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Abstract:
Hypokinetic dysarthria, a motor speech disorder characterized by reduced movement and control in the
speech-related muscles, is mostly associated with Parkinson’s disease. Acoustic speech features thus offer
the potential for early digital biomarkers to diagnose and monitor the progression of this disease. However,
the influence of language on the successful classification of healthy and dysarthric speech remains crucial.
This paper explores the analysis of acoustic speech features, both established and newly proposed, in a
multilingual context to support the diagnosis of PD. The study aims to identify language-independent and
highly discriminative digital speech biomarkers using statistical analysis and machine learning techniques.
The study analyzes thirty-three acoustic features extracted from Czech, American, Israeli, Columbian, and
Italian PD patients, as well as healthy controls. The analysis employs correlation and statistical tests, de-
scriptive statistics, and the XGBoost classifier. Feature importances and Shapley values are used to provide
explanations for the classification results. The study reveals that the most discriminative features, with
reduced language dependence, are those measuring the prominence of the second formant, monopitch, and
the frequency of pauses during text reading. Classification accuracies range from 67 % to 85 %, depending
on the language. This paper introduces the concept of language robustness as a desirable quality in digital
speech biomarkers, ensuring consistent behaviour across languages. By leveraging this concept and employ-
ing additional metrics, the study proposes several language-independent digital speech biomarkers with high
discrimination power for diagnosing PD.
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1 Introduction

Hypokinetic dysarthria (HD) refers to motor speech disorders manifested in respiration, phonation, artic-
ulation, resonance and prosody of speech and has a major impact on the patient’s communication ability
[1, 2]. Characteristic features of a person’s voice with HD include tremor [3], hoarseness [4] and breathiness
[5]. Speech is further characterised by hypernasality [6], syllable repetitions [7], stuttering [8] and inappro-
priate silences [9]. Overall, it may be relatively unintelligible [10] and quiet [11], with poor intonation and
monoloudness [12]. These disorders most commonly occur in patients with neurodegenerative diseases such
as Parkinson’s disease (PD) or various types of dementia. However, stroke, traumatic brain injury, or other
conditions that affect the motor control centres in the brain can also lead to the development of HD [13]. In
patients with PD, HD is thought to be caused by progressive degeneration of dopaminergic neurons in the
substantia nigra [14] and is present in up to 90 % of these people [15]. The risk of PD increases with age and
may be influenced by genetic predisposition and various environmental factors [16]. It is also clear that the
number of PD patients grows with increasing population and life expectancy [17]. Although the science has
made significant advances since the disease was first described [18], we still do not know the actual cause of
PD and are not able to cure it; we can only alleviate its symptoms. Therefore, early detection and initiation
of treatment are crucial to the future course of the disease [19]. Since HD can begin in the early phases of
PD [20], acoustic speech analysis can be a suitable supportive tool for diagnosis or objective monitoring of
the disease. Although many teams have worked on this topic, there is still no comprehensive and robust
set of acoustic features quantifying the speech disorders that can be applied in practice and capture and
describe HD in all domains. One factor that significantly affects these features is the speaker’s language.

In 2010, Whitehill TL [21] described that Chinese PD patients show many of the same patterns of speech
abnormalities as English-speaking people with HD and suggested that there may be universal acoustic
features that could distinguish between healthy and HD-affected speech.

Hazan et al. (2012) [22] then published the results of a multilingual study focused on the automatic
diagnosis of PD patients speaking in English and German. They chose articulatory features based on the
formants to distinguish dysarthric from healthy speech. Using the support vector machine as the machine
learning model, they were able to predict PD with an accuracy of 85 %, which dropped to 75 % when they
trained the model by the features of one language and tested it on the other one. In the summary of the
article, they mention that features that can differentiate dysarthric speech from healthy speech probably
vary with language.

In 2016, Orozco-Arroyave et al. [23] performed multilingual experiments with speech recordings of Span-
ish, German, and Czech speakers. The prediction accuracy ranged from 60 % to 99 %, depending on the
language combination and the ratio of training to test data. When predicting PD in one language group
only, the accuracy ranged from 85 % to 99 %. The most discriminatory features were Mel frequency cepstral
coefficients (MFCC) and energy in the critical Bark bands (BBE), both extracted from unvoiced segments
of the reading text.

Kim and Choi (2017) [24] published the results of their descriptive study in which they describe the
differences in acoustic vowel space (AVS) of Korean- and English-speaking PD patients. No differences in
articulation rate were observed.

Next, in 2019 Moro-Velazquez et al. [25] reached an accuracy between 85 % and 94 % when classify-
ing PD patients in a multilingual cohort including Castillian Spanish, Colombian Spanish and Czech. It
dropped to the range between 72 % and 82 % when cross-corpora validating. For this purpose, they used an
approach based on phonemic grouping. The most significant phonemes for detecting HD were plosives and
fricatives. Extraction of the features from reading text led to better results than the quantitative analysis
of a diadochokinetic task.

Vásquez-Correa et al. (2019) [26] used convolution neural nets and transfer learning strategy to classify
PD in Spanish, German and Czech with MFCC and BBE as input independent variables. Accuracy ranged
between 70 % and 77 %. More accurate and more balanced in the frame of sensitivity and specificity were
models trained by features of more than one language.

Rusz et al. (2021) [27] performed a speech analysis of Czech, English, German, French and Italian
speakers in the early phase of PD. From the sustained phonation of vowel [a], diadochokinetic task and
monologue, they extracted seven features in total. They observed significant group differences between PD
and controls for monopitch, prolonged pauses, and imprecise consonants. According to statistical analysis,
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there were no differences between language groups in monopitch and length of pauses.
In 2022, Ozbolt et al. [28] analysed machine learning models trained by phonatory features of Spanish,

English and Italian PD patients and healthy controls. These features mainly quantify energies in different
parts of spectra of the speech signal recorded during the sustained phonation. The same features were
differentially important in English, Spanish and Italian models. During the cross-corpora validating, the
accuracy was higher when the model was trained by Spanish data and tested on Italian rather than vice
versa. Different vowels of sustained phonation were significant for each scenario.

It is evident that the language has a non-negligible effect on the accuracy of classifying speakers into those
who are healthy and those affected with HD, but no study has yet looked at multilingual analysis in depth.
This work aims to explore language-independent digital speech biomarkers of PD. It seeks to determine
which acoustic speech features are important for different languages in terms of classification accuracy and
which are sufficiently robust and independent of the speaker’s language.

2 Materials and Methods

The diagram in Figure 1 describes the workflow used to determine the robustness of acoustic speech features
to language differences and their subsequent discrimination power. The methods are further specified in the
following subsections.
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Figure 1: Workflow.

2.1 Speech corpus

The corpus contains speech recordings of 506 people (265 healthy controls – HC, 241 PD patients) and is
created by grouping several datasets described in Table 1:

• Czechs (CZ) including HIDI [29], PARCZ [30] and CoBeN (only HC) [31] data,

• Americans (US) speaking American English from CoBeN project [31],
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• Israelis (IL) speaking Hebrew,

• Colombians (CO) speaking Spanish [32],

• Italians (IT) – freely available dataset [33].

Every participant signed informed consent, and the relevant ethics committee approved the study. Their age
distribution can be seen in Figure 2 and clinical data of PD patients are summarized in Table 2. This table
describes the time since the first symptoms occurred, medication and severity of PD assessed on the Unified
Parkinson’s Disease Rating Scale, part III (UPDRS III) and Hoehn and Yahr speech rating scale (H&Y). All
patients in the cohort are on dopaminergic medication (ON state). Since deep brain stimulation may affect
a person’s speech [34], recordings of patients with this stimulation were discarded from the Israeli dataset,
resulting in a slight imbalance of classes that can also be observed in the US data. Two Italian recordings
containing a buzzing noise were also removed from the corpus. We analyzed the speech and voice of subjects
recorded during a reading of a short text (Read), prolonged phonation of vowel [a], and a diadochokinetic
task (DDK) consisting of repeating the syllables [pa]-[ta]-[ka]. The reading task in each dataset contains a
different text written in the nation’s corresponding language, and there are two different texts to read in
the Czech dataset. In the Italian dataset, patients and healthy controls repeat only the syllable [pa] or the
syllable [ta] as a second task variant. In the Czech and American acquisitions, participants performed all
tasks only once. In the Israeli dataset, participants had two trials of vowel [a], and in the Colombian one,
three trials. The Italians had each task recorded twice. We resampled all recordings to a uniform 16 kHz
sampling frequency.

Table 1: Numbers of PD patients, healthy controls, men (M) and women (F) in the corpus.

CZ US IL CO IT
F M total F M total F M total F M total F M total altogether

HC 46 35 81 13 5 18 53 43 96 25 25 50 10 10 20 265
PD 49 84 133 3 8 11 7 12 19 25 25 50 9 19 28 241

total 95 119 214 16 13 29 60 55 115 50 50 100 19 29 48 506

Figure 2: Probability distribution of age.
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Table 2: Clinical data: mean and standard deviation of LED – L-dopa equivalent daily dose; UPDRS III –
Unified Parkinson’s Disease Rating Scale, part III (motor examination) and H&Y – Hoehn and Yahr speech
rating scale.

CZ US IL CO IT

PD duration [year] 12.2 ± 5.1 5.0 ± 2.1 14.1 ± 6.9 11.2 ± 9.8 U
LED [mg] 1001 ± 524 286 ± 222 U U U

UPDRS III 22.5 ± 11.5 U U 37.6 ± 18.1 U
UPDRS III speech U U U 1.3 ± 0.8 1.0 ±1.2

H&Y U U 2.8 ± 0.9 2.2 ± 0.7 U

U – unknown value

2.2 Parametrization

We extracted 33 acoustic speech features quantifying disorders associated with HD from the recordings.
Due to the different signal lengths recorded during vowel [a], we extracted phonatory features from a signal
duration of 1.5 s without a vowel onset (keeping a steady state portion). In the case of more than one trial
for the speech task, the resulting feature is the average of two or three values obtained from the recordings.
Table 3 provides a list and description of these digital biomarkers categorized into phonation (involving
respiration), articulation (involving resonance), and prosody (involving timing). This table also describes
the expected change in the feature of people with PD. The expectation is based on experience or general
knowledge of HD [35, 36, 37]. It is related to the desire to ensure sufficient clinical interpretability, and it also
allows us to observe whether a feature behaves as expected in a particular dataset. After parametrization,
we regressed out the effect of confounding factors such as age and gender, by training a linear regression
model between each confounding factor and a specific acoustic feature. We then used only the residuals of
this regression added to the feature mean [38].

2.3 Statistical analysis

According to the Shapiro-Wilk test, not all features were normally distributed; therefore, we used the Mann-
Whitney U test with the null hypothesis that there is no statistically significant difference in medians of
the PD and HC features. Partial Spearman’s rank-correlation coefficients informed us about the negative or
positive correlation of the feature with the duration of PD and clinical scores. The language was included
as a confounding factor in this test. P-values of all tests were corrected via the False Discovery Rate (FDR)
approach. We also looked at the number of patients deviating from the norm given by the distribution of
the HC feature. We set the lower Tlow and upper Tup thresholds to:

Tlow = Q1 − 1.5 · IQR, (1)

Tup = Q3 + 1.5 · IQR, (2)

where Q1 and Q3 are lower and upper quartiles and IQR is the interquartile range. These outliers give
us other information about the strength of the feature to detect the HD and show how the feature changes
with the disease. Finally, we compared the medians of PD and HC features.

2.3.1 Feature robustness

From the results of the statistical analyses, we determined the language robustness of the features. By
language robustness, the exact behaviour of the feature in all datasets is meant. A feature was determined
to be robust if it satisfied the following conditions:

1. Significantly discriminated PD from HC in at least one dataset.

2. Followed the assumption in datasets, where it discriminated significantly.
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Table 3: Extracted acoustic features.
Speech Acoustic Expected Specific Feature
task feature change disorder definition

PHONATION

[a] HNR ↓ Increased noise Harmonics-to-noise ratio, the amount of noise in the speech signal due to incomplete vocal
fold closure and/or the turbulences in the vocal tract. HNR is defined as ratio of harmonic
components (periodic components) to noise components (non-periodic components) in a signal.

[a] CPP ↓ Increased Cepstral peak prominence representing the disphonia (hoarseness). CPP is defined as the
breathiness difference between the cepstral peak representing the fundamental frequency and the linear

regression line calculated from the magnitude-quefrency cepstra.
[a] HRF ↓ Increased Harmonic richness factor, the amount of noise in the speech signal, mainly due to incomplete

breathiness vocal fold closure. HRF is defined as the ratio between the sum of magnitudes of higher order
harmonics and magnitude of the fundamental frequency.

[a] NAQ ↑ Increased Mean normalised amplitude quotient, defined as A/(D*T0), where A is the amplitude of the
voice harshness glottal flow pulse, D is the peak amplitude of the glottal flow derivative and T0 is one period

of glottal flow. A higher value means a slower transition from the open to closed phase.
[a] relNAQSD ↑ Irregularity of The standard deviation of normalised amplitude quotient relative to its mean.

vocal folds activity
[a] QOQ ↑ Increased Mean quasi-open quotient, defined as the ratio between the time of opened phase

voice harshness and fundamental period (one cycle of the vocal fold). The higher the quotient, the lower the
energy of harmonics, but the higher the overall intensity of the phonation.

[a] relQOQSD ↑ Irregularity of The standard deviation of quasi-open quotient relative to its mean.
vocal folds activity

[a] relF0SD ↑ Irregular pitch Standard deviation of fundamental frequency relative to its mean, variation in frequency
fluctuations of vocal fold vibration

[a] Jitter (PPQ) ↑ Microperturbations Frequency perturbation, extent of variation of the voice range. Jitter is defined as the
in frequency variability of the F0 of speech from one cycle to the next.

[a] Shimmer (APQ) ↑ Microperturbations Amplitude perturbation, representing rough speech. Shimmer is defined as the sequence
in amplitude of maximum extent of the signal amplitude within each vocal cycle.

[a] DUV ↑ Aperiodicity Degree of unvoiced segments, the fraction of pitch frames marked as unvoiced.
[a] relF1SD ↑ Tremor of jaw Standard deviation of first formant relative to its mean. Formants are related to resonances

of the oro-naso-pharyngeal tract and are modified by position of tongue and jaw
[a] relF2SD ↑ Tremor of jaw Standard deviation of second formant relative to its mean. Formants are related to

resonances of the oro-naso-pharyngeal tract and are modified by position of tongue and jaw.

ARTICULATION

Read RFA1 ↓ Articulatory decay Resonant frequency attenuation defined as the distance (dB) in linear predictive coding (LPC)
spectrum between resonance of second formant and the local minima before this formant.

Read RFA2 ↓ Articulatory decay Resonant frequency attenuation defined as the distance (dB) in linear predictive coding (LPC)
spectrum between resonance of second formant and the local minima after this formant.

Read #loc max ↓ Articulatory decay The average number of local maxima in frequency response of the vocal tract representing the
resonances.

Read relF1SD ↓ Rigidity of Standard deviation of first formant relative to its mean.
tongue and jaw

Read relF2SD ↓ Rigidity of Standard deviation of second formant relative to its mean.
tongue and jaw

Read #lndmrk ↓ Imprecise The number of speech landmarks relative to total speech time representing the moments of
articulation different abrupt acoustic changes related to consonants production [39] [40] [41].

DDK PR ↓ Slow alternating Pace rate, representing the number of syllable vocalizations per second. Considering first
motion rate 30 syllables.

DDK relSDSD ↑ Inconsistent The sum of the standard deviations of the duration of each syllable type.
syllables duration relative to their average duration. Considering first 30 syllables.

DDK COV ↑ Instability of Coefficient of variation, defined as the ratio of the standard deviation of the duration of the
diadochokinetic pace fourth to tenth DDK cycles to the average duration of the first three cycles.

DDK RI ↑ Instability of Rhythm instability, defined as sum of absolute deviations from a regression line modelling
diadochokinetic pace each DDK cycle duration, weighted to the total DDK performance time.

DDK PA ↑ Acceleration of Pace acceleration, defined as PA = 100 x (avCycDur4 6 – avCycDur7 9) / avCycDur1 3.
diadochokinetic pace where avCycDurX Y is average duration of cycles X Y.

DDK RA ↑ Acceleration of Rhythm acceleration, defined as gradient of regression line modelling DDK cycle durations
diadochokinetic pace (positive values mean acceleration).

PROSODY

Read relF0SD ↓ Monopitch Pitch variation, defined as a standard deviation of F0 contour relative to its mean.
Read relSE0SD ↓ Monoloudness Speech loudness variation, defined as a standard deviation of intensity contour

relative to its mean after removing silences exceeding 50 ms.
Read EEVOL ↓ Unstable loudness Energy evolution, defined as the slope of intensity.
Read SPIR ↓ Irregular rhythm Number of pauses (longer than 50 ms) relative to total speech time.

of speech
Read PPR ↑ Higher proportion Percentual pause ratio, defined as total duration of silences

of silence time (longer than 50 ms)/total duration of speech.
Read DurMED ↑ Longer duration Median duration of silences longer than 50 ms.

of silences
Read DurMAD ↑ Higher variability Median absolute deviation of silence duration (longer than 50 ms).

of silence duration
Read NST ↑ Higher proportion Net speech time relative to total speech time.

of silence time
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3. The significant correlation of the feature with PD duration and clinical scores went with the assumption.

4. No more than 10 % of PD patients in any dataset deviated from the HC norm against the assumption.

The assumption is the expected change in the feature value of people with PD compared to HC (see
Table 3 – Expected change).

2.4 Machine learning

We chose the Extreme Gradient Boosting (XGBoost) algorithm with a random search hyperparameter tuning
strategy to classify speakers into PD patients and HC. We estimated feature importances based on the gain
attribute of each feature in the XGBoost model. Before any mathematical modelling, we performed a data
transformation first to avoid differences between the features’ values across the language datasets caused by
different recording conditions:

fT =
f − f̃HC

IQRHC
, (3)

where fT is the transformed feature, f is an original feature (after the adjustment for age and gender), f̃HC

is a median calculated from HC (in the given language), and IQRHC is an interquartile range calculated
from HC.

2.4.1 All features

To analyze the effect of the language on classification, we worked with all extracted acoustic features and
used three different model validation approaches:

• Stratified 10-fold cross-validation with 20 repetitions

– 6 scenarios (CZ, US, IL, CO, IT, all)

– stratification ensures balanced train/test data split in the frame of HC/PD and the frame of
languages in the scenario with all datasets.

• Cross-language validation technique

– model trained on data of one dataset and tested on every other.

• Leave-one-language-out validation technique

– model trained on all but one dataset used for testing.

Models performances were evaluated by Mathews correlation coefficient (MCC), accuracy (ACC), sensi-
tivity (SEN) and specificity (SPE). Feature importances are obtained from models trained on all subjects in
each scenario (CZ, US, IL, CO, IT, all), that is, without any split.

2.4.2 Robust features

In the next stage, we took only robust features according to statistical analysis (see section 2.3.1) and trained
the models again (CZ, US, IL, CO, IT) to get feature importances. Multiplying the importance coefficients of
each model with subsequent normalisation gives the global importance coefficients that we ranked in order
to find the most robust features. Finally, we trained the model on all datasets and analysed it with the
SHAP approach based on game theory to observe the feature behaviour when classifying subjects speaking
in different languages.
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3 Results

3.1 Statistical analysis

Table 4 describes the results of the Mann-Whitney U test and the change in statistical parameters of PD
patients compared to HC. Highlighted are the p-values of the features that significantly differentiate these
classes. Table 5 shows the results of the correlation of each feature with the duration of PD, medication and
clinical scores. Highlighted p-values represent significant correlations. The significance level for rejecting the
null hypothesis was 0.05 for both tests. Figure 3 summarizes the features that exhibit statistically significant
differences between the classes’ medians, as determined by the Mann-Whitney U test, and assesses the
features’ robustness across languages.

3.2 Machine learning

The performance of each machine learning model trained by all features can be seen in Table 6: 10-fold
cross-validation with 20 repetitions, Table 7: cross-language validation and Table 8: leave-one-language-out.
In Figure 4, we ranked the acoustic features according to their importance in different language scenarios,
and Figure 5 shows the global importance of the robust features only and their behaviour in the model
trained by the robust features of all subjects in the corpus.

Table 4: Results of Mann-Whitney U test (p-values after the FDR correction) and changes in statistical
parameters (mean x̄, median x̃, standard deviation σ) with PD.

CZ US IL CO IT
p-value x̄ x̃ σ p-value x̄ x̃ σ p-value x̄ x̃ σ p-value x̄ x̃ σ p-value x̄ x̃ σ

[a]-HNR 0.198 ↑ ↑ ↑ 0.250 ↑ ↑ ↓ 0.664 ↓ ↓ ↑ 0.008 ↓ ↓ ↑ 0.008 ↑ ↑ ↑
[a]-CPP 0.281 ↓ ↓ ↓ 0.525 ↑ ↑ ↑ 0.954 ↓ ↓ ↓ 0.562 ↓ ↓ ↑ 0.151 ↑ ↑ ↓
[a]-HRF 0.888 ↓ ↓ ↑ 0.773 ↓ ↓ ↑ 0.309 ↓ ↓ ↓ 0.975 ↓ ↑ ↑ 0.045 ↓ ↓ ↓
[a]-NAQ 0.888 ↓ ↓ ↑ 0.307 ↑ ↑ ↓ 0.605 ↓ ↓ ↓ 0.631 ↑ ↑ ↑ <0.001 ↑ ↑ ↑
[a]-relNAQSD 0.316 ↓ ↓ ↑ 0.104 ↓ ↓ ↓ 0.749 ↓ ↑ ↓ 0.162 ↑ ↑ ↓ <0.001 ↓ ↓ ↓
[a]-QOQ 0.791 ↓ ↑ ↑ 0.277 ↑ ↑ ↑ 0.288 ↓ ↓ ↓ 0.603 ↓ ↓ ↓ 0.007 ↑ ↑ ↓
[a]-relQOQSD 0.180 ↓ ↓ ↑ 0.113 ↓ ↓ ↓ 0.728 ↑ ↓ ↓ 0.201 ↑ ↑ ↑ <0.001 ↓ ↓ ↓
[a]-relF0SD 0.862 ↓ ↑ ↓ 0.535 ↓ ↓ ↓ 0.004 ↑ ↑ ↑ 0.008 ↑ ↑ ↑ 0.503 ↓ ↓ ↓
[a]-Jitter (PPQ) 0.316 ↓ ↓ ↑ 0.251 ↓ ↓ ↓ 0.947 ↑ ↑ ↑ 0.018 ↑ ↑ ↑ 0.934 ↑ ↓ ↑
[a]-Shimmer (APQ) 0.470 ↓ ↓ ↓ 0.762 ↓ ↑ ↓ 0.836 ↓ ↓ ↓ 0.008 ↑ ↑ ↑ 0.001 ↓ ↓ ↓
[a]-DUV 0.034 ↑ ↓ ↑ 0.104 ↓ ↓ ↓ 0.799 ↓ ↓ ↓ 0.031 ↑ ↑ ↑ 0.008 ↓ ↓ ↑
[a]-relF1SD 0.653 ↑ ↓ ↑ 0.946 ↓ ↓ ↓ 0.749 ↑ ↑ ↑ 0.008 ↑ ↑ ↑ 0.039 ↓ ↓ ↑
[a]-relF2SD 0.670 ↓ ↓ ↓ 0.727 ↓ ↓ ↓ 0.347 ↑ ↑ ↓ 0.631 ↑ ↑ ↑ 0.558 ↓ ↓ ↑
Read-RFA1 0.096 ↓ ↓ ↓ 0.104 ↓ ↓ ↓ 0.886 ↓ ↑ ↓ 0.033 ↓ ↓ ↑ 0.001 ↓ ↓ ↓
Read-RFA2 0.035 ↓ ↓ ↑ 0.538 ↓ ↓ ↓ 0.033 ↓ ↓ ↑ 0.147 ↓ ↓ ↑ 0.005 ↓ ↓ ↓
Read-#loc max 0.658 ↓ ↓ ↑ 0.504 ↑ ↑ ↓ 0.409 ↓ ↓ ↓ 0.252 ↓ ↓ ↑ <0.001 ↓ ↓ ↑
Read-relF1SD 0.385 ↓ ↓ ↑ 0.855 ↑ ↑ ↑ 0.605 ↑ ↑ ↑ 0.056 ↑ ↑ ↑ 0.952 ↓ ↑ ↓
Read-relF2SD 0.034 ↓ ↓ ↑ 0.153 ↓ ↓ ↑ 0.605 ↑ ↑ ↑ 0.858 ↑ ↑ ↑ 0.408 ↓ ↓ ↑
Read-#lndmrk 0.862 ↓ ↓ ↓ 0.525 ↓ ↓ ↑ 0.001 ↓ ↓ ↑ 0.975 ↓ ↑ ↑ 0.751 ↓ ↓ ↑
DDK-PR 0.243 ↑ ↑ ↓ 0.525 ↓ ↓ ↓ 0.728 ↑ ↑ ↑ 0.252 ↓ ↓ ↑ 0.437 ↓ ↓ ↑
DDK-relSDSD 0.096 ↑ ↑ ↑ 0.440 ↓ ↓ ↓ 0.004 ↑ ↑ ↓ 0.053 ↑ ↑ ↑ - - - -
DDK-COV 0.056 ↑ ↑ ↑ 0.727 ↓ ↓ ↓ 0.007 ↑ ↑ ↑ 0.146 ↑ ↑ ↑ 0.170 ↑ ↑ ↑
DDK-RI 0.245 ↑ ↑ ↑ 0.605 ↓ ↓ ↓ 0.005 ↑ ↑ ↑ 0.389 ↑ ↑ ↑ 0.992 ↑ ↓ ↑
DDK-PA 0.784 ↑ ↑ ↑ 0.727 ↓ ↓ ↑ 0.464 ↓ ↓ ↑ 0.975 ↑ ↓ ↑ 0.065 ↑ ↑ ↑
DDK-RA 0.548 ↓ ↓ ↑ 0.525 ↓ ↓ ↓ 0.065 ↓ ↓ ↑ 0.528 ↑ ↑ ↑ 0.427 ↑ ↑ ↑
Read-relF0SD 0.001 ↓ ↓ ↑ 0.171 ↓ ↓ ↓ 0.249 ↓ ↓ ↑ 0.061 ↓ ↓ ↑ <0.001 ↓ ↓ ↓
Read-relSE0SD 0.888 ↓ ↓ ↓ 0.843 ↓ ↓ ↓ 0.691 ↓ ↑ ↓ 0.786 ↑ ↑ ↓ 0.095 ↓ ↓ ↑
Read-EEVOL 0.552 ↑ ↑ ↑ 0.122 ↑ ↑ ↓ 0.664 ↑ ↑ ↓ 0.975 ↑ ↑ ↓ 0.777 ↑ ↑ ↓
Read-SPIR 0.056 ↓ ↓ ↑ 0.104 ↓ ↓ ↓ 0.002 ↓ ↓ ↑ 0.075 ↓ ↓ ↑ 0.008 ↓ ↓ ↑
Read-PPR 0.888 ↑ ↓ ↓ 0.605 ↓ ↓ ↑ 1.000 ↓ ↑ ↓ 0.711 ↓ ↓ ↑ 0.109 ↑ ↑ ↑
Read-DurMED 0.056 ↓ ↑ ↓ 0.457 ↑ ↑ ↑ 0.045 ↑ ↑ ↑ 0.711 ↑ ↑ ↑ 0.173 ↑ ↑ ↑
Read-DurMAD 0.050 ↓ ↑ ↓ 0.339 ↑ ↑ ↑ 0.033 ↑ ↑ ↑ 0.407 ↑ ↑ ↑ 0.170 ↑ ↑ ↑
Read-NST 0.944 ↓ ↑ ↓ 0.525 ↑ ↑ ↑ 0.947 ↑ ↓ ↓ 0.772 ↑ ↑ ↑ 0.170 ↓ ↓ ↑
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Table 5: Results of partial Spearman’s rank correlation (p-values after the FDR correction).

PD duration LED UPDRS III UPDRS III speech H&Y
coeff p-value coeff p-value coeff p-value coeff p-value coeff p-value

[a]-HNR -0.192 0.032 0.161 0.347 -0.081 0.471 -0.090 0.556 -0.065 0.860
[a]-CPP -0.189 0.030 0.089 0.610 -0.038 0.774 -0.015 0.957 -0.044 0.982
[a]-HRF -0.071 0.442 -0.052 0.775 -0.244 0.016 -0.100 0.550 -0.109 0.778
[a]-NAQ 0.067 0.444 0.092 0.610 0.217 0.037 0.235 0.113 0.119 0.778
[a]-relNAQSD 0.236 0.009 -0.157 0.347 0.033 0.774 0.017 0.957 0.007 0.982
[a]-QOQ -0.041 0.669 -0.071 0.660 0.022 0.857 -0.029 0.916 -0.015 0.982
[a]-relQOQSD 0.255 0.005 -0.166 0.347 0.014 0.865 -0.007 0.957 0.049 0.954
[a]-relF0SD -0.079 0.395 0.103 0.609 0.013 0.865 0.098 0.550 -0.021 0.982
[a]-Jitter (PPQ) 0.153 0.094 -0.023 0.945 0.053 0.631 0.239 0.113 0.014 0.982
[a]-Shimmer (APQ) 0.214 0.017 -0.131 0.491 0.148 0.154 0.104 0.550 0.084 0.857
[a]-DUV 0.090 0.395 -0.009 0.952 0.042 0.726 0.148 0.391 -0.068 0.860
[a]-relF1SD 0.196 0.030 -0.185 0.347 0.060 0.583 0.418 0.003 0.000 0.999
[a]-relF2SD -0.146 0.099 0.005 0.952 0.013 0.865 0.182 0.256 0.024 0.982
Read-RFA1 0.007 0.921 -0.059 0.768 -0.190 0.057 -0.085 0.569 -0.113 0.778
Read-RFA2 -0.283 0.002 0.089 0.610 -0.154 0.140 -0.071 0.640 -0.103 0.780
Read-#loc max -0.184 0.039 0.100 0.609 -0.114 0.295 -0.144 0.391 -0.160 0.705
Read-relF1SD 0.035 0.684 -0.055 0.775 0.021 0.857 -0.121 0.517 0.030 0.982
Read-relF2SD -0.142 0.109 0.014 0.952 -0.080 0.471 -0.148 0.391 0.009 0.982
Read-#lndmrk -0.213 0.017 -0.007 0.952 -0.113 0.295 -0.353 0.015 -0.175 0.705
DDK-PR 0.134 0.135 0.037 0.877 0.204 0.039 0.093 0.556 0.130 0.778
DDK-relSDSD 0.171 0.059 0.117 0.501 0.265 0.011 0.323 0.077 0.305 0.215
DDK-COV 0.148 0.137 0.145 0.491 0.216 0.063 0.394 0.019 0.306 0.215
DDK-RI 0.025 0.779 0.073 0.660 0.156 0.140 0.185 0.256 0.130 0.778
DDK-PA -0.054 0.684 0.132 0.630 0.103 0.579 0.349 0.256 0.102 0.860
DDK-RA 0.068 0.444 -0.123 0.491 -0.102 0.354 -0.006 0.957 -0.013 0.982
Read-relF0SD -0.018 0.826 -0.009 0.952 -0.211 0.037 -0.100 0.550 0.078 0.860
Read-relSE0SD 0.149 0.098 0.073 0.660 0.112 0.295 0.108 0.550 -0.153 0.705
Read-EEVOL 0.078 0.395 0.284 0.022 0.033 0.774 0.012 0.957 -0.163 0.705
Read-SPIR -0.065 0.445 0.049 0.776 -0.093 0.414 -0.530 <0.001 -0.278 0.215
Read-PPR 0.085 0.395 0.124 0.491 0.090 0.419 0.290 0.048 0.109 0.778
Read-DurMED 0.078 0.395 0.021 0.945 0.121 0.289 0.353 0.015 0.243 0.303
Read-DurMAD 0.084 0.395 -0.028 0.945 0.122 0.289 0.335 0.019 0.280 0.215
Read-NST -0.080 0.395 -0.091 0.610 -0.065 0.579 -0.285 0.048 -0.096 0.800

4 Discussion

We processed voice and speech recordings of 506 individuals (265 HC, 241 PD) speaking five different
languages to identify language-independent speech biomarkers with high discriminative power. The corpus
includes Czech (CZ), American English (US), Hebrew (IL), Colombian Spanish (CO) and Italian (IT).
Acoustic features, quantifying phonatory, articulatory and prosodic disorders, were extracted from the signal
recorded during text reading (Read), prolonged phonation of vowel [a] and diadochokinetic task (DDK). We
then performed a statistical analysis to obtain the language robustness of the features, followed by machine
learning to observe the impact of language on classification accuracy, focusing on individual speech features.
We compared the Mathews correlation coefficient (MCC), accuracy (ACC), sensitivity (SEN) and specificity
(SPE) of specific models.

4.1 Statistical analysis

According to the Mann-Whitney U test, most features discriminate significantly in the Italian dataset
(14/33), following the Israeli (9/33) and Spanish (7/33) ones. There are four significant features in the
Czech dataset and none in the American one. Of the 33 extracted acoustic speech features, 23 discrimi-
nated significantly in at least one language dataset (Table 4), after which seven did not meet the language

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2023. ; https://doi.org/10.1101/2022.10.24.22281459doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.24.22281459
http://creativecommons.org/licenses/by-nc-nd/4.0/


[A]-HNR

[A]-HRF

[A]-NAQ

[A]-relNAQSD

[A]-QOQ

[A]-relQOQSD

[A]-relF0SD

[A]-Ji�er (PPQ)

[A]-Shimmer (APQ)

[A]-DUV

[A]-relF1SD

Read-RFA1

Read-RFA2

Read-#loc_max

Read-relF2SD

Read-#lndmrk

DDK-relSDSD

DDK-COV

DDK-RI

Read-relF0SD

Read-SPIR

Read-DurMED

Read-DurMAD

UIII

-0.08

Usp Dur

-0.09

 0.22

0.02

0.01

0.05

0.15

0.04

0.06

-0.11

-0.08

0.12

0.12

-0.10 -0.07

0.23 0.07

0.02 0.24

-0.03 -0.04

-0.01 0.26

0.10 -0.08

0.24 0.15

0.10

0.15 0.09

0.20

-0.08 0.01

-0.07

-0.14

-0.15 -0.14

-0.21

0.32 0.17

0.15

0.19 0.02

-0.10 -0.02

-0.19

-0.24

0.03

0.01

-0.19

-0.15

-0.11

0.26

0.22

0.16

-0.21

-0.09

0.21

0.42

-0.28

-0.18

-0.35

0.39

-0.53 -0.06

0.35 0.08

0.34 0.08

PHONATION

ARTICULATION

PROSODY

 50 0 50

CZ

 50 0 50 100

US

 50 0 50 100

IL

 50 0 50 100

CO

 50 0 50 100

IT

 100 100

U

UIII = UPDRS III Usp = UPDRS III (speech) Dur = PD dura�on

against the assump�on p-value of Mann-Whitney U test < 0.05 * U  unknownconsistent with the assump�on

 * 

 * 

 * 

 * 

 * 

 * 
 * 

 * 
 * 

 * 

 *  * 
 * 
 * 
 * 

 * 

 *  * 
 *  *  * 

 * 
 * 

 * 
 * 
 * 
 * 

 * 

 *  * 
 *  * 

 * 

 * 
 * 

Figure 3: Percentage ratio of PD patients outside the norms given by HC. The left side from zero shows the
percentage of PD patients below the lower limit and the right side above the upper limit. The significant
difference between HC and PD represents an asterisk, and its position indicates the direction in which the
median value of the PD feature has changed compared to HC. Spearman correlation coefficient values are
highlighted if they are statistically significant (p-value < 0.05). Features not following the condition for
being robust are crossed out.

robustness conditions (Figure 3).
Despite the expected deterioration of speech in PD patients, some features indicated better performance

in some language groups. In the Italian dataset, compared to healthy controls, patients had a significantly
less breathy voice (based on the feature [a]-HNR) with fewer irregularities ([a]-relNAQSD, [a]-relQOQSD)
and fewer perturbations in amplitude ([a]-Shimmer (APQ)). At the same time, they exhibited reduced
tremor of jaw ([a]-relF1SD), and their speech was more voiced ([a]-DUV). A significantly higher proportion
of voiced segments in patients also occurred in the CZ dataset. Moreover, in the US dataset, many patients
deviated from the norms of healthy controls against the assumption in the feature [a]-relNAQSD (64 %), [a]-
relQOQSD (27 %) and [a]-DUV (91 %). For these reasons, the mentioned phonatory features did not meet
the conditions for sufficient language robustness. We also enclosed prosodic features quantifying the duration
of pauses (Read-DurMED) and the variation of their duration (Read-DurMAD) due to the high number of
patients deviating from the HC norms against the assumption (64 % and 79 %) in the CZ dataset. However,
this dataset comprises several sub-datasets, one of which involves people reading different text compared
to the other two sub-datasets. Assuming a non-equal distribution of HC/PD subjects across these three
sub-datasets, we attribute the deviation to this factor.

Most features did not meet the robustness conditions due to the Italian dataset, where PD patients
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Table 6: Classification results: stratified cross-validation.

MCC ACC [%] SEN [%] SPE [%]

CZ 0.28 ± 0.21 67 ± 9 82 ± 11 43 ± 18
US 0.42 ± 0.54 70 ± 26 74 ± 42 68 ± 37
IL 0.37 ± 0.35 79 ± 11 58 ± 36 83 ± 11
CO 0.43 ± 0.27 70 ± 13 62 ± 21 78 ± 20
IT 0.71 ± 0.31 85 ± 5 86 ± 19 83 ± 27
all 0.49 ± 0.11 75 ± 6 73 ± 8 76 ± 7

Table 7: Classification results: cross-language validation – MCC.

Training Testing
CZ US IL CO IT

CZ - 0.55 0.24 0.25 0.43
US 0.21 - 0.07 -0.14 0.34
IL 0.13 -0.11 - 0.09 0.32
CO 0.06 -0.24 0.08 - -0.03
IT 0.19 0.22 0.23 0.18 -

Table 8: Classification results: leave-one-language-out.

Testing MCC ACC [%] SEN [%] SPE [%]

CZ 0.19 58 53 67
US 0.48 76 45 94
IL 0.30 53 95 45
CO 0.00 50 78 22
IT 0.61 79 71 90

performed better than HC in half of the phonatory features. The Italians might manifest HD differently
in their voice and breathing. Another explanation can be that the phonation of these patients is positively
affected by medication, and they may belong to a specific subtype of HD, as described in the study by
Rusz et al. [42]. In this study they also present monopitch as a feature that is common in each subtype
and because our results show language robustness in this feature, it gains a high potential in the field of
objective HD assessment. Moreover, in another of their studies [27], this feature was also independent of the
speaker’s language based on the general least-squares linear models and had significant discrimination power.
Other aspects of PD clinical heterogeneity have to be taken into consideration, such as tremor dominant vs
hypokinesia/rigidity/gait instability dominant subtypes.

The successful significant and language-independent biomarkers on the basis of statistical analyses hence
remain the following features: increased breathiness due to incomplete vocal fold closure ([a]-HRF), increased
voice harshness due to a slower transition from an open to a closed phase ([a]-NAQ) and a longer duration of
an open phase ([a]-QOQ) of the vocal fold cycle, irregular pitch fluctuations ([a]-relF0SD), microperturbations
in frequency ([a]-Jitter (PPQ)), articulatory decay as lower prominence of the second formant (Read-RFA1,
Read-RFA2) and less local maxima (Read-#loc max) in the LPC spectrum, the rigidity of tongue and
jaw as the lower standard deviation of the second formant during the reading (Read-relF2SD), imprecise
articulation due to a lower number of speech landmarks (Read-#lndmrk), inconsistent syllables duration
as a higher variance of syllable duration during the diadochokinetic task (DDK-relSDSD), instability of
diadochokinetic pace as an increased variance of the cycle duration at the end of the task compared to the
beginning (DDK-COV) and overall variance of cycle duration (DDK-RI), monopitch (Read-relF0SD) and
a lower number of pauses during the speech (Read-SPIR). These are the features that proved consistent
behaviour across all language datasets.

There was no significant correlation of any feature with the H&Y score (Table 5), and only one feature
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(Read-EEVOL) correlated significantly with medication. A positive Spearman’s coefficient indicates better
loudness stability in PD patients with higher LED. However, more features are correlated with the remaining
clinical data, such as PD duration, UPDRS III, and UPDRS III speech. The feature Read-RFA2 (articulatory
decay), which is the only one that demonstrated significant discrimination across three datasets (CZ, IL,
and IT), exhibited a strong correlation with the disease duration, yielding the most promising results.

Looking at the results, it is evident that the ability of acoustic speech features to detect HD is indeed
language-dependent [22]. However, it is worth noting that certain features manifest similarly with the
development of HD in different language groups. This observation supports the original hypothesis proposed
by Whitehill [21], suggesting the existence of a language-universal component of dysarthria.

4.2 Machine learning

Based on all extracted features, we were able to detect PD with accuracy ranging from 67 % to 85 %,
depending on the language dataset. For all languages combined, the model achieved an accuracy of 75 %
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Figure 4: Coefficients of importance of ten most important features in each language scenario (machine
learning models trained by all extracted features).
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Figure 5: Global normalized combination of importance coefficients of robust features (left) and description
of the model trained by robust features of all languages together using SHAP values (right) (features ordered
from the highest absolute SHAP value, negative values indicate a higher probability for the classification to
HC and positive values to patients with PD).

with a sensitivity of 73 % and a specificity of 76 % (Table 6). The accuracy here is approximately the average
of the values of each language model. With lower standard deviations of cross-validation results and higher
balance in terms of sensitivity and specificity, a classifier based on gradient trees can be considered suitable
when dealing with multilingual data. Vasquez-Correa et al. [26] also observed a lower difference between
sensitivity and specificity and lower standard deviation of cross-validation results when fine-tuning the deep
machine learning model. This implies that the model trained on more data has a more balanced classification
despite the language differences when choosing an appropriate machine learning approach. However, to
maintain high classification accuracy, it is probably necessary that the subjects that the model classifies are
from the language group that was included during the training process. Otherwise, the classification results
decrease rapidly. We can observe this phenomenon in dropped MCC during cross-language validation (Table
7). The only improvement was an increase in MCC values from 0.42 to 0.55 in the classification of the US
subjects when the model was trained on CZ data. Although the small size of the US dataset needs to be
considered here, the value of MCC dropped from 0.42 to -0.24 when the US was classified by the model
trained on CO data. It supports the hypothesis of the dependence of successful classification of PD on the
chosen source and target language group during cross-language validation. This should be taken into account
in the possible use of transfer learning. Overall, the classifications were most successful when the model was
trained on CZ data and worst when trained on CO data. Next to the combination of CO and any other
language, the combination of IT and US seems also inappropriate. The leave-one-language-out validation
approach results support the previous findings (Table 8) – classification of US subjects is the only one that
shows better results; MCC increased from 0.42 to 0.48, which is a slightly lower improvement compared
to the model trained on CZ data only. The drop in accuracy when classifying people speaking a different
language to subjects used during training is consistent with previous studies’ results [22, 23, 25], but it
appears that data from another carefully-selected language can be used to improve the model performance.

From the importance coefficients of each model (Figure 4), we can observe that in the classification,
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features are differently important for each scenario, which confirms the earlier findings [28]. Counting the
occurrences of features in all feature importance scenarios, the best results are provided by the feature
[a]-relNAQSD, which is important in the model trained on all languages and in four out of five separate
models. However, this feature is not robust according to previous statistical analysis (see Figure 3). The
other features that yield the best results in this regard are Read-SPIR, Read-relF0SD, and Read-RFA1.
These features all appeared in the feature importances of the model trained on all languages and in three
other scenarios. Moreover, all of these features are considered robust based on statistical analysis. After
training the machine learning models with only the robust features, globally, the most important features
are again monopitch (Read-relF0SD), inappropriate silences (Read-SPIR) and articulatory decay (Read-
RFA1) (Figure 5). From the SHAP values of the model trained on data of all languages, it is clear that
some features of high importance in the individual models lose their ability to discriminate here (Read-
#loc max, [a]-NAQ, [a]-HRF). The features that have been most effective in this model are Read-relF0SD
and Read-SPIR once again. In third place, according to the absolute SHAP value, is the articulatory decay
(Read-RFA2). Thus, reading text appears to be the crucial speech exercise for successful classification, which
is consistent with the results of the study by Moro-Velazquez et al. [25]. Furthermore, speech pausing and
rhythmicity abnormalities are associated with cognitive dysfunction in advanced PD stages [43] [44] and
can serve as a predictive marker for the cognitive decline in PD patients as well [45]. These abnormalities,
along with articulatory muscle bradykinesia with temporal decrements and monopitch, have been previously
described by us [34] and others [46] as early markers of HD in PD.

4.3 Limitations of the study

This study has several limitations, the most major of which is the heterogeneity of the datasets. Each
language dataset has a different number of subjects. There are only 29 subjects in the American dataset,
which is 185 subjects less than in the Czech one. The US patients also have the disease for a much shorter
time, which can explain why no feature discriminates significantly in this group. Moreover, since some
groups’ clinical data (mainly LED, duration of the disease, and dysarthria severity) are unknown, we cannot
tell whether subjects in different datasets have the same level of disease progression. The fact that the voice
and speech of the subjects in each dataset were recorded using a different acquisition protocol and hardware
(e.g., different microphones, microphone-to-mouth distances, etc.) could also play a role, even though we
attempted to mitigate this effect by applying feature transformation based on healthy control subjects in
the specific language. Due to the different ways of performing speech tasks in each country, we did not
test whether individual features from different language groups come from the same probability distribution.
The different approach to the diadochokinetic task for the Italian acquisition also caused the inability to
extract the feature quantifying the inconsistent syllables duration as the sum of the standard deviations of
the duration of each syllable type (DDK-relSDSD). Furthermore, missing the monologue exercise in some
datasets made it impossible to use this speech task in our multilingual study. We also need to consider that
the classes (especially in the Israeli dataset) are unbalanced, which can mostly, along with the different sizes
of datasets, affect the results of the cross-language validation of machine learning models. The robustness
of the features and hypotheses arising from the classification results need to be verified in a follow-up study
where data will be homogeneous and subjects preferably of the same age and level of PD progression.

5 Conclusion

We analyzed in detail the behaviour of acoustic speech features in different languages. The aim was to
explore digital speech biomarkers of PD and determine which are independent of the speaker’s language yet
have high discrimination power.

Our statistical analysis found that approximately one-third of the significant features did not meet the
conditions for language robustness. The most successful biomarkers in this sense include lower prominence
of the second formant, monopitch, and a lower number of pauses detected during text reading. These
biomarkers also performed best during classification using machine learning, both in the single language
models and the model using all languages’ features together. Classification accuracies ranged from 67 %
to 85 %, depending on the language. The model trained with features of all languages together achieved a
sensitivity of 73 % and a specificity of 76 %.
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This work contributes insights into the field of objective assessment of speech affected by hypokinetic
dysarthria and automated diagnosis of PD. It is the first study to use the concept of language robustness, and
through the detailed exploration of speech features using both statistics and machine learning, it proposes
several digital speech biomarkers that have the potential to be language-independent and that could be
possibly used in eHealth/mHealth applications.

Data Availability

Data are protected by privacy and security law. Code with used algorithms can be found in the GitHub
repository [Multilingual speech analysis] [https://github.com/BDALab/multilingual speech analysis].
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“Characterisation of voice quality of parkinson’s disease using differential phonological posterior fea-
tures,” Computer Speech & Language, vol. 46, pp. 196–208, 2017.

[5] Z. Thijs and C. R. Watts, “Perceptual characterization of voice quality in nonadvanced stages of parkin-
son’s disease,” Journal of Voice, 2020.

[6] R. B. Hoodin and H. R. Gilbert, “Nasal airflows in parkinsonian speakers,” Journal of Communication
Disorders, vol. 22, no. 3, pp. 169–180, 1989.

[7] A. M. Goberman, M. Blomgren, and E. Metzger, “Characteristics of speech disfluency in parkinson
disease,” Journal of Neurolinguistics, vol. 23, no. 5, pp. 470–478, 2010.

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2023. ; https://doi.org/10.1101/2022.10.24.22281459doi: medRxiv preprint 

https://github.com/BDALab/multilingual_speech_analysis
https://doi.org/10.1101/2022.10.24.22281459
http://creativecommons.org/licenses/by-nc-nd/4.0/


[8] F. S. Juste, F. C. Sassi, J. B. Costa, and C. R. F. de Andrade, “Frequency of speech disruptions in
parkinson’s disease and developmental stuttering: A comparison among speech tasks,” Plos one, vol. 13,
no. 6, p. e0199054, 2018.

[9] V. L. Hammen and K. M. Yorkston, “Speech and pause characteristics following speech rate reduction
in hypokinetic dysarthria,” Journal of communication disorders, vol. 29, no. 6, pp. 429–445, 1996.

[10] K. Tjaden and G. Wilding, “Effects of speaking task on intelligibility in parkinson’s disease,” Clinical
Linguistics & Phonetics, vol. 25, no. 2, pp. 155–168, 2011.

[11] S. G. Adams, A. Dykstra, M. Jenkins, and M. Jog, “Speech-to-noise levels and conversational intelli-
gibility in hypophonia and parkinson’s disease,” Journal of medical speech-language pathology, vol. 16,
no. 4, pp. 165–173, 2008.

[12] F. L. Darley, A. E. Aronson, and J. R. Brown, “Differential diagnostic patterns of dysarthria,” Journal
of speech and hearing research, vol. 12, no. 2, pp. 246–269, 1969.

[13] J. R. Duffy, Motor speech disorders e-book: Substrates, differential diagnosis, and management. Elsevier
Health Sciences, 2019.

[14] O. Hornykiewicz, “Biochemical aspects of Parkinson’s disease,” Neurology, vol. 51, no. 2 Suppl 2, pp. S2–
S9, 1998.

[15] A. K. Ho, R. Iansek, C. Marigliani, J. L. Bradshaw, and S. Gates, “Speech impairment in a large sample
of patients with parkinson’s disease,” Behavioural neurology, vol. 11, no. 3, pp. 131–137, 1998.

[16] O.-B. Tysnes and A. Storstein, “Epidemiology of parkinson’s disease,” Journal of neural transmission,
vol. 124, pp. 901–905, 2017.

[17] G. DeMaagd and A. Philip, “Parkinson’s disease and its management: part 1: disease entity, risk factors,
pathophysiology, clinical presentation, and diagnosis,” Pharmacy and therapeutics, vol. 40, no. 8, p. 504,
2015.

[18] J. Parkinson, “An essay on the shaky palsy,” London: Sherwood, Neely and Jones, pp. 1–6, 1817.

[19] C. McDonald, G. Gordon, A. Hand, R. W. Walker, and J. M. Fisher, “200 years of parkinson’s disease:
what have we learnt from james parkinson?,” Age and ageing, vol. 47, no. 2, pp. 209–214, 2018.

[20] W. Poewe, “Global scales to stage disability in pd: the hoehn and yahr scale,” Rating Scales Parkinsons
Dis, pp. 115–122, 2012.

[21] T. L. Whitehill, “Studies of chinese speakers with dysarthria: informing theoretical models,” Folia
Phoniatrica et Logopaedica, vol. 62, no. 3, pp. 92–96, 2010.

[22] H. Hazan, D. Hilu, L. Manevitz, L. O. Ramig, and S. Sapir, “Early diagnosis of Parkinson’s disease
via machine learning on speech data,” in 2012 IEEE 27th Convention of Electrical and Electronics
Engineers in Israel, pp. 1–4, IEEE, 2012.

[23] J. Orozco-Arroyave, F. Hönig, J. Arias-Londoño, J. Vargas-Bonilla, K. Daqrouq, S. Skodda, J. Rusz,
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