dysmorphic control is sampled from
57 our in-house database for every individual with the genetic syndrome of interest. Next, the facial
ss  features are automatically extracted from the facial photographs for both affected individuals and
59 controls and the phenotypic HPO similarity is calculated (with several HPO terms and their child
o0 terms first removed from the dataset, as these are either facial HPO terms to be processed by
s the facial recognition module, or HPO terms that are deemed subjective and therefore at risk for
2 interobserver variability). A support vector machine (SVM), a widely used classification algorithm
63 in machine learning, is trained on these features, resulting in a trained classifier that can be used to
e generate a score for individuals, suspected to have the syndrome of interest. If we are interested in
s quantifying phenotypic (sub)groups, a permutation test is added during the training phase, deter-
e mining whether the trained classifier performs better than random chance — providing evidence
e whether the two groups are distinguishable by PhenoScore. Finally, to provide insight into what

¢ PhenoScore is doing and to learn more about the investigated syndromes, explainable Al is incor-
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oo porated into PhenoScore as well, using Local Interpretable Model-agnostic Explanations (LIME)
o [48, 49]. LIME works by generating random perturbed input data and inspecting the change in
7 predictions, thereby obtaining data on the relative importance of each feature. By using LIME for
22 both the facial- and HPO data, PhenoScore can generate facial heatmaps and visualizations on

73 the most important clinical features.

» 2.2 Proof-of-Concept using PhenoScore for Koolen-de Vries syndrome

s First, we investigated whether using our combined PhenoScore was actually an improvement on
7 solely using either facial- or phenotypic data. The SVM was trained on both separate feature sets
7 alone (e.g. HPO and facial features) and subsequently compared with the classification performance
7 of PhenoScore. To measure classification performance, the Brier score [50] was chosen as the
7 performance measure to focus on: it is defined as the mean squared difference between predicted
s outcome and observed actual outcome (lower is better). Next to that, we also report the area
s under the receiving operator curve (AUC; higher is better).

8 To demonstrate the power of the PhenoScore framework, we first performed a proof-of-concept
&3 study using 63 individuals with Koolen-de Vries syndrome (KdVS, OMIM #610443, Figure 2),
ss caused by either proven pathogenic loss-of-function variants in KANSL1 (n=11) or the 17¢21.31
s microdeletion (n=52). KdVS most prominent features reported in literature include hypotonia,
s intellectual disability, and joint laxity [51-53], for which the interdependence in our modelling is
& preserved using the graph structure of the HPO terms (Figure 2). Running Phenoscore on the 63
s¢ individuals with KdVS, we confirm the improvement on overall predictive performance when using
» both facial and clinical features compared to using either one alone (Brier score 0.106 or AUC 0.92
o for PhenoScore, in contrast to 0.130/0.90 when using only facial data and 0.121/0.90 when using
o only phenotypic data, Table 1).

o We next randomly excluded four individuals (facial images shown in Figure 2) from the train-
s ing dataset and retrained PhenoSscore, allowing us to test the performance of PhenoScore when
w treating them as if diagnoses of KdVS were unknown. We then used PhenoScore to predict the sim-
s ilarity of these four individuals when comparing them with 59 remaining individuals with KdVS in
o the training set. PhenoScore output was displayed using LIME, providing heatmaps of prioritized
o facial information according to PhenoScore (Figure 2). In addition, the most important clinical
e features according to PhenoScore to be predictive for KAVS were summarized by numerically scor-
o ing and ranking them. According to PhenoScore, the nose and eyes are the most important facial
w0 parts when recognizing KdVS — while the presence of nevi, joint laxity, hypotonia, hypermetropia,
w  and EEG abnormalities are the clinical features of interest. This is completely consistent with ex-

102 pert opinion and the literature [51-53] and shows that the prediction is based on the extracted
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w3 facial features from 2D photos and phenotypic data in HPO — harnessing the power of both and

14 outperforms the separate predictions.

ws 2.3 Expanding PhenoScore to 26 syndromes

ws After our proof-of-concept using KdVS, we next assessed the performance of PhenoScore for
w7 the classification of other genetic syndromes too. Hereto, we selected 25 syndromes (Table 1
s and Supplemental Table 1) including both clinically well-recognizable syndromes based on facial
o gestalt, such as Kleefstra syndrome (OMIM #610253, caused by pathogenic variants in EHMT1),
o Helsmoortel-van der Aa syndrome (OMIM #615873, caused by pathogenic variants in ADNP) and
w Coffin-Siris syndrome (OMIM #135900, ARID1B), but also more recently identified syndromes for
2 which facial gestalt is less prominent, including IDDAM (OMIM #615032, CHD8) and IDDFBA
us (OMIM #618089, FBXO11).

114 Analyzing all these syndromes, we demonstrate that PhenoScore is a statistically significant
us improvement on using either feature set alone, and therefore, the whole is more than the sum of its
us  parts in this case (median Brier score 0.22 for facial features on the whole dataset, 0.16 for HPO
u7  data and 0.15 for PhenoScore, p <0.001; median AUC 0.71 for facial features, 0.85 for HPO data
us  and 0.87 for PhenoScore, p <0.001, Table 1). Furthermore, our post hoc checks show that there
1o was no overfitting using the internal control dataset (see Supplemental Table 2).

120 For 25 of 26 syndromes (96%), PhenoScore was able to identify predictive features that char-
11 acterized these syndromes and recognized a distinct phenotypic entity (Table 1). As expected,
122 and visualized in the LIME heatmaps (Figure 3), these features corresponded remarkably well
123 with those described in the literature. For instance, for Helsmoortel-van der Aa syndrome (OMIM
e #615873), the facial- and forehead regions are prioritized in the predictions, as seen in the gen-
s erated heatmap (Figure 3d) — corresponding with the known dysmorphic characteristics for this
e syndrome.

127 Moreover, for a genetic syndrome which lacks explicit facial features, like IDDAM, apparent
s overgrowth symptoms, such as macrocephaly and tall stature, were identified as significant predic-
120 tors, while no relevant facial features were extracted, as displayed in the heatmap and summarized
10 ranking scores. A similar case is made for the genetic disorder associated with pathogenic variants
wm  in DYRK1A: while the classifier based only on the facial features does not provide any meaningful
12 predictions, the addition of other phenotypic data in HPO did allow PhenoScore to distinguish
133 this syndrome as a phenotypic entity. These data suggest that PhenoScore objectively extracts,
13« distinguishes, and visualizes the specific clinical features for genetic syndromes and highlights that

s the addition of non-facial phenotypic data in HPO is essential.
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s 2.4 PhenoScore is scalable as it requires only a low number of individ-

137 uals for training

s Most genetic disorders are individually rare, with sometimes only 3-5 individuals reported world-
10 wide. We therefore next investigated how many data sets PhenoScore requires for accurate clas-
1o sification of a specific syndrome. We checked the performance of PhenoScore while increasing the
w1 number of individuals in the complete dataset of 26 genetic syndromes with the combination of
w2 facial- and HPO features, starting with only 2 individuals. This analysis revealed that, with three
w3 individuals to train on, the median classification performance for the investigated syndromes is
s already clinically acceptable (AUC 0.85; Figure 4). The classification performance can be further
s improved when the training sets increase in size (median AUC 0.90 with seven individuals, 0.95

us for 17 individuals).

w 2.5 Use case 1: Objective clinical quantification for the interpretation

™ of molecular VUS

u To display the power of PhenoScore in the clinical interpretation of variants at an individual
150 level, we reassessed reported VUSs (ACMG class 3) in the Radboudumc department of Human
151 Genetics. These individuals were not included in the training of PhenoScore and can therefore
12 be considers real out-of-sample cases. In total, we identified 15 individuals in whom a class 3
153 variant was reported in either of 11 of the 26 syndromes (Supplemental Table 3). PhenoScores
15« were calculated, and when using thresholds of <0.30 (for ‘no phenotypic match’) and >0.70 (for
155 ‘phenotypic match’), PhenoScore was able to classify 9/15 (60%) of the cases as either match (n=2)
15 or no match (n=7). The other 6 cases had an inconclusive PhenoScore result (scores >0.30 but
157 <0.70). Interestingly, for only 1/9 cases for which PhenoScore was conclusive, the clinician made
155 a decision for the VUS based on the phenotype — PhenoScore was essential for the other eight
10 cases. Importantly, parallel functional follow-up for 4 variants confirmed the PhenoScore outcome,

1o whereas for the remaining cases, functional follow-up was inconclusive.

e 2.6 Use case 2: Next-generation phenomics for the generation of sophis-

162 ticated genotype-phenotype correlations

163 Genotype-phenotype studies for rare diseases are often performed to gain insight into the clinical
1« spectrum, which allows clinicians to provide a more accurate counseling of individuals with rare
s diseases. Molecularly, the toolkit to gain in-depth insight into aspects of pathogenicity is generally
166 applied in a research setting, and thus often not readily available for diagnostic follow-up. From a

7 clinical perspective, analyses are often limited to cluster analysis and/or principle component anal-
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168 ysis, but without being able to determine what aspects clinically distinguish subtypes, if identified.
10 We tested whether PhenoScore can improve these hypothesis-driven approaches to distinguish, or
o discover, clinical subtypes.

171 For two genetic syndromes in our dataset, i.e. SATBI-associated neurodevelopmental disorders
w2 (OMIM #619228)[54], and Helsmoortel-Van Der Aa Syndrome (OMIM #615873, caused by dis-
w3 ruption of ADNP [55]), it has previously been determined that there are (at least) two molecular
wa  subtypes. For SATBI, it has also been acknowledged that individuals with missense variants and
s those with loss-of-function variants, are clinically different. As proof-of-concept, PhenoScore con-
s vincingly distinguished two groups for SATBI (Brier score 0.18, AUC 0.81, p = 0.02), confirming
w7 the original results [54]. For ADNP, it was recently shown that individuals with pathogenic variants
s in ADNP show one of two distinct methylation signatures (type 2, when variant affects position
o between ¢.2000 and ¢.2340; or type 1, when the variant occurs outside of this interval), suggesting
1w the possibility of two syndromes associated with this gene [56]. Clinically, however, these individu-
11 als could not be conclusively distinguished [57]. Prior to determining PhenoScores, we categorized
12 the individuals as having either a type 1 or type 2 ADNP signature. Initially, we assessed the
153 performance of PhenoScore using only individuals (n=33) for whom both facial photographs and
18« clinical features were available, but failed to identify a statistically significant difference between
155 the groups (Brier 0.30, AUC 0.52, p = 0.35). However, using the ADNP Human Disease Gene
s website, we could collect HPO-only data of more individuals. Using this dataset, we obtained clin-
17 ical features in HPO of 58 individuals (29 in each group), and on these data PhenoScore did show
s evidence for two phenotypically different entities (Brier 0.24, AUC of 0.71, p = 0.02). Inspecting
o the generated PhenoScore explanations for clinically relevant differences (Figure 5), it seems that
wo recurrent infections and gastrointestinal problems (reflux, constipation, feeding difficulties) are 2-3

11 times more common in type 2 than in type 1.

2 3 Discussion

13 PhenoScore provides a significant step in the advancement of Al in clinical genetics: a novel
1« machine learning phenomics framework unifying facial and phenotypic features using high-quality
15 data directly from affected individuals instead of generic phenotypic descriptions of a syndrome.
106 Others have introduced Al in this domain of healthcare, with for instance the application of using
1w HPO terms to prioritize genetic variants while comparing individuals to the known phenotype of
s disorders in the literature [30, 31, 36, 58]. The utilization of facial recognition technology to assist
199 clinicians in diagnosing individuals has been successful too, with most, unfortunately, relying on

20 proprietary commercial algorithms [35, 37-12]. We now show a next step, with an open-source
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21 framework that takes the complete phenotype into account, including both facial- and phenotypic
22 features directly from affected individuals, and uses Al to provide a score on how well the patient’s
203 phenotype (as a whole) matches individuals with a known syndrome.

204 PhenoScore detected a recognizable phenotype in all but one investigated genetic syndrome
205 (25/26; 96%), and only needed as little as three individuals for classification performance. In this
26 manner, PhenoScore assists clinicians and molecular biologists in quantifying phenotypic similarity,
207 at both an individual- and group level for theoretically all OMIM-listed disorders. The sole disorder
28 for which PhenoScore failed to identify a phenotype was for variants in ACTL6A. Interestingly,
200 this is the only of 26 syndromes that has not been recognized by OMIM as a genetic disorder,
20 due to lack of (phenotypic) evidence in combination with the fact that individuals in whom the
a1 ACTLGA variants were uncovered, had not been tested by trio whole exome sequencing. OMIM
a2 therefore concluded that it is uncertain that the variants in ACTL6A cause the phenotype of these
a3 individuals.

21 Assisting variant classification of VUSs is an obvious use-case for PhenoScore. Of course, several
a5 in vitro functional assays are available to assess variant pathogenicity, but so far these are mostly
26 used for genes involved in oncogenetic disorders [59, 60]. For neurodevelopmental disorders, these
27 assays are scarce since they need to be developed on a gene-per-gene basis, and for these rare
218 disorders, this is usually not cost-effective and solely done for research purposes. Other methods
20 to assess genetic variants include protein structural analysis [61], which however still relies on
20 the availability of relevant protein structures. Our approach theoretically works for any (genetic)
a1 condition with a recognizable phenotype, provided there are sufficient individuals for training the
22 algorithm, and that HPO data and 2D-facial photos are available. Indeed, PhenoScore is as good as
223 its input data. In the field of rare diseases, however, major efforts are put in obtaining these high-
24 quality quantitative phenotypic data, as for instance shown by collections of datasets by the Human
»s  Disease Gene website series [62], GeneReviews, DECIPHER and OMIM [63-65]. Here, the use of
26  HPO terms, in combination with the use of Resnik scores (ensuring that the use of similar HPO
27 terms leads to comparable results), minimizes the effect of variation in clinical terminology used
28 between clinicians, and thus deriving the most benefits from the Al-based quantitative phenotypic
29 framework.

230 PhenoScore also helped to objectively obtain genotype-phenotype correlations, by training on
an suspected phenotypic subgroups combined by permutation testing to quantify statistical signifi-
22 cance. We replicated earlier findings in SATBI, quantitatively underscoring that truncating vari-
23 ants lead to a significantly different phenotype than missense variants [51].Whereas for SATB1
2 the different phenotypes were also subjectively identifiably from expert opinion, the power of

25 PhenoScore was shown by demonstrating the existence of two distinct phenotypes associated with
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26 Helsmoortel-van der Aa syndrome. Molecularly, two different methylation signatures have been
2 published, which were discriminated by the mutation location in ADNP [55-57]], but for which
238 clinically, no differences were observed. PhenoScore was not only able to prove the existence of
239 clinically distinctive groups, but also provided insight into which clinical features separates the two
20 clinical entities. For instance, neurodevelopmental problems are more common in the ADNP-type
2n 1, while gastrointestinal symptoms, recurrent infections and short stature are 2-3 times more com-
22 mon in ADNP-type 2. These clinical features have a significant impact on an individual’s quality of
a3 life, hence, by identifying these subgroups, PhenoScore directly impacted clinical recommendations
a4 for these individuals and families.

25 These subgroup analyses could in theory be performed for every (genetic) syndrome caused
as by different types of SNVs or CNVs — which is the case in a significant portion of the currently
a7 ~1600 known NDD genes. While recognizing specific novel subgroups is a first step towards
us  personalized medicine and provides improved clinical prognosis and recommendations (as shown
20 for the subgroups in ADNP and SATBI), not finding a distinct difference is useful too: it helps to
0 assess whether two types of genetic variation have the same effect (i.e. whether missense variants
21 actually cause haploinsufficiency). Furthermore, PhenoScore could be utilized to find phenotypic
2 outliers, of whom the molecular mechanism leading to disease might be novel. By quantifying
253 the complete phenotypic similarity and visualizing differences between (sub)groups, PhenoScore
s empowers detailed genotype-phenotype studies, leading to new insights on both the genetic- and
»5  phenotypic level.

256 The discriminating clinical features for the two A DNP-related disorders were not represented in
7 a different facial gestalt, emphasizing the importance of adding HPO data across all organ systems.
s In addition, given that these two phenotypic subgroups were not identified from more subjective
»9  clinical analysis, using a predefined structured AI method of phenotypic data analysis provides
w0 novel insights. To facilitate easy use in routine clinical care, it is, however, also of paramount
1 importance to be able to intuitively understand the AT output. We therefore also provided graphical
22 output such as facial heatmaps to visualize which (facial) features specified PhenoScore output.
263 Detailed genotype-phenotype analysis could in theory be performed for every (genetic) syn-
x4 drome, suggesting that PhenoScore may be a valueable tool to also foster novel molecular insights.
»%s That is, for many of the 1,600 known genes associated to an NDD phenotype, multiple types of
6 genetic variants (e.g. SNVs and CNVs) may cause the disorder. Whereas the molecular mecha-
s nism for CNVs often relate to dosage-sensitivity, such as haploinsufficiency, the mechanisms for
%8  SNVs leading to missense variants in those genes, are often less pertinent. PhenoScore may assess
%0 phenotypic differences between individuals with the same syndrome, but caused by either CNVs

20 (‘group 1) or missense variants (‘group 2’) and help to establish whether those missense variants
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on - are also haploinsufficient. Similarly, PhenoScore could be utilized to find phenotypic outliers, of
22 which the molecular mechanism leading to disease might be novel.

213 In conclusion, PhenoScore bridges a gap between the fields of Al and Clinical Genetics by
s quantifying phenotypic similarity, assisting not only in genetic variant interpretation, but also fa-
s cilitating objective genotype-phenotype studies. We showcased its use for individuals with NDD,
a6 whose phenotypes were captured using HPO. PhenoScore can, however, also easily be used be-
o7 yond the field of rare disease, as adjustments to use other (graph-based) ontologies, such as for
zs  instance SNOMED [66], can readily be integrated. The PhenoScore Al-based framework is thus
oo easily extended to other domains of (clinical) genetics, or even to completely different branches of

20 medicine, due to its open-source modular design.

» 4 Materials and Methods

. 4.1 Inclusion of individuals

23 The literature was searched for clinical studies which included facial photographs for 26 randomly
s selected genetic syndromes associated with NDD. The photographs were collected and clinical
x5 features, if available, were converted to HPO terms. Currently, PhenoScore is trained using data
286 of 501 non-familial individuals diagnosed with one of the 26 different genetic syndromes, collected
7 from 81 different publications (see Table 1 for the complete overview of the demographics per
28 genetic syndrome and Supplemental Table 1 for all publications used as sources for the data used
20 in this study). The phenotypic data were uploaded to the specific gene website in the HDG website
20 series [62] to ensure their public availability. The use of these data was approved by the ethical

21 committee of the Radboud university medical center (#2020-6151).

x» 4.2 Data processing

23 To obtain a representative control group for our machine learning models, for each syndrome with n
s individuals, n age-, sex- and ethnicity matched controls with a neurodevelopmental disorder seen at
205 our outpatient clinic at the Radboud university medical center were selected as described previously
26 [39] from our internal control database with over 1200 individuals with both facial image and
207 quantitative phenotypic data available (for a complete overview of the workflow of this study, please
2 see Figure 1). When no matched control was available, that particular individual was excluded from
200 our analysis. Next to that, when individuals were related to each other, one individual was chosen
a0 (based on the quality of the picture) from that family. For each syndrome, cross-validation was
s used to assess the performance of the classifiers. The number of folds during the cross-validation

s procedure varied due to the considerable variation in dataset size: for every syndrome with at
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33 least ten individuals, 5-fold cross-validation was used — otherwise, leave-one-out cross-validation
s« was chosen. As the selection of the randomly selected controls might significantly influence the
s performance, for each genetic syndrome, different controls were sampled during ten random restarts
w6 and the mean AUC and Brier scores of these ten iterations were noted. Furthermore, to confirm
37 the source of the data did not significantly influence our results, we did post hoc checks by using
ss not only the individuals from our internal control dataset, but the other included syndromes as

0 well as controls.

a0 4.3 Extraction of facial features

su  The facial features were extracted using VGGFace2 [67, (8], a state-of-the-art facial recognition
sz method that utilizes a deep neural network. To avoid overfitting, we did not retrain VGGFace2,
a3 but used its pretrained weights instead. The images were then processed by VGGFace2 and the
s representation in the penultimate layer of the network was obtained. This representation was then
ais  used as the facial feature vector. The process was performed as described previously: for the entire

us  (technological) methodology, please see [69].

s+ 4.4 Phenotypic similarity

ais To create a homogeneous dataset, the phenotype of every individual in this study was manually
a0 converted into HPO terms [14]. A selection of HPO terms and all their child nodes were re-
20 moved to eliminate any subjectivity in assessing an individual. These were Behavioral abnormality
w1 (HP:0000708), Abnormality of the face (HP:0000271), Abnormal digit morphology (HP:0011297),
w2 Abnormal ear morphology (HP:0031703), Abnormal eye morphology (HP:0012372), and every node
23 which is a child node of either of these. We chose these terms as these are either facial features (to
2 be assessed by our facial recognition model) or are suspected to vary across clinicians doing the
a5 assessment of an individual. In this manner, 3810 HPO terms were excluded with 12259 terms
»s  remaining. To further reduce possible inter-observer variability, the phenotypic similarity between
»r  individuals was calculated using the Resnik score [70], since it takes the semantic similarity between
»s  symptoms into account. The Resnik score utilizes the information content (IC) of a symptom. In
19 an ontology akin to the HPO, the IC of a specific term can be seen as a measure of the rarity of a
a0 term. Naturally, terms closer to the root of the HPO tree have a lower IC. For instance, Abnormal-
ity of the nervous system (HP:0000707) has an IC of 0.60. In contrast, Focal impaired awareness
s motor seizure with dystonia (HP:0032717), significantly further down the HPO tree, has an IC
sz of 8.97. This corresponds to our intuition: rare features provide more information than common
a4 features — since the prior probability of an individual reporting a rare symptom is, by definition,

135 smaller. The Resnik score uses this property by defining the similarity between two HPO terms as
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ss  the IC of their most informative (that is, with the highest IC) common ancestor in the HPO tree.
s Since terms lower in the tree have a higher IC, the most informative common ancestor corresponds
18 to the last HPO term, which has both compared HPO terms as child nodes when traversing the
s tree downwards. As an example: for the HPO terms Reflex seizure (HP:0020207) and Focal motor
a0 seizure (HP:0011153), the most informative common ancestor is Seizure (HP:0001250), which has
s an IC of 1.70. The Resnik similarity score for Reflex seizure (HP:0020207) and Focal motor seizure
s (HP:0011153) is therefore 1.70. Next, we used the best-match average (BMA) to calculate the
w3 similarity between two individuals (who usually report multiple HPO terms), in which the average
sa 18 taken over all best-matched pairwise semantic similarities, as previous studies determined it to
us  be most effective [71]. The idea is similar to that discussed above: if two individuals share a rare
us  symptom (Focal impaired awareness motor seizure with dystonia (HP:0032717), for instance), they
s are more similar than two individuals who only share a common symptom such as Abnormality of
us  the nervous system (HP:0000707). The Resnik similarity score was calculated for every individual
s and control and then averaged for both groups. In the end, this led to a nx2 matrix for the HPO
w0 features: an average similarity score for each individual versus affected individuals and a score
s for each individual versus the control group. We calculated the BMA Resnik score between the

32 individuals using the phenopy library in Python 3.8 [72].

s 4.5 Construction of machine learning model

¢ Finally, the data were used to train a binary classifier. We selected a support vector machine
s (SVM) as our classifier, known for its excellent overall performance in classification tasks. The
16 SVM was trained using the standard radial basis function kernel and a hyperparameter grid search
7 for C.

358 After determining the predictive performance of the model, we determined how many data the
w0 classifier needed for an acceptable classification performance in clinical practice. Per syndrome,
0 we started with randomly selecting two individuals and two matched controls, training the model
s1  on those, and using the rest of the individuals (n — 2, as one individual is used as training data)
s and matched controls as a test set (two individuals that were not used in the first iteration as
33 the grid search in the SVM classifier needs at least two training samples). We ran ten random
s restarts, randomly selecting another individual and matched control in each iteration. In each
s restart, leave-one-out cross-validation was employed. The Brier score and AUC were noted and
w6 averaged over the ten restarts. Next, the size of the training set was increased by one patient, and
s one matched control, still using the rest of the individuals (now n — 3) and matched controls as
s the test set. By increasing the training set by one individual and matched control each time and

w9 recording the performance, the model’s performance with an increasing number of individuals is
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s assessed.
371 The Wilcoxon signed-rank test was used to determine statistically significant differences in the
sn - performance of the classifiers since it is a non-parametric test and, therefore, suitable — as these

sz data are not normally distributed.

= 4.6 Explainability of predictions

a5 'To see which features contained important information for our model, we generated Local Inter-
s pretable Model-agnostic Explanations (LIME) [48, 49]. The main idea of this method is to train
s a relatively simple local surrogate model to approximate the predictions of the model of interest.
sis Next, the original input data is perturbed, and the corresponding change in predictions is inspected
w9 to obtain the relative importance of individual features. A key advantage of LIME is that it is
s applicable to any model and can therefore be used directly on top of our pipeline.

381 When using LIME for image data, it is common practice to divide the image into several
2 segments, called superpixels. Therefore, we generated a raster of 25x25 pixel squares for each
;3 facial image, randomly offset for each of 100 runs. Each pixel’s relative importance was averaged
;s over these runs to obtain a higher resolution visualization of their significance. For the clinical
s data, the original HPO features were perturbed to obtain the most significant ones in predictions.
sss  In this case, LIME uses input data in which some HPO features are added and some are removed
;7 from the input data, to see what the effect on the prediction is.

388 LIME explanations were generated for the individuals with the five highest predictions scores.
s These explanations were then averaged, to obtain an overall explanation representative for that
w0 specific genetic syndrome. To ensure only real important features were recovered, only HPO terms

s that were identified in at least three individuals were used in this analysis.

w 4.7 Hypothesis testing

s To see whether we could extend the use of our classifier to other applications than the reclassifi-
s cation of VUSs, we designed a random permutation test for the performance of our model. This
ss  enables the testing of a specific hypothesis for facial features, phenotypes, or both. An example
36 would be determining whether a newly discovered genetic syndrome consists of several (pheno-
w7 typic/facial) subtypes. Using our framework, we trained a classifier on the labels of the suspected
s subgroups. By performing a random permutation test, a p-value is calculated, so that the appear-
30 ance of the subgroups can be quantified. For a complete overview of the exact methodology of this

w0 permutation test, please see the Supplemental Methods.
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« Data and code availability

w2 The code of PhenoScore created during this study is freely available at

w3 https://github.com/ldingemans/PhenoScore, to enable anyone to apply PhenoScore to their own
ws  dataset. Included in PhenoScore are two examples: the data for the SATB1 subgroups (positive
w5 example) and random data (negative example). The used dataset in this study is not publicly
ws available due to both IRB and General Data Protection Regulation (EU GDPR) restrictions since
w7 the data might be (partially) traceable. However, access to the data may be requested from the

w8 data availability committee by contacting the corresponding author.
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Figure 1: Here, the global workflow of this study is displayed, with the training and construction
of PhenoScore on the left side. n individuals and n age-, sex- and ethnicity matched controls are
selected for each syndrome. The facial features are extracted using a convolutional neural network,
VGGFace2, and a support vector machine (SVM) is trained on these features. In parallel, the
phenotypic similarity of individuals and controls is calculated, and a SVM is trained on those
scores. Finally, a SVM is trained on both the facial features and the HPO similarity combined. On
the right side of the figure, the trained classifier is used for a new individual with a VUS. Again,
the phenotypic similarity and facial distances are calculated, and these are used as input for the
trained SVM. The output is a score and assesses whether the individual of interest has that specific
syndrome, thus the VUS being (likely) pathogenic.
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Figure 4: The performance of the SVM using both facial- and HPO features with different sizes of the training set is shown here. Both the median Brier score
and the median AUC improve if the number of individuals to train on is larger — as would be expected. Interestingly, only three individuals are needed for an

already acceptable classification performance.
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Figure 5: Above: a lollipop plot (generated using St. Jude’s ProteinPaint) of the genetic variants currently collected using the ADNP HDG website [62]. Of
the 58 included individuals, 29 had a variant in the ¢.2000-2340 region, indicated by others as having a different methylation signature than variants outside this
region [56]. Using only the HPO module of our PhenoScore framework, we first matched the groups on gender-, ethnicity- and age when possible to create two
groups of the same size (29 vs. 29). We then trained a classifier on the two groups and found a significant difference (Brier score of 0.24, AUC of 0.71, p = 0.01).
Below: the most important clinical features according to our model (determined using LIME) and the corresponding prevalence in both groups.
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= D Supplementary data

= 5.1  Supplementary methods
s 5.1.1 Permutation test for hypothesis testing

s To provide a p-value for our classification results and to enable the use of our framework for
s the recognition of specific (sub)groups in genetic syndromes, we developed a permutation test —
w8 inspired by the test described by Lopez-Paz & Oquab [75]. For every group of individuals of interest,
a0 a group of age-, sex- and ethnicity-matched controls is sampled from our control database. We
wo  extract the facial features using VGGFace2 and calculate the HPO similarity using the Resnik score,
w after which a SVM is trained using cross-validation. A grid search for the optimal hyperparameters
w2 is performed, and the Brier score is calculated for this combination of the group of individuals of
w3 interest and the matched controls. This process is precisely the same as in our standard analysis.
ws  Next, we randomly permute the labels (here, the labels correspond to whether an individual has the
ws  syndrome or is a control) 100 times. We ensure that the number of positive and negative classes is
us the same as in our original distribution of the labels. For each permutation, we repeat the process
w7 of training a SVM to obtain a Brier score. We then perform a one-sided Mann-Whitney U test to
ws  quantify the probability of the classification results being statistically significantly smaller (since
wo it is the Brier score we are comparing) than the randomly permuted scores.

450 To further strengthen our permutation test, we repeat the process five times in total, randomly
1 sampling matched controls from our database in each repetition. The five obtained p values were
2 then combined using Fisher’s method [76] to gather a definitive p-value for this classification task
ss3  and, therefore, for this specific group of individuals of interest.

a5 For the analyses for both SATBI and ADNP, we do not need to sample controls from our
s database. However, these datasets are usually imbalanced, sometimes leading to problems for the
w6 classifier. We therefore undersample the majority class to the size of the minority class by matching
»s7 the individuals on ethnicity, sex and age (in that order) and increase the number of permutations
s of the labels to 1000 (since we cannot repeatedly sample controls).

459 Finally, to have a negative control group for this test, we randomly sampled individuals from
w0 our control database and calculated p-values for those. We did this for different cohort sizes (n =
w3, 5,10, 20 and 40) for in total 50 trials. Of those 50 trials, two resulted in a p-value smaller than
w2 0.05 - exactly what would be expected by random chance in this number of trials. This shows that

w3 our approach leads to the to-be-expected number of false alarms.
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