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Abstract

While both molecular and phenotypic data are essential when interpreting genetic variants, predic-

tion scores (CADD, PolyPhen, and SIFT) have focused on molecular details to evaluate pathogenic-

ity — omitting phenotypic features. To unlock the full potential of phenotypic data, we devel-

oped PhenoScore: an open source, artificial intelligence-based phenomics framework. PhenoScore

combines facial recognition technology with Human Phenotype Ontology (HPO) data analysis to

quantify phenotypic similarity at both the level of individual patients as well as of cohorts. We

prove PhenoScore’s ability to recognize distinct phenotypic entities by establishing recognizable

phenotypes for 25 out of 26 investigated genetic syndromes against clinical features observed in

individuals with other neurodevelopmental disorders. Moreover, PhenoScore was able to provide

objective clinical evidence for two distinct ADNP -related phenotypes, that had already been es-

tablished functionally, but not yet phenotypically. Hence, PhenoScore will not only be of use to

unbiasedly quantify phenotypes to assist genomic variant interpretation at the individual level,

such as for reclassifying variants of unknown clinical significance, but is also of importance for

detailed genotype-phenotype studies.

Keywords: artificial intelligence, VUS, machine learning, personalized medicine, facial recognition,

deep phenotyping
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1 Introduction1

A significant portion of individuals with clinically and genetically heterogeneous rare diseases, such2

as neurodevelopmental disorders (NDD), has been molecularly diagnosed in the last decade using3

whole-exome sequencing (WES) [1–4]. Clinical WES data interpretation relies on filtering and4

prioritization for rare genetic variants in disease-gene panels, which are subsequently interpreted5

in the context of the patient’s clinical presentation [5]. Whereas this strategy is essential to identify6

the disease-causing variant(s), it is estimated that, depending on the number of genes included in7

the panel, dozens of variants are prioritized as diagnostic noise [6] — and this number is expected8

to rise even more in the coming years with technological innovations such as genome sequencing9

finding their way into the diagnostic arena [7–9].10

At the molecular level, several computational methods, such as MutationTaster [10], PolyPhen11

[11], SIFT [12], CADD score [13], have been designed to predict variant pathogenicity. These tools12

use diverse approaches, such as looking at the impact of the variant on protein structure (Muta-13

tionTaster, PolyPhen), taking conservation into account (MutationTaster, PolyPhen, SIFT) — or14

trying to incorporate multiple sources of genomic information (CADD score). At the phenotypic15

level, headway has been made by introducing Human Phenotype Ontology (HPO), systematically16

capturing the presence of features observed in individuals with rare diseases [14]. However, equiv-17

alent to molecular tools, algorithms using these HPO data to quantify phenotypic HPO similarity18

between individuals with genetic disorders would provide significant benefits to diagnose rare dis-19

ease. Such a quantitative phenotypic score could for instance assist with the interpretation of20

genetic variants of unknown clinical significance (VUS), which constitute 10-30% of all variants21

clinically assessed [4, 15]. Reducing the number of VUSs is of essence since studies have shown that22

not all individuals and families respond similarly to the result of a VUS test-result, and usually do23

not fully comprehend its meaning [16, 17], potentially leading to frustration, and/or distress due24

to the uncertainty involving a possible diagnosis and course of disease. Importantly, VUSs have25

also been shown to inflict inappropriate medical decisions [18, 19].26

Next to reclassifying VUSs, quantifying phenotypic HPO similarity at the cohort level could also27

help to provide further steps towards personalized medicine by automatically recognizing distinct28

phenotypic subtypes leading to more tailored clinical prognosis [20–22].29

A branch of science that could assist in objectively quantifying phenotypic data is artificial in-30

telligence (AI). AI has dramatically reformed the manner clinical data are processed and analyzed31

in recent years, with the AI revolution in medicine starting in pathology and radiology [23–26]. In32

genetics, these new techniques have been employed in assisted interpretation of genomic variants33

[27–29] and combining molecular and phenotypic evaluations, mainly looking at methods to use34

phenotypic data in HPO to automatically prioritize genetic variants [30–36]. Furthermore, ad-35
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vances in computer vision have led to the application of facial recognition technology in clinical36

genetics [37–42]. Facial recognition is able to assist in the recognition of (neuro)developmental37

syndromes, since the development of the brain and facial shape are closely linked [43–46] — and38

therefore, it comes as no surprise that a significant part of genetic disorders have distinct facial39

features [47]. However, not all genetic syndromes have a clear, recognizable facial gestalt, which40

hinders methods solely looking at facial features. Moreover, a syndromic phenotype often includes41

more than ‘just the face’. Whereas tools have previously looked at either combining molecular42

data with either HPO, or alternatively, with facial features [1, 39], an important area has been left43

unexplored, which combines the facial- and HPO data into an AI-framework to predict phenotypic44

similarities without the need for genomic data input. Therefore, we developed PhenoScore: a next-45

generation open-source phenomics framework combining facial recognition technology with clinical46

features, quantitatively collected in Human Phenotype Ontology (HPO) from deep phenotyping.47

2 Results48

2.1 The PhenoScore framework49

PhenoScore is a framework that currently consists of two modules: a component that extracts50

the facial features from a 2D facial photograph and a second module that takes HPO-based phe-51

notypic similarity into account (Figure 1). The AI-based framework joins these results in three52

outputs: a Brier score and corresponding p-value, defining the individual’s clinical similarity to53

the syndrome assessed; a facial heatmap, highlighting important facial features for the syndrome;54

and, a visualization of the most important other (non-facial) clinical features. In the training55

phase of PhenoScore, at first an age-, sex-, ethnicity- matched dysmorphic control is sampled from56

our in-house database for every individual with the genetic syndrome of interest. Next, the facial57

features are automatically extracted from the facial photographs for both affected individuals and58

controls and the phenotypic HPO similarity is calculated (with several HPO terms and their child59

terms first removed from the dataset, as these are either facial HPO terms to be processed by60

the facial recognition module, or HPO terms that are deemed subjective and therefore at risk for61

interobserver variability). A support vector machine (SVM), a widely used classification algorithm62

in machine learning, is trained on these features, resulting in a trained classifier that can be used to63

generate a score for individuals, suspected to have the syndrome of interest. If we are interested in64

quantifying phenotypic (sub)groups, a permutation test is added during the training phase, deter-65

mining whether the trained classifier performs better than random chance — providing evidence66

whether the two groups are distinguishable by PhenoScore. Finally, to provide insight into what67

PhenoScore is doing and to learn more about the investigated syndromes, explainable AI is incor-68
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porated into PhenoScore as well, using Local Interpretable Model-agnostic Explanations (LIME)69

[48, 49]. LIME works by generating random perturbed input data and inspecting the change in70

predictions, thereby obtaining data on the relative importance of each feature. By using LIME for71

both the facial- and HPO data, PhenoScore can generate facial heatmaps and visualizations on72

the most important clinical features.73

2.2 Proof-of-Concept using PhenoScore for Koolen-de Vries syndrome74

First, we investigated whether using our combined PhenoScore was actually an improvement on75

solely using either facial- or phenotypic data. The SVM was trained on both separate feature sets76

alone (e.g. HPO and facial features) and subsequently compared with the classification performance77

of PhenoScore. To measure classification performance, the Brier score [50] was chosen as the78

performance measure to focus on: it is defined as the mean squared difference between predicted79

outcome and observed actual outcome (lower is better). Next to that, we also report the area80

under the receiving operator curve (AUC; higher is better).81

To demonstrate the power of the PhenoScore framework, we first performed a proof-of-concept82

study using 63 individuals with Koolen-de Vries syndrome (KdVS, OMIM #610443, Figure 2),83

caused by either proven pathogenic loss-of-function variants in KANSL1 (n=11) or the 17q21.3184

microdeletion (n=52). KdVS most prominent features reported in literature include hypotonia,85

intellectual disability, and joint laxity [51–53], for which the interdependence in our modelling is86

preserved using the graph structure of the HPO terms (Figure 2). Running Phenoscore on the 6387

individuals with KdVS, we confirm the improvement on overall predictive performance when using88

both facial and clinical features compared to using either one alone (Brier score 0.106 or AUC 0.9289

for PhenoScore, in contrast to 0.130/0.90 when using only facial data and 0.121/0.90 when using90

only phenotypic data, Table 1).91

We next randomly excluded four individuals (facial images shown in Figure 2) from the train-92

ing dataset and retrained PhenoSscore, allowing us to test the performance of PhenoScore when93

treating them as if diagnoses of KdVS were unknown. We then used PhenoScore to predict the sim-94

ilarity of these four individuals when comparing them with 59 remaining individuals with KdVS in95

the training set. PhenoScore output was displayed using LIME, providing heatmaps of prioritized96

facial information according to PhenoScore (Figure 2). In addition, the most important clinical97

features according to PhenoScore to be predictive for KdVS were summarized by numerically scor-98

ing and ranking them. According to PhenoScore, the nose and eyes are the most important facial99

parts when recognizing KdVS — while the presence of nevi, joint laxity, hypotonia, hypermetropia,100

and EEG abnormalities are the clinical features of interest. This is completely consistent with ex-101

pert opinion and the literature [51–53] and shows that the prediction is based on the extracted102
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facial features from 2D photos and phenotypic data in HPO — harnessing the power of both and103

outperforms the separate predictions.104

2.3 Expanding PhenoScore to 26 syndromes105

After our proof-of-concept using KdVS, we next assessed the performance of PhenoScore for106

the classification of other genetic syndromes too. Hereto, we selected 25 syndromes (Table 1107

and Supplemental Table 1) including both clinically well-recognizable syndromes based on facial108

gestalt, such as Kleefstra syndrome (OMIM #610253, caused by pathogenic variants in EHMT1 ),109

Helsmoortel-van der Aa syndrome (OMIM #615873, caused by pathogenic variants in ADNP) and110

Coffin-Siris syndrome (OMIM #135900, ARID1B), but also more recently identified syndromes for111

which facial gestalt is less prominent, including IDDAM (OMIM #615032, CHD8 ) and IDDFBA112

(OMIM #618089, FBXO11 ).113

Analyzing all these syndromes, we demonstrate that PhenoScore is a statistically significant114

improvement on using either feature set alone, and therefore, the whole is more than the sum of its115

parts in this case (median Brier score 0.22 for facial features on the whole dataset, 0.16 for HPO116

data and 0.15 for PhenoScore, p <0.001; median AUC 0.71 for facial features, 0.85 for HPO data117

and 0.87 for PhenoScore, p <0.001, Table 1). Furthermore, our post hoc checks show that there118

was no overfitting using the internal control dataset (see Supplemental Table 2).119

For 25 of 26 syndromes (96%), PhenoScore was able to identify predictive features that char-120

acterized these syndromes and recognized a distinct phenotypic entity (Table 1). As expected,121

and visualized in the LIME heatmaps (Figure 3), these features corresponded remarkably well122

with those described in the literature. For instance, for Helsmoortel-van der Aa syndrome (OMIM123

#615873), the facial- and forehead regions are prioritized in the predictions, as seen in the gen-124

erated heatmap (Figure 3d) — corresponding with the known dysmorphic characteristics for this125

syndrome.126

Moreover, for a genetic syndrome which lacks explicit facial features, like IDDAM, apparent127

overgrowth symptoms, such as macrocephaly and tall stature, were identified as significant predic-128

tors, while no relevant facial features were extracted, as displayed in the heatmap and summarized129

ranking scores. A similar case is made for the genetic disorder associated with pathogenic variants130

in DYRK1A: while the classifier based only on the facial features does not provide any meaningful131

predictions, the addition of other phenotypic data in HPO did allow PhenoScore to distinguish132

this syndrome as a phenotypic entity. These data suggest that PhenoScore objectively extracts,133

distinguishes, and visualizes the specific clinical features for genetic syndromes and highlights that134

the addition of non-facial phenotypic data in HPO is essential.135
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2.4 PhenoScore is scalable as it requires only a low number of individ-136

uals for training137

Most genetic disorders are individually rare, with sometimes only 3-5 individuals reported world-138

wide. We therefore next investigated how many data sets PhenoScore requires for accurate clas-139

sification of a specific syndrome. We checked the performance of PhenoScore while increasing the140

number of individuals in the complete dataset of 26 genetic syndromes with the combination of141

facial- and HPO features, starting with only 2 individuals. This analysis revealed that, with three142

individuals to train on, the median classification performance for the investigated syndromes is143

already clinically acceptable (AUC 0.85; Figure 4). The classification performance can be further144

improved when the training sets increase in size (median AUC 0.90 with seven individuals, 0.95145

for 17 individuals).146

2.5 Use case 1: Objective clinical quantification for the interpretation147

of molecular VUS148

To display the power of PhenoScore in the clinical interpretation of variants at an individual149

level, we reassessed reported VUSs (ACMG class 3) in the Radboudumc department of Human150

Genetics. These individuals were not included in the training of PhenoScore and can therefore151

be considers real out-of-sample cases. In total, we identified 15 individuals in whom a class 3152

variant was reported in either of 11 of the 26 syndromes (Supplemental Table 3). PhenoScores153

were calculated, and when using thresholds of ≤0.30 (for ‘no phenotypic match’) and ≥0.70 (for154

‘phenotypic match’), PhenoScore was able to classify 9/15 (60%) of the cases as either match (n=2)155

or no match (n=7). The other 6 cases had an inconclusive PhenoScore result (scores >0.30 but156

<0.70). Interestingly, for only 1/9 cases for which PhenoScore was conclusive, the clinician made157

a decision for the VUS based on the phenotype — PhenoScore was essential for the other eight158

cases. Importantly, parallel functional follow-up for 4 variants confirmed the PhenoScore outcome,159

whereas for the remaining cases, functional follow-up was inconclusive.160

2.6 Use case 2: Next-generation phenomics for the generation of sophis-161

ticated genotype-phenotype correlations162

Genotype-phenotype studies for rare diseases are often performed to gain insight into the clinical163

spectrum, which allows clinicians to provide a more accurate counseling of individuals with rare164

diseases. Molecularly, the toolkit to gain in-depth insight into aspects of pathogenicity is generally165

applied in a research setting, and thus often not readily available for diagnostic follow-up. From a166

clinical perspective, analyses are often limited to cluster analysis and/or principle component anal-167
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ysis, but without being able to determine what aspects clinically distinguish subtypes, if identified.168

We tested whether PhenoScore can improve these hypothesis-driven approaches to distinguish, or169

discover, clinical subtypes.170

For two genetic syndromes in our dataset, i.e. SATB1 -associated neurodevelopmental disorders171

(OMIM #619228)[54], and Helsmoortel-Van Der Aa Syndrome (OMIM #615873, caused by dis-172

ruption of ADNP [55]), it has previously been determined that there are (at least) two molecular173

subtypes. For SATB1, it has also been acknowledged that individuals with missense variants and174

those with loss-of-function variants, are clinically different. As proof-of-concept, PhenoScore con-175

vincingly distinguished two groups for SATB1 (Brier score 0.18, AUC 0.81, p = 0.02), confirming176

the original results [54]. For ADNP, it was recently shown that individuals with pathogenic variants177

in ADNP show one of two distinct methylation signatures (type 2, when variant affects position178

between c.2000 and c.2340; or type 1, when the variant occurs outside of this interval), suggesting179

the possibility of two syndromes associated with this gene [56]. Clinically, however, these individu-180

als could not be conclusively distinguished [57]. Prior to determining PhenoScores, we categorized181

the individuals as having either a type 1 or type 2 ADNP signature. Initially, we assessed the182

performance of PhenoScore using only individuals (n=33) for whom both facial photographs and183

clinical features were available, but failed to identify a statistically significant difference between184

the groups (Brier 0.30, AUC 0.52, p = 0.35). However, using the ADNP Human Disease Gene185

website, we could collect HPO-only data of more individuals. Using this dataset, we obtained clin-186

ical features in HPO of 58 individuals (29 in each group), and on these data PhenoScore did show187

evidence for two phenotypically different entities (Brier 0.24, AUC of 0.71, p = 0.02). Inspecting188

the generated PhenoScore explanations for clinically relevant differences (Figure 5), it seems that189

recurrent infections and gastrointestinal problems (reflux, constipation, feeding difficulties) are 2-3190

times more common in type 2 than in type 1.191

3 Discussion192

PhenoScore provides a significant step in the advancement of AI in clinical genetics: a novel193

machine learning phenomics framework unifying facial and phenotypic features using high-quality194

data directly from affected individuals instead of generic phenotypic descriptions of a syndrome.195

Others have introduced AI in this domain of healthcare, with for instance the application of using196

HPO terms to prioritize genetic variants while comparing individuals to the known phenotype of197

disorders in the literature [30, 31, 36, 58]. The utilization of facial recognition technology to assist198

clinicians in diagnosing individuals has been successful too, with most, unfortunately, relying on199

proprietary commercial algorithms [35, 37–42]. We now show a next step, with an open-source200
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framework that takes the complete phenotype into account, including both facial- and phenotypic201

features directly from affected individuals, and uses AI to provide a score on how well the patient’s202

phenotype (as a whole) matches individuals with a known syndrome.203

PhenoScore detected a recognizable phenotype in all but one investigated genetic syndrome204

(25/26; 96%), and only needed as little as three individuals for classification performance. In this205

manner, PhenoScore assists clinicians and molecular biologists in quantifying phenotypic similarity,206

at both an individual- and group level for theoretically all OMIM-listed disorders. The sole disorder207

for which PhenoScore failed to identify a phenotype was for variants in ACTL6A. Interestingly,208

this is the only of 26 syndromes that has not been recognized by OMIM as a genetic disorder,209

due to lack of (phenotypic) evidence in combination with the fact that individuals in whom the210

ACTL6A variants were uncovered, had not been tested by trio whole exome sequencing. OMIM211

therefore concluded that it is uncertain that the variants in ACTL6A cause the phenotype of these212

individuals.213

Assisting variant classification of VUSs is an obvious use-case for PhenoScore. Of course, several214

in vitro functional assays are available to assess variant pathogenicity, but so far these are mostly215

used for genes involved in oncogenetic disorders [59, 60]. For neurodevelopmental disorders, these216

assays are scarce since they need to be developed on a gene-per-gene basis, and for these rare217

disorders, this is usually not cost-effective and solely done for research purposes. Other methods218

to assess genetic variants include protein structural analysis [61], which however still relies on219

the availability of relevant protein structures. Our approach theoretically works for any (genetic)220

condition with a recognizable phenotype, provided there are sufficient individuals for training the221

algorithm, and that HPO data and 2D-facial photos are available. Indeed, PhenoScore is as good as222

its input data. In the field of rare diseases, however, major efforts are put in obtaining these high-223

quality quantitative phenotypic data, as for instance shown by collections of datasets by the Human224

Disease Gene website series [62], GeneReviews, DECIPHER and OMIM [63–65]. Here, the use of225

HPO terms, in combination with the use of Resnik scores (ensuring that the use of similar HPO226

terms leads to comparable results), minimizes the effect of variation in clinical terminology used227

between clinicians, and thus deriving the most benefits from the AI-based quantitative phenotypic228

framework.229

PhenoScore also helped to objectively obtain genotype-phenotype correlations, by training on230

suspected phenotypic subgroups combined by permutation testing to quantify statistical signifi-231

cance. We replicated earlier findings in SATB1, quantitatively underscoring that truncating vari-232

ants lead to a significantly different phenotype than missense variants [54].Whereas for SATB1233

the different phenotypes were also subjectively identifiably from expert opinion, the power of234

PhenoScore was shown by demonstrating the existence of two distinct phenotypes associated with235
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Helsmoortel-van der Aa syndrome. Molecularly, two different methylation signatures have been236

published, which were discriminated by the mutation location in ADNP [55–57]], but for which237

clinically, no differences were observed. PhenoScore was not only able to prove the existence of238

clinically distinctive groups, but also provided insight into which clinical features separates the two239

clinical entities. For instance, neurodevelopmental problems are more common in the ADNP -type240

1, while gastrointestinal symptoms, recurrent infections and short stature are 2-3 times more com-241

mon in ADNP -type 2. These clinical features have a significant impact on an individual’s quality of242

life, hence, by identifying these subgroups, PhenoScore directly impacted clinical recommendations243

for these individuals and families.244

These subgroup analyses could in theory be performed for every (genetic) syndrome caused245

by different types of SNVs or CNVs — which is the case in a significant portion of the currently246

∼1600 known NDD genes. While recognizing specific novel subgroups is a first step towards247

personalized medicine and provides improved clinical prognosis and recommendations (as shown248

for the subgroups in ADNP and SATB1 ), not finding a distinct difference is useful too: it helps to249

assess whether two types of genetic variation have the same effect (i.e. whether missense variants250

actually cause haploinsufficiency). Furthermore, PhenoScore could be utilized to find phenotypic251

outliers, of whom the molecular mechanism leading to disease might be novel. By quantifying252

the complete phenotypic similarity and visualizing differences between (sub)groups, PhenoScore253

empowers detailed genotype-phenotype studies, leading to new insights on both the genetic- and254

phenotypic level.255

The discriminating clinical features for the two ADNP -related disorders were not represented in256

a different facial gestalt, emphasizing the importance of adding HPO data across all organ systems.257

In addition, given that these two phenotypic subgroups were not identified from more subjective258

clinical analysis, using a predefined structured AI method of phenotypic data analysis provides259

novel insights. To facilitate easy use in routine clinical care, it is, however, also of paramount260

importance to be able to intuitively understand the AI output. We therefore also provided graphical261

output such as facial heatmaps to visualize which (facial) features specified PhenoScore output.262

Detailed genotype-phenotype analysis could in theory be performed for every (genetic) syn-263

drome, suggesting that PhenoScore may be a valueable tool to also foster novel molecular insights.264

That is, for many of the 1,600 known genes associated to an NDD phenotype, multiple types of265

genetic variants (e.g. SNVs and CNVs) may cause the disorder. Whereas the molecular mecha-266

nism for CNVs often relate to dosage-sensitivity, such as haploinsufficiency, the mechanisms for267

SNVs leading to missense variants in those genes, are often less pertinent. PhenoScore may assess268

phenotypic differences between individuals with the same syndrome, but caused by either CNVs269

(‘group 1’) or missense variants (‘group 2’) and help to establish whether those missense variants270
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are also haploinsufficient. Similarly, PhenoScore could be utilized to find phenotypic outliers, of271

which the molecular mechanism leading to disease might be novel.272

In conclusion, PhenoScore bridges a gap between the fields of AI and Clinical Genetics by273

quantifying phenotypic similarity, assisting not only in genetic variant interpretation, but also fa-274

cilitating objective genotype-phenotype studies. We showcased its use for individuals with NDD,275

whose phenotypes were captured using HPO. PhenoScore can, however, also easily be used be-276

yond the field of rare disease, as adjustments to use other (graph-based) ontologies, such as for277

instance SNOMED [66], can readily be integrated. The PhenoScore AI-based framework is thus278

easily extended to other domains of (clinical) genetics, or even to completely different branches of279

medicine, due to its open-source modular design.280

4 Materials and Methods281

4.1 Inclusion of individuals282

The literature was searched for clinical studies which included facial photographs for 26 randomly283

selected genetic syndromes associated with NDD. The photographs were collected and clinical284

features, if available, were converted to HPO terms. Currently, PhenoScore is trained using data285

of 501 non-familial individuals diagnosed with one of the 26 different genetic syndromes, collected286

from 81 different publications (see Table 1 for the complete overview of the demographics per287

genetic syndrome and Supplemental Table 1 for all publications used as sources for the data used288

in this study). The phenotypic data were uploaded to the specific gene website in the HDG website289

series [62] to ensure their public availability. The use of these data was approved by the ethical290

committee of the Radboud university medical center (#2020-6151).291

4.2 Data processing292

To obtain a representative control group for our machine learning models, for each syndrome with n293

individuals, n age-, sex- and ethnicity matched controls with a neurodevelopmental disorder seen at294

our outpatient clinic at the Radboud university medical center were selected as described previously295

[39] from our internal control database with over 1200 individuals with both facial image and296

quantitative phenotypic data available (for a complete overview of the workflow of this study, please297

see Figure 1). When no matched control was available, that particular individual was excluded from298

our analysis. Next to that, when individuals were related to each other, one individual was chosen299

(based on the quality of the picture) from that family. For each syndrome, cross-validation was300

used to assess the performance of the classifiers. The number of folds during the cross-validation301

procedure varied due to the considerable variation in dataset size: for every syndrome with at302
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least ten individuals, 5-fold cross-validation was used — otherwise, leave-one-out cross-validation303

was chosen. As the selection of the randomly selected controls might significantly influence the304

performance, for each genetic syndrome, different controls were sampled during ten random restarts305

and the mean AUC and Brier scores of these ten iterations were noted. Furthermore, to confirm306

the source of the data did not significantly influence our results, we did post hoc checks by using307

not only the individuals from our internal control dataset, but the other included syndromes as308

well as controls.309

4.3 Extraction of facial features310

The facial features were extracted using VGGFace2 [67, 68], a state-of-the-art facial recognition311

method that utilizes a deep neural network. To avoid overfitting, we did not retrain VGGFace2,312

but used its pretrained weights instead. The images were then processed by VGGFace2 and the313

representation in the penultimate layer of the network was obtained. This representation was then314

used as the facial feature vector. The process was performed as described previously: for the entire315

(technological) methodology, please see [69].316

4.4 Phenotypic similarity317

To create a homogeneous dataset, the phenotype of every individual in this study was manually318

converted into HPO terms [14]. A selection of HPO terms and all their child nodes were re-319

moved to eliminate any subjectivity in assessing an individual. These were Behavioral abnormality320

(HP:0000708), Abnormality of the face (HP:0000271), Abnormal digit morphology (HP:0011297),321

Abnormal ear morphology (HP:0031703), Abnormal eye morphology (HP:0012372), and every node322

which is a child node of either of these. We chose these terms as these are either facial features (to323

be assessed by our facial recognition model) or are suspected to vary across clinicians doing the324

assessment of an individual. In this manner, 3 810 HPO terms were excluded with 12 259 terms325

remaining. To further reduce possible inter-observer variability, the phenotypic similarity between326

individuals was calculated using the Resnik score [70], since it takes the semantic similarity between327

symptoms into account. The Resnik score utilizes the information content (IC) of a symptom. In328

an ontology akin to the HPO, the IC of a specific term can be seen as a measure of the rarity of a329

term. Naturally, terms closer to the root of the HPO tree have a lower IC. For instance, Abnormal-330

ity of the nervous system (HP:0000707) has an IC of 0.60. In contrast, Focal impaired awareness331

motor seizure with dystonia (HP:0032717), significantly further down the HPO tree, has an IC332

of 8.97. This corresponds to our intuition: rare features provide more information than common333

features — since the prior probability of an individual reporting a rare symptom is, by definition,334

smaller. The Resnik score uses this property by defining the similarity between two HPO terms as335
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the IC of their most informative (that is, with the highest IC) common ancestor in the HPO tree.336

Since terms lower in the tree have a higher IC, the most informative common ancestor corresponds337

to the last HPO term, which has both compared HPO terms as child nodes when traversing the338

tree downwards. As an example: for the HPO terms Reflex seizure (HP:0020207) and Focal motor339

seizure (HP:0011153), the most informative common ancestor is Seizure (HP:0001250), which has340

an IC of 1.70. The Resnik similarity score for Reflex seizure (HP:0020207) and Focal motor seizure341

(HP:0011153) is therefore 1.70. Next, we used the best-match average (BMA) to calculate the342

similarity between two individuals (who usually report multiple HPO terms), in which the average343

is taken over all best-matched pairwise semantic similarities, as previous studies determined it to344

be most effective [71]. The idea is similar to that discussed above: if two individuals share a rare345

symptom (Focal impaired awareness motor seizure with dystonia (HP:0032717), for instance), they346

are more similar than two individuals who only share a common symptom such as Abnormality of347

the nervous system (HP:0000707). The Resnik similarity score was calculated for every individual348

and control and then averaged for both groups. In the end, this led to a nx2 matrix for the HPO349

features: an average similarity score for each individual versus affected individuals and a score350

for each individual versus the control group. We calculated the BMA Resnik score between the351

individuals using the phenopy library in Python 3.8 [72].352

4.5 Construction of machine learning model353

Finally, the data were used to train a binary classifier. We selected a support vector machine354

(SVM) as our classifier, known for its excellent overall performance in classification tasks. The355

SVM was trained using the standard radial basis function kernel and a hyperparameter grid search356

for C.357

After determining the predictive performance of the model, we determined how many data the358

classifier needed for an acceptable classification performance in clinical practice. Per syndrome,359

we started with randomly selecting two individuals and two matched controls, training the model360

on those, and using the rest of the individuals (n − 2, as one individual is used as training data)361

and matched controls as a test set (two individuals that were not used in the first iteration as362

the grid search in the SVM classifier needs at least two training samples). We ran ten random363

restarts, randomly selecting another individual and matched control in each iteration. In each364

restart, leave-one-out cross-validation was employed. The Brier score and AUC were noted and365

averaged over the ten restarts. Next, the size of the training set was increased by one patient, and366

one matched control, still using the rest of the individuals (now n − 3) and matched controls as367

the test set. By increasing the training set by one individual and matched control each time and368

recording the performance, the model’s performance with an increasing number of individuals is369
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assessed.370

The Wilcoxon signed-rank test was used to determine statistically significant differences in the371

performance of the classifiers since it is a non-parametric test and, therefore, suitable — as these372

data are not normally distributed.373

4.6 Explainability of predictions374

To see which features contained important information for our model, we generated Local Inter-375

pretable Model-agnostic Explanations (LIME) [48, 49]. The main idea of this method is to train376

a relatively simple local surrogate model to approximate the predictions of the model of interest.377

Next, the original input data is perturbed, and the corresponding change in predictions is inspected378

to obtain the relative importance of individual features. A key advantage of LIME is that it is379

applicable to any model and can therefore be used directly on top of our pipeline.380

When using LIME for image data, it is common practice to divide the image into several381

segments, called superpixels. Therefore, we generated a raster of 25×25 pixel squares for each382

facial image, randomly offset for each of 100 runs. Each pixel’s relative importance was averaged383

over these runs to obtain a higher resolution visualization of their significance. For the clinical384

data, the original HPO features were perturbed to obtain the most significant ones in predictions.385

In this case, LIME uses input data in which some HPO features are added and some are removed386

from the input data, to see what the effect on the prediction is.387

LIME explanations were generated for the individuals with the five highest predictions scores.388

These explanations were then averaged, to obtain an overall explanation representative for that389

specific genetic syndrome. To ensure only real important features were recovered, only HPO terms390

that were identified in at least three individuals were used in this analysis.391

4.7 Hypothesis testing392

To see whether we could extend the use of our classifier to other applications than the reclassifi-393

cation of VUSs, we designed a random permutation test for the performance of our model. This394

enables the testing of a specific hypothesis for facial features, phenotypes, or both. An example395

would be determining whether a newly discovered genetic syndrome consists of several (pheno-396

typic/facial) subtypes. Using our framework, we trained a classifier on the labels of the suspected397

subgroups. By performing a random permutation test, a p-value is calculated, so that the appear-398

ance of the subgroups can be quantified. For a complete overview of the exact methodology of this399

permutation test, please see the Supplemental Methods.400

14

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.24.22281480doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.24.22281480
http://creativecommons.org/licenses/by-nc/4.0/


Data and code availability401

The code of PhenoScore created during this study is freely available at402

https://github.com/ldingemans/PhenoScore, to enable anyone to apply PhenoScore to their own403

dataset. Included in PhenoScore are two examples: the data for the SATB1 subgroups (positive404

example) and random data (negative example). The used dataset in this study is not publicly405

available due to both IRB and General Data Protection Regulation (EU GDPR) restrictions since406

the data might be (partially) traceable. However, access to the data may be requested from the407

data availability committee by contacting the corresponding author.408
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Figure 1: Here, the global workflow of this study is displayed, with the training and construction
of PhenoScore on the left side. n individuals and n age-, sex- and ethnicity matched controls are
selected for each syndrome. The facial features are extracted using a convolutional neural network,
VGGFace2, and a support vector machine (SVM) is trained on these features. In parallel, the
phenotypic similarity of individuals and controls is calculated, and a SVM is trained on those
scores. Finally, a SVM is trained on both the facial features and the HPO similarity combined. On
the right side of the figure, the trained classifier is used for a new individual with a VUS. Again,
the phenotypic similarity and facial distances are calculated, and these are used as input for the
trained SVM. The output is a score and assesses whether the individual of interest has that specific
syndrome, thus the VUS being (likely) pathogenic.
*Excluding behavioral abnormality, abnormality of the face, abnormal digit morphology, abnormal
ear morphology, abnormal eye morphology, and all child nodes of these HPO terms, since these
are either suspected to be highly variable between observers or describe dysmorphic features that
are facial recognition module takes into account. VUS: variant of unknown significance
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Figure 4: The performance of the SVM using both facial- and HPO features with different sizes of the training set is shown here. Both the median Brier score
and the median AUC improve if the number of individuals to train on is larger — as would be expected. Interestingly, only three individuals are needed for an
already acceptable classification performance.
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Figure 5: Above: a lollipop plot (generated using St. Jude’s ProteinPaint) of the genetic variants currently collected using the ADNP HDG website [62]. Of
the 58 included individuals, 29 had a variant in the c.2000-2340 region, indicated by others as having a different methylation signature than variants outside this
region [56]. Using only the HPO module of our PhenoScore framework, we first matched the groups on gender-, ethnicity- and age when possible to create two
groups of the same size (29 vs. 29). We then trained a classifier on the two groups and found a significant difference (Brier score of 0.24, AUC of 0.71, p = 0.01).
Below: the most important clinical features according to our model (determined using LIME) and the corresponding prevalence in both groups.
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5 Supplementary data433

5.1 Supplementary methods434

5.1.1 Permutation test for hypothesis testing435

To provide a p-value for our classification results and to enable the use of our framework for436

the recognition of specific (sub)groups in genetic syndromes, we developed a permutation test —437

inspired by the test described by Lopez-Paz & Oquab [75]. For every group of individuals of interest,438

a group of age-, sex- and ethnicity-matched controls is sampled from our control database. We439

extract the facial features using VGGFace2 and calculate the HPO similarity using the Resnik score,440

after which a SVM is trained using cross-validation. A grid search for the optimal hyperparameters441

is performed, and the Brier score is calculated for this combination of the group of individuals of442

interest and the matched controls. This process is precisely the same as in our standard analysis.443

Next, we randomly permute the labels (here, the labels correspond to whether an individual has the444

syndrome or is a control) 100 times. We ensure that the number of positive and negative classes is445

the same as in our original distribution of the labels. For each permutation, we repeat the process446

of training a SVM to obtain a Brier score. We then perform a one-sided Mann-Whitney U test to447

quantify the probability of the classification results being statistically significantly smaller (since448

it is the Brier score we are comparing) than the randomly permuted scores.449

To further strengthen our permutation test, we repeat the process five times in total, randomly450

sampling matched controls from our database in each repetition. The five obtained p values were451

then combined using Fisher’s method [76] to gather a definitive p-value for this classification task452

and, therefore, for this specific group of individuals of interest.453

For the analyses for both SATB1 and ADNP, we do not need to sample controls from our454

database. However, these datasets are usually imbalanced, sometimes leading to problems for the455

classifier. We therefore undersample the majority class to the size of the minority class by matching456

the individuals on ethnicity, sex and age (in that order) and increase the number of permutations457

of the labels to 1 000 (since we cannot repeatedly sample controls).458

Finally, to have a negative control group for this test, we randomly sampled individuals from459

our control database and calculated p-values for those. We did this for different cohort sizes (n =460

3, 5, 10, 20 and 40) for in total 50 trials. Of those 50 trials, two resulted in a p-value smaller than461

0.05 - exactly what would be expected by random chance in this number of trials. This shows that462

our approach leads to the to-be-expected number of false alarms.463
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