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Abstract 41 
Longitudinal data from electronic health records (EHR) has immense potential to improve 42 
clinical diagnoses and personalised medicine, motivating efforts to identify disease subtypes 43 
from age-dependent patient comorbidity information. We introduce an age-dependent topic 44 
modelling (ATM) method that provides a low-rank representation of longitudinal records of 45 
hundreds of distinct diseases in large EHR data sets. The model learns, and assigns to each 46 
individual, topic weights for several disease topics, each of which reflects a set of diseases that 47 
tend to co-occur as a function of age. Simulations show that ATM attains high accuracy in 48 
distinguishing distinct age-dependent comorbidity profiles. We applied ATM to 282,957 UK 49 
Biobank samples, analysing 1,726,144 disease diagnoses spanning 348 diseases with ≥1,000 50 
incidences. We inferred 10 disease topics optimising model fit. We identified 52 diseases with 51 
heterogeneous comorbidity profiles (≥500 incidences assigned to each of ≥2 topics), including 52 
breast cancer, type 2 diabetes (T2D), hypertension, and hypercholesterolemia; for most of these 53 
diseases, topic assignments were highly age-dependent, suggesting differences in disease 54 
aetiology for early-onset vs. late-onset disease. We defined subtypes of the 52 heterogeneous 55 
diseases based on the topic assignments, and compared genetic risk across subtypes using 56 
polygenic risk scores (PRS). We identified 18 disease subtypes whose PRS differed significantly 57 
from other subtypes of the same disease, including a subtype of T2D characterised by 58 
cardiovascular comorbidities and a subtype of asthma characterised by dermatological 59 
comorbidities. We further identified specific SNPs underlying these differences. For example, 60 
the T2D-associated SNP rs1063192 in the CDKN2B locus has a higher odds ratio in the top 61 
quartile of cardiovascular topic weight (1.19±0.02) than in the bottom quartile (1.08±0.02) 62 
(P=4 × 10!" for difference). In conclusion, ATM identifies disease subtypes with differential 63 
genome-wide and locus-specific genetic risk profiles.  64 
     65 
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 68 
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Introduction 71 
Longitudinal electronic health record (EHR) data, encompassing diagnoses across hundreds of 72 
distinct diseases, offers immense potential to improve clinical diagnoses and personalised 73 
medicine1. Despite intense interest in both the genetic relationships between distinct diseases2–11 74 
and the genetic relationships between biological subtypes of disease12–15, there has been limited 75 
progress on classifying disease phenotypes into groups of diseases with frequent co-occurrences 76 
(comorbidities) and leveraging comorbidities to identify disease subtypes. Low-rank modelling  77 
has appealing theoretical properties16,17 and has produced promising applications18–24 to infer 78 
meaningful representations of high-dimensional data. In particular, low-rank representation is an 79 
appealing way to summarise data across hundreds of distinct diseases25–27, providing the 80 
potential to identify patient-level comorbidity patterns and distinguish disease subtypes. Disease 81 
subtypes inferred from EHR data could be validated by comparing genetic profiles across 82 
subtypes, which is possible with emerging data sets that link genetic data with EHR data28–31.  83 
 84 
Previous studies have used low-rank representation to identify shared genetic components25–27 85 
across multiple distinct diseases, identifying relationships between diseases and generating 86 
valuable biological insights. However, age at diagnosis information in longitudinal EHR data has 87 
the potential to improve such efforts. For example, a recent study used longitudinal disease 88 
trajectories to identify disease pairs with statistically significant directionality32, suggesting that 89 
age information could be leveraged to infer comorbidity profiles that capture temporal 90 
information. In addition, patient-level comorbidity information could potentially be leveraged to 91 
identify biological subtypes of disease, complementing its application to increase power for 92 
identifying genetic associations12 and to cluster disease-associated variants into biological 93 
pathways8; disease subtypes are fundamental to disease aetiology14,33–36. 94 
 95 
Here, we propose an age-dependent topic modelling (ATM) method to provide a low-rank 96 
representation of longitudinal disease records. ATM learns, and assigns to each individual, topic 97 
weights for several disease topics, each of which reflects a set of diseases that tend to co-occur as 98 
a function of age. We applied ATM to 1.7 million disease diagnoses spanning 348 diseases in the 99 
UK Biobank, inferring 10 disease topics. We identified 52 diseases with heterogeneous 100 
comorbidity profiles that enabled us to define disease subtypes. We used genetic data to validate 101 
the disease subtypes, showing that they exhibit differential genome-wide and locus-specific 102 
genetic risk profiles. 103 

 104 
105 
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Results 106 
Overview of methods 107 
We propose an age-dependent topic modelling (ATM) model,  providing a low-rank 108 
representation of longitudinal records of hundreds of distinct diseases in large EHR data sets 109 
(Figure 1, Methods). The model assigns to each individual topic weights for several disease 110 
topics; each disease topic reflects a set of diseases that tend to co-occur as a function of age, 111 
quantified by age-dependent topic loadings for each disease. The model assumes that for each 112 
disease diagnosis, a topic is sampled based on the individual’s topic weights (which sum to 1 113 
across topics, for a given individual), and a disease is sampled based on the individual’s age and 114 
the age-dependent topic loadings (which sum to 1 across diseases, for a given topic at a given 115 
age). The model generalises the latent dirichlet allocation (LDA) model37,38 by allowing topic 116 
loadings for each topic to vary with age (Supplementary Note, Supplementary Figure 1).     117 
 118 
We developed a method to fit this model that addresses several challenges inherent to large EHR 119 
data sets; the method estimates topic weights for each individual, topic loadings for each disease, 120 
and posterior diagnosis-specific topic probabilities for each disease diagnosis. First, we derived a 121 
scalable deterministic method that uses numerical approximation approaches to fit the 122 
parameters of the model, addressing the challenge of computational cost.  Second, we used the 123 
prediction odds ratio39 to compare model structures (e.g. number of topics and parametric form 124 
of topic loadings as a function of age), addressing the challenge of appropriate model selection; 125 
roughly, the prediction odds ratio quantifies the accuracy of correctly predicting disease 126 
diagnoses in held-out patients using comorbidity information, compared to a predictor based 127 
only on prevalence (see Methods and Supplementary Table 1). Third, we employed collapsed 128 
variational inference40, addressing the challenge of sparsity in the data (e.g. in UK Biobank data 129 
that we analysed, the average patient has diagnoses for 6 of 348 diseases analysed); collapsed 130 
variational inference outperformed mean-field variational inference37 in empirical data. Further 131 
details are provided in the Methods section and Supplementary Note; we have publicly released 132 
open-source software implementing the method (see Code Availability).  133 
 134 
We applied ATM to longitudinal records of 282,957 individuals from the UK Biobank29, 135 
containing a total of 1,726,144 disease diagnoses spanning 348 diseases (see Data Availability). 136 
Each disease diagnosis had an associated age at diagnosis, defined as the earliest age of reported 137 
diagnosis of the disease in that individual; we caution that age at diagnosis may differ from age 138 
at disease onset (see Discussion). ATM does not use genetic data, but we used genetic data to 139 
validate the inferred topics (Methods).  140 
 141 
Simulations 142 
We performed simulations to compare ATM with latent dirichlet allocation (LDA)37,38, a simpler 143 
topic modelling approach that does not model age. We simulated 61,000 disease diagnoses 144 
spanning 20 diseases in 10,000 individuals, using the ATM generative model; the average 145 
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number of disease diagnoses per individual (6.1), ratio of #individuals/#diseases (500), topic 146 
loadings, and standard deviation in age at diagnosis (8.5 years for each disease) were chosen to 147 
match empirical UK Biobank data.  We assigned each disease diagnosis to one of two subtypes 148 
for the underlying disease based on age and other subtype differences, considering high, 149 
medium, or low age-dependent effects by specifying an average difference of 20, 10, or 5 years 150 
respectively in age at diagnosis for the two subtypes.  For each level of age-dependent effects, 151 
we varied the proportion of diagnoses belonging to the first subtype (subtype sample size 152 
proportion) from 10-50%. Further details of the simulation framework are provided in the 153 
Methods section. Our primary metric for evaluating the LDA and ATM methods was area under 154 
the precision-recall curve (AUPRC)41, where precision is defined as the proportion of disease 155 
diagnoses that a given method assigned to the first subtype that were assigned correctly and 156 
recall is defined as the proportion of disease diagnoses truly belonging to the first subtype that 157 
were assigned correctly. We discretized the subtype assigned to each disease diagnosis by a 158 
given method by assigning the subtype with higher inferred probability. We note that AUPRC is 159 
larger when classifying the smaller subtype; results using the second subtype as the classification 160 
target are also provided. We used AUPRC (instead of prediction odds ratio) in our simulations 161 
because the underlying truth is known. Further details and justifications of metrics used in this 162 
study are provided in the Methods section and Supplementary Table 1.  163 
 164 
In simulations with high age-dependent effects, ATM attained much higher AUPRC than LDA 165 
across all values of subtype sample size proportion (AUPRC difference: 24%-42%), with both 166 
methods performing better at more balanced ratios (Figure 2, Supplementary Table 2). 167 
Accordingly, ATM attained both higher precision and higher recall than LDA (Supplementary 168 
Figure 2). Results were qualitatively similar when using the second subtype as the classification 169 
target (Supplementary Figure 3). In simulations with medium or low age-dependent effects, 170 
ATM continued to outperform LDA but with smaller differences between the methods. In 171 
simulations without age-dependent effects, ATM slightly underperformed LDA (Supplementary 172 
Figure 4A). 173 
 174 
We performed three secondary analyses. First, we varied the number of individuals, number of 175 
diseases, or number of disease diagnoses per individual. ATM continued to outperform LDA in 176 
each case, although increasing the number of individuals or the number of disease diagnoses per 177 
individual did not always increase AUPRC (Supplementary Figure 4B). Second, we performed 178 
simulations in which we increased the number of subtypes from two to five and changed the 179 
number of diseases to 50, and compared ATM models trained using different numbers of topics 180 
(in 80% training data) by computing the prediction odds ratio; we used the prediction odds ratio 181 
(instead of AUPRC) in this analysis both because it is a better metric to evaluate the overall 182 
model fit to the data, and because it is unclear how to compare AUPRC across scenarios of 183 
varying topic numbers (see Supplementary Table 1).  We confirmed that the prediction odds 184 
ratio was maximised using five topics, validating the use of the prediction odds ratio for model 185 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.10.23.22281420doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.23.22281420
http://creativecommons.org/licenses/by/4.0/


 

6 

selection (Supplementary Figure 5A). Third, we computed the accuracy of inferred topic 186 
loadings, topic weights, and grouping accuracy (defined as proportion of pairs of diseases truly 187 
belonging to the same topic that ATM correctly assigned to the same topic), varying the number 188 
of individuals and number of diseases diagnoses per individual. We determined that ATM also 189 
performed well under these metrics (Supplementary Figure 5B-E). 190 
 191 
We conclude that ATM (which models age) assigns disease diagnoses to subtypes with higher 192 
accuracy than LDA (which does not model age) in simulations with age-dependent effects. We 193 
caution that our simulations largely represent a best-case scenario for ATM given that the 194 
generative model and inference model are very similar (although there are some differences, e.g. 195 
topic loadings were generated using a model different from the inference model), thus it is important 196 
to analyse empirical data to validate the method. 197 
 198 
Age-dependent disease topic loadings capture comorbidity profiles in the UK Biobank 199 
We applied ATM to longitudinal records of 282,957 individuals from the UK Biobank29. We 200 
used Phecode42 to define 1,726,144 disease diagnoses spanning 348 diseases with at least 1,000 201 
diagnoses each; the average individual had 6.1 disease diagnoses, and the average disease had a 202 
standard deviation of 8.5 years in age at diagnosis. The optimal ATM model structure included 203 
10 topics and modelled age-dependent topic loadings for each disease as a spline function with 204 
one knot (see below). We assigned names (and corresponding acronyms) to each of the 10 205 
inferred topics based on the Phecode systems42 assigned to diseases with high topic loadings 206 
(aggregated across ages) for that topic (Table 1, Supplementary Table 3). 207 
 208 
Age-dependent topic loadings across all 10 topics and 348 diseases (stratified into Phecode 209 
systems), summarised as averages across age<60 and age≥60, are reported in Figure 3, 210 
Supplementary Figure 6, and Supplementary Table 4. Some topics such as NRI span diseases 211 
across the majority of Phecode systems, while other topics such as ARP are concentrated in a 212 
single Phecode system. Conversely, a single Phecode system may be split across multiple topics, 213 
e.g. the digestive system is split across UGI, LGI, and MDS. We note that topic loadings in 214 
diseases that span multiple topics are heavily age-dependent. For example, type 2 diabetes 215 
patients assigned to the CVD topic are associated with early onset of type 2 diabetes whereas 216 
type 2 diabetes patients assigned to MGND topic are associated with late onset of type 2 217 
diabetes.  218 
 219 
We performed seven secondary analyses to validate the inferred comorbidity topics. First, we fit 220 
ATM models with different model structures using 80% training data, and computed their 221 
prediction odds ratios using 20% testing data. The ATM model structure with 10 topics and age-222 
dependent topic loadings modelled as a spline function performed optimally (Supplementary 223 
Figure 7; see Methods). Second, we confirmed that ATM attained higher prediction odds ratios 224 
than LDA across different values of the number of topics (Supplementary Figure 8). Third, we 225 
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reached similar conclusions using evidence lower bounds39  (ELBO; see Supplementary Table 1) 226 
when fitting the model without splitting training and testing data (Supplementary Figure 9). 227 
Fourth, we confirmed that collapsed variational inference 40 outperformed mean-field variational 228 
inference 37 (Supplementary Figure 10). Fifth, we computed a co-occurrence odds ratio 229 
evaluating whether diseases grouped into the same topic by ATM in the training data have higher 230 
than random probability of co-occurring in the testing data (Supplementary Table 1). The co-231 
occurrence odds ratio is consistently above one and increases with the number of comorbid 232 
diseases, for each inferred topic (Supplementary Figure 11). Sixth, we compared the topic 233 
loadings by repeating the inference on female-only or male-only populations and observed no 234 
major discrepancies, except for genitourinary topics MGND and FGND (topic loading R2 235 
(female vs. all) = 0.788, topic loading R2 (male vs. all) = 0.773, Supplementary Figure 12). 236 
Lastly, we verified that BMI, sex, Townsend deprivation index, and birth year explained very 237 
little of the information in the inferred topics (Supplementary Table 3).   238 
 239 
Disease topics capture known biology as well as the age-dependency of comorbidities for the 240 
same diseases. For example, early onset of essential hypertension is associated with the CVD 241 
topic 43, which captures the established connection between lipid dysfunction 242 
(“hypercholesterolemia”) and cardiovascular diseases44, while later onset of essential 243 
hypertension is associated with the CER topic, which pertains to type 2 diabetes, obesity and 244 
COPD (Figure 4A). Continuously varying age-dependent topic loadings for all 10 topics, 245 
restricted to diseases with high topic loadings, are reported in Supplementary Figure 13 and 246 
Supplementary Table 5. We note that most diseases have their topic loadings concentrated into a 247 
single topic (Figure 4B, Supplementary Figure 14A and Supplementary Table 4), and that most 248 
individuals have their topic weights concentrated into 1-2 topics (Figure 4C and Supplementary 249 
Figure 14B). For diseases spanning multiple topics (Supplementary Figure 6 and Supplementary 250 
Table 4), the assignment of type 2 diabetes patients to the CVD topic is consistent with known 251 
pathophysiology and epidemiology 45,46 and has been shown in other comorbidity clustering 252 
studies, e.g. with the Beta Cell and Lipodystrophy subtypes described in ref. 35 and the severe 253 
insulin-deficient diabetes (SIDD) subtype described in ref.14, which are characterised by early 254 
onset of type 2 diabetes and have multiple morbidities including hypercholesterolemia, 255 
hyperlipidemia, and cardiovascular diseases 47. In addition, early-onset breast cancer and late-256 
onset breast cancer are associated with different topics, e.g. NRI and FGND, consistent with 257 
known treatment effects for breast cancer patients which increase susceptibility to infections, 258 
especially bacterial pneumonias48 and hypothyroidism 49 259 
 260 
We conclude that ATM identifies latent disease topics that robustly compress age-dependent 261 
comorbidity profiles and capture disease comorbidities both within and across Phecode systems. 262 
 263 
  264 
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Disease subtypes defined by distinct topics are genetically heterogeneous 265 
We sought to define disease subtypes based on the diagnosis-specific topic probabilities of each 266 
disease diagnosis. We assigned a discrete topic assignment to each disease diagnosis based on its 267 
maximum diagnosis-specific topic probability, and defined the disease subtype of each disease 268 
diagnosis based on the topic assignment. We restricted our disease subtype analyses to 52 269 
diseases with at least 500 diagnoses assigned to each of two distinct subtypes (Methods, 270 
Supplementary Figure 6, Supplementary Figure 15, and Supplementary Table 6). 271 
 272 
Age-dependent distributions of subtypes (topics) for four diseases (type 2 diabetes, asthma, 273 
hypercholesterolemia, and essential hypertension) are reported in Figure 5A and Supplementary 274 
Table 7; results for all 52 diseases are reported in Supplementary Figure 16 and Supplementary 275 
Table 7. The number of subtypes can be large, e.g. six subtypes for essential hypertension.  276 
Subtypes are often age-dependent, e.g. for the CVD and MGND subtypes of type 2 diabetes14,35 277 
(discussed above). 278 
 279 
ATM and the resulting subtype assignments do not make use of genetic data. However, we used 280 
genetic data to assess genetic heterogeneity across inferred subtypes of each disease. We first 281 
assessed whether polygenic risk scores (PRS) for overall disease risk varied across subtypes of 282 
each disease; PRS were computed using BOLT-LMM with five-fold cross validation 50,51 (see 283 
Methods and Code Availability). Results for four diseases (from Figure 5A) are reported in 284 
Figure 5B and Supplementary Table 8; results for all 10 well-powered diseases (10 of 52 285 
diseases with highest z-scores for nonzero SNP-heritability) are reported in Supplementary 286 
Figure 17 and Supplementary Table 8. We identified 18 disease-topic pairs (of 100 disease-topic 287 
pairs analysed) for which PRS values in disease cases vary with patient topic weight. For 288 
example, for essential hypertension, hypercholesterolemia, and type 2 diabetes, patients assigned 289 
to the CVD subtype had significantly higher PRS values than patients assigned to other subtypes. 290 
For essential hypertension, patients assigned to the CER subtype had significantly higher PRS 291 
values; for type 2 diabetes, patients assigned to the CER subtype had lower PRS values than the 292 
CVD subtype, even though the majority of type 2 diabetes diagnoses are assigned to the CER 293 
subtype. We further verified that most of the variation in PRS values with disease subtype could 294 
not be explained by age52 or differences in subtype sample size (Supplementary Figure 18). 295 
These associations between subtypes (defined using comorbidity data) and PRS (defined using 296 
genetic data) imply that disease subtypes identified through comorbidity are genetically 297 
heterogeneous, consistent with differences in disease aetiology. 298 
 299 
We further investigated whether subtype assignments (defined using comorbidity data) revealed 300 
subtype-specific excess genetic correlations.  We estimated excess genetic correlations between 301 
pairs of disease subtypes (relative to genetic correlations between the underlying diseases). 302 
Excess genetic correlations for 15 disease subtypes (spanning 11 diseases and 3 topics: CER, 303 
MGND and CVD) are reported in Figure 6A and Supplementary Table 9 (relative to genetic 304 
correlations between the underlying diseases; Figure 6B), and excess genetic correlations for all 305 
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89 well-powered disease subtypes (89 of 378 disease subtypes with z-score > 4 for nonzero SNP-306 
heritability) are reported in Supplementary Figure 19 and Supplementary Table 9. Genetic 307 
correlations between pairs of subtypes involving the same disease were significantly less than 1 308 
(FDR<0.1) for hypertension (CER vs. CVD: ρ = 0.86 ± 0.04, P=0.0004; MGND vs. CVD: ρ = 309 
0.74 ± 0.05, P=3× 10-8) and type 2 diabetes (CER vs. MGND: ρ = 0.64 ± 0.09, P=8 × 10-5) 310 
(Figure 6A; Supplementary Table 9). In addition, we observed significant excess genetic 311 
correlations (FDR<0.1) for 8 pairs of disease subtypes involving different diseases (Figure 6A; 312 
Supplementary Table 9). We verified that the excess genetic correlations could not be explained 313 
by non-disease-specific differences in the underlying topics (which are weakly heritable; 314 
Supplementary Table 3) by repeating the analysis using disease cases and controls with matched 315 
topic weights (Methods, Supplementary Figure 20). We also estimated subtype-specific SNP-316 
heritability and identified some instances of differences between subtypes, albeit with limited 317 
power (Supp Table 10).  318 
 319 
Finally, we used the population genetic parameter FST53,54 to quantify genome-wide differences 320 
in allele frequency between two subtypes of the same disease; we used FST on control sets with 321 
matched topic weights to assess statistical significance while accounting for non-disease-specific 322 
differences in the underlying topics (excess FST; Methods). We determined that 63 of 104 pairs 323 
of disease subtypes involving the same disease (spanning 29 of 49 diseases, excluding 3 diseases 324 
that did not have enough controls with matched topic weights) had significant excess FST 325 
estimates (FDR < 0.1) (Supplementary Figure 21, Supplementary Table 11). For example, the 326 
CVD, CER, and MGND subtypes of type 2 diabetes had significant excess FST estimates (F-327 
statistic=0.0003, P=0.001 based on 1,000 matched control sets). This provides further evidence 328 
that disease subtypes as determined by comorbidity have different molecular and physiological 329 
aetiologies. 330 
 331 
We conclude that disease subtypes defined by distinct topics are genetically heterogeneous.     332 
 333 
Disease-associated SNPs have subtype-dependent effects 334 
We hypothesised that disease genes and pathways might differentially impact the disease 335 
subtypes identified by ATM. We investigated the genetic heterogeneity between disease 336 
subtypes at the level of individual disease-associated variants. We employed a statistical test that 337 
tests for SNP x topic interaction effects on disease phenotype in the presence of separate SNP 338 
and topic effects (Methods). We verified via simulations that this statistical test is well-calibrated 339 
under a broad range of scenarios with no true interaction, including direct effect of topic on 340 
disease, direct effect of disease on topic, pleiotropic SNP effects on disease and topic, and 341 
nonlinear effects (Supplementary Figure 22). We also assessed the power to detect true 342 
interactions (Supplementary Figure 23). To limit the number of hypotheses tested, we applied 343 
this test to independent SNPs with genome-wide significant main effects on disease (Methods). 344 
We thus performed 2,530 statistical tests spanning 888 disease-associated SNPs, 14 diseases, and 345 
35 disease subtypes (Supplementary Table 12). We assessed statistical significance using global 346 
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FDR<0.1 across the 2,530 statistical tests. We also computed main SNP effects specific to each 347 
quartile of topic weights across individuals, as an alternative way to represent SNP x topic 348 
interactions. 349 
 350 
We identified 43 SNP x topic interactions at FDR<0.1 (Figure 7, Supplementary Figure 24, 351 
Supplementary Table 13 and Supplementary Table 14). Here, we highlight a series of examples. 352 
First, the type 2 diabetes-associated SNP rs1063192 in the CDKN2B locus has a higher odds 353 
ratio in the top quartile of CVD topic weight (1.19±0.02) than in the bottom quartile (1.08±0.02) 354 
(P=4 × 10!#for difference). CDKN2B is associated with both coronary artery disease and type 2 355 
diabetes55–59, suggesting that shared pathways underlie the observed SNP x topic interaction.  356 
Second, the asthma-associated SNP rs1837253 in the TSLP locus has a higher odds ratio in the 357 
top quartile of SRD topic weight (1.17±0.02) than in the bottom quartile (1.05±0.02) 358 
(P=1 × 10!# for difference). TSLP plays an important role in promoting Th2 cellular responses 359 
and is considered a potential therapeutic target, which is consistent with assignment of asthma 360 
and atopic/contact dermatitis60 to the SRD topic (Supplementary Table 4). Third, the 361 
hypertension-associated SNP rs3735533 within the HOTTIP long non-coding RNA has a lower 362 
odds ratio in the top quartile of CVD topic weight (1.07±0.02) than in the bottom quartile 363 
(1.13±0.02). HOTTIP is associated with blood pressure27,61 and conotruncal heart 364 
malformations62. Fourth, the hypothyroidism-associated SNP rs9404989 in the HCG26 long non-365 
coding RNA has a higher odds ratio in the top quartile of FGND topic weight (1.90±0.24) than in 366 
the bottom quartile (1.19±0.13) (P=3 × 10!$for difference). Hypothyroidism associations have 367 
been reported in the HLA region27, but not to our knowledge in relation to the HCG26. To verify 368 
correct calibration, we performed control SNP x topic interaction tests using the same 888 369 
disease-associated SNPs together with random topics that did not correspond to disease subtypes, 370 
and confirmed that these control tests were well-calibrated (Supplementary Figure 24B).  371 
 372 
We conclude that genetic heterogeneity between disease subtypes can be detected at the level of 373 
individual disease-associated variants. 374 
 375 
  376 
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Discussion 377 
We have introduced an age-dependent topic modelling (ATM) method to provide a low-rank 378 
representation of longitudinal disease records, leveraging age-dependent comorbidity profiles to 379 
identify and validate biological subtypes of disease.  Our study builds on previous studies on 380 
topic modelling37,38,40,63, genetic subtype identification13–15, and low-rank modelling of multiple 381 
diseases to identify shared genetic components25–27. We highlight three specific contributions of 382 
our study.  First, we incorporated age at diagnosis information into our low-rank representation, 383 
complementing the use of age information in other contexts32,52,64; we showed that age 384 
information is highly informative for our inferred comorbidity profiles in both simulated and 385 
empirical data, emphasising the importance of accounting for age in efforts to classify disease 386 
diagnoses. Second, we identified 52 diseases with heterogeneous comorbidity profiles that we 387 
used to define disease subtypes, many of which had not previously been identified 388 
(Supplementary Table 15). Third, we used genetic data (including PRS, genetic correlation and 389 
FST analyses) to validate these disease subtypes, confirming that the inferred subtypes reflect true 390 
differences in disease aetiology.   391 
 392 
We emphasise three downstream implications of our findings. First, it is of interest to perform 393 
disease subtype-specific GWAS on the disease subtypes that we have identified here, analogous 394 
to GWAS of previously identified disease subtypes13–15. Second, our findings motivate efforts to 395 
understand the functional biology underlying the disease subtypes that we identified; the recent 396 
availability of functional data that is linked to EHR is likely to aid this endeavor29,65. Third, it is 397 
of interest to apply ATM to identify age-dependent comorbidity profiles and disease subtypes in 398 
other EHR data sets30,31; establishing representations of disease topics that are transferable and 399 
robust across different healthcare systems and data sources represents a major future challenge. 400 
 401 
Our findings reflect a growing understanding of the importance of context, such as age, sex, 402 
socioeconomic status and previous medical history, in genetic risk 52,66,67.  To maximise power 403 
and ensure accurate calibration, context information needs to be integrated into clinical risk 404 
prediction tools that combine genetic information (such as polygenic risk scores 1,68) and non-405 
genetic risk factors. Our work focuses on age, but motivates further investigation of other 406 
contexts. We note that aspects of context are themselves influenced by genetic risk factors, hence 407 
there is an open and important challenge in determining how best to combine medical history 408 
and/or causal biomarker measurements with genetic risk to predict future events69.  409 
 410 
We note several limitations of our work. First, age at diagnosis information in EHR data may be 411 
an imperfect proxy for true age at onset, particularly for less severe diseases that may be detected 412 
as secondary diagnoses; although perfectly accurate age at onset information would be ideal, our 413 
study shows that that imperfect age at diagnosis information is sufficient to draw meaningful 414 
conclusions. Second, raw EHR data may be inaccurate and/or difficult to parse1; again, although 415 
perfectly accurate EHR data would be ideal, our study shows that imperfect EHR data is 416 
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sufficient to draw meaningful conclusions. Third, our ATM approach incurs substantial 417 
computational cost (Supplementary Table 16); however, analyses of biobank-scale data sets are 418 
computationally tractable, with our main analysis requiring only 4.7 hours of running time. 419 
Finally, we have applied ATM to a UK population of predominantly European ancestry; it is of 420 
interest to apply ATM to diverse populations30,31. Despite these limitations, ATM is a powerful 421 
approach for identifying age-dependent comorbidity profiles and disease subtypes. 422 
 423 
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Methods 459 
Age-dependent topic model (ATM) 460 
Our Age-dependent topic model (ATM) is a Bayesian hierarchical model to infer latent risk 461 
profiles for common diseases.  The model assumes that each individual possesses several age-462 
evolving disease profiles (topic loadings), which summarise the risk over age for multiple 463 
diseases that tend to co-occur within an individual's lifetime, namely the age specific multi-464 
morbidity profiles. At each disease diagnosis, one of the disease profiles is first chosen based on 465 
individual weights of profile composition (topic weights), the disease is then sampled from this 466 
profile conditional on the age of the incidence.  467 
 468 
We constructed a Bayesian hierarchical model to infer K latent risk profiles for D distinct 469 
common diseases. Each latent risk profile (comorbidity topics) is age-evolving and contains risk 470 
trajectories for all D diseases considered. Each individual might have a different number of 471 
diseases, while the disease risk is determined by the weighted combination of latent risk topics. 472 
The indices in this note are as follows: 473 

● 𝑠 = 	1, . . . , 𝑀;  474 
● 𝑛 = 	1, . . . , 𝑁%; 475 
● 𝑖 = 	1, . . . , 𝐾;  476 
● 𝑗 = 	1, . . . , 𝐷;  477 

where M is the number of subjects, Ns is the number of records within sth subject, K is the 478 
number of topics, and D is the total number of diseases we are interested in. The plate notation of 479 
the generative model is summarised in Supplementary Figure 1: 480 

● 𝜃	 ∈ 		𝑅	𝑀	×	𝐾	 is the topic weight for all individuals (referred to as patient topic weights), 481 
each row of which (∈ 𝑅𝐾	) is assumed to be sampled from a Dirichlet distribution with 482 
parameter 𝛼. 𝛼 is set as a hyper parameter: 𝜃% 	∼ 	𝐷𝑖𝑟(𝛼). 483 

● 𝑧	 ∈ 	 {1,2, . . . , 𝐾}∑ 		" 	+" 	 (referred to as diagnosis-specific topic probability) is the topic 484 
assignment for each diagnosis 𝑤	 ∈ 	 {1,2, . . . , 𝐷}∑ 		" 	+" 	. Note the total number of 485 
diagnoses across all patients are ∑ 		, 	𝑁,. The topic assignment for each diagnosis is 486 
generated from a categorical distribution with parameters equal to 𝑠-. individual topic 487 
weight:  𝑧%/ 	∼ 	𝑀𝑢𝑙𝑡𝑖(𝜃%)	. 488 

● 𝛽(𝑡) 	∈ 	𝐹(𝑡)𝐾	×	𝐷is the topic loading which is  𝐾	 × 	𝐷 functions of age 𝑡. 𝐹(𝑡) is the 489 
class of functions of 𝑡. At each plausible 𝑡, the following is satisfied: ∑ 		1 	𝛽21(𝑡) 	= 	1 . In 490 
practice we use softmax function to ensure above is true and add smoothness by constrain 491 

𝐹(𝑡) to be spline or polynomial functions: 𝛽21(𝑡) 	= 	
345(5#$%	7	(-))

{∑ 	&
$'( 	345(5#$%	7	(-))

,  where 492 

𝑝21 	= 	 {	𝑝21:}; 	𝑑	 = 	1,2, . . . , 𝑃	; 𝑃 is the degree of freedom that controls the smoothness; 493 
𝜙	(𝑡) is polynomial and spline basis for age 𝑡. 494 
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● 𝑤	 ∈ {1,2, . . . , 𝐷}∑ 		" 		+" are observed diagnoses. The 𝑛-. diagnosis of 𝑠-. individual 𝑤%/ 495 
is sampled from the topic 𝛽𝑧𝑠𝑛(𝑡) chosen by 𝑧%/:	𝑤%/ 	∼ 	𝑀𝑢𝑙𝑡𝑖(𝛽<+,(𝑡%/)), here 𝑡%/ is the 496 
age of the observed age at diagnosis of the observed diagnosis 𝑤%/. 497 

 498 
The values of interest in this model are global topic parameter 𝛽, individual (patient) level topic 499 
weight 𝜃, and diagnosis-specific topic probability 𝑧. Based on the generative process above, we 500 
notice that each patient is independent conditional on 𝛼. Therefore, the inference of 𝜃 and 501 
𝑧(discussed below) could be performed by looping each individual in turn.   502 
 503 
The key element in our model is age-evolving risk profiles, which is achieved by model the 504 
comorbidity trajectories 𝛽(𝑡) 	∈ 	𝐹(𝑡)𝐾	×	𝐷 as functions of age. The functionals 𝐹(𝑡) considered 505 
are linear, quadratic, cubic polynomials, and cubic splines with one, two and three knots. 506 
 507 
Inference of ATM 508 
The variables of interest are global topic parameter 𝛽(𝑡), individual (patient) level topic weight 509 
𝜃, and diagnosis-specific topic probability 𝑧 of each diagnosis. We could adopt an EM strategy, 510 
where in the E-step we first estimate posterior distribution of 𝜃 and 𝑧, then in the M-step we 511 
estimate 𝛽 which maximises the evidence lower bound (ELBO).  512 
 513 
The details of the inference is explained in Supplementary Note. In summary, in a Bayesian 514 
setting, the model could be evaluated by the evidence function 𝑝(𝑤|𝛼, 𝛽). The best 𝛽(𝑡) is found 515 
by maximise the evidence function, while for 𝜃 and 𝑧 we aim to find or approximate their 516 
posterior distribution 𝑝(𝑧, 𝜃	|	𝑤, 𝛼, 𝛽)	. Given that the posterior distribution is intractable, we use 517 
variational distribution 𝑞(𝑧, 𝜃) to approximate them.  Now we could write the evidence function 518 
as: 519 

 𝑝(𝑤|	𝛼, 𝛽) = 𝐿(𝑧, 𝜃, 𝛽, 𝛼) 	+ 	𝐾𝐿(𝑞||𝑝), 520 

here 𝐾𝐿(𝑞||𝑝) = −∫ 		
<,> 	𝑞(𝑧, 𝜃) 	 𝑙𝑛 5(<,>	|	@,A,B	)

C(<,>)
  is the KL divergence. Since KL divergence is 521 

always positive, 𝐿(𝑧, 𝜃, 𝛽, 𝛼) is a lower bound of the evidence function: 522 
𝐿(𝑧, 𝜃, 𝛽, 𝛼) = 𝐸C{	𝑙𝑛 𝑝(𝑤, 𝑧, 𝜃	|	𝛼, 𝛽) 	−	𝑙𝑛 𝑞(𝑧, 𝜃	)}.  523 

 524 
When finding the posterior of 𝜃 and 𝑧, we want 𝑙𝑛 𝑞(𝑧, 𝜃	) to be as close to the posterior 525 
𝑝(𝑧, 𝜃	|	𝑤, 𝛼, 𝛽	) as possible. Since 𝐾𝐿(𝑞||𝑝) = 	0 when 𝑞(𝑧, 𝜃	) = 𝑝(𝑧, 𝜃	|	𝑤, 𝛼, 𝛽	), this could 526 
be achieved by minimising 𝐾𝐿(𝑞||𝑝) or maximise 𝐿(𝑧, 𝜃, 𝛽, 𝛼). The most commonly used form 527 
of 𝑞(𝑧, 𝜃	) assume the distribution is factorised, which might cause instability when signal-to-528 
noise ratio is low70. Therefore, more accurate inference methods such as collapsed variational 529 
inference is considered40. Comparison of the evidence lower bound 𝐿(𝑧, 𝜃, 𝛽, 𝛼) shows collapsed 530 
variational inference is consistently more accurate than LDA (Supplementary Figure 8). 531 
Therefore we choose the collapsed variational inference40. The collapsed variational inference is 532 
achieved by integrate out 𝜃 from the likelihood function 𝑝(𝑤, 𝑧, 𝜃	|	𝛼, 𝛽) and find the 533 
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approximated posterior distribution 𝑞(𝑧). For detailed derivation, the comparison between 534 
collapsed variational inference and mean-field variational inference, and update algorithms, see 535 
Supplementary Note.   536 
 537 
When finding the 𝛽(𝑡) that maximises the evidence function, we again maximise 𝐿(𝑧, 𝜃, 𝛽, 𝛼). 538 
Maximising 𝐿(𝑧, 𝜃, 𝛽, 𝛼) with respect to  𝛽(𝑡) does not have an analytical solution due to its 539 
softmax structure. We use local variational methods and numeric optimisation to find the 540 
distribution of  𝛽(𝑡). Details are provided in Supplementary Note.  541 
 542 
We extract topic weights at patient-level and diagnosis-level from the posterior distribution 543 
inferred from the data. Our model has the desired property that each patient and patient-diagnosis 544 
are assigned to comorbidity topics. The model estimates the posterior distribution  𝑞(𝑧), which is 545 
a categorical distribution (Supplementary Note.) Several metrics related to topic assignments 546 
could be derived from the 𝑞(𝑧):   547 

● Each patient-diagnosis (incident disease) has a diagnosis-specific topic probability, which 548 
is computed as 𝐸C{𝑧/}	. 549 

● Each patient has a posterior topic assignment 𝜃% , which is a dirichlet distribution 𝜃% ∼550 
	𝐷𝑖𝑟(	𝛼	 +	∑ 	+"

/DE 𝐸C{𝑧/}	)	. The topic weights of each patient is the mode of this 551 

Dirichlet distribution 
∑ 	-"
,'( 	F.{<,}	

∑ 	/
#'( ∑ 	-"

,'( F.{<,#}	
 (we used 𝛼 = 1	). The value is used as the patient 552 

low-rank representation of disease history, for analysis including PRS association with 553 
comorbidity within cases and G x Topic interaction analysis.  554 

● The average topic assignments of disease 𝑗 is the mean over all incidences 555 
𝐸C{	𝑧%/	∈	{@+,DI}}PPPPPPPPPPPPPPPPPPPPP. This metric is used to measure which comorbidity topic a disease is 556 
associated with (Figure 4B), and it is equivalent to a weighted average of topic loadings 557 
(for the specific weighted average expression, see equation 5 of Supplementary Note). A 558 
disease assigned to multiple topics is considered to have comorbidity subtypes.   559 

● A hard assignment of a patient-diagnosis to a subtype is based on the max value of the 560 
vector 𝐸C{𝑧/}	. The incident disease is assigned to topic 𝑎𝑟𝑔𝑚𝑎𝑥2 	(𝐸C{𝑧/2})	. 561 

 562 
Metrics for evaluating ATM 563 
ATM is evaluated for different purposes, which requires different metrics (Supplementary Table 564 
1). Here we list the details of the four metrics considered: Prediction odds ratio, Evidence Lower 565 
Bound (ELBO), AURPC, and Co-occurrence odds ratio.  566 
 567 
Prediction odds ratio: To compare models of different topic numbers and configuration of age 568 
profiles, we compare the prediction odds ratio of each model. Briefly, prediction odds ratio is 569 
defined on 20% held-out test data as the odds that the true diseases are within the top 1% 570 
diseases predicted by ATM (trained on 80% of the training set and uses earlier diagnoses as 571 
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input), divided by the odds that the true diseases are within the top 1% of diseases ranked by 572 
prevalence.   573 
 574 
Specifically, we separate UK Biobank patients into a training set (80%) and a testing set (20%). 575 
On the training set, we estimate the comorbidity topic loadings. On the testing set, we fix the 576 
topic loadings and infer the patient topic weights to predict the next disease in chronological 577 
order. The topic loadings are estimated using the 𝑛 diseases and compute the risk rank of 578 
diseases at the age of the 𝑛+1 disease. The odds ratio is computed by the odds of the 𝑛+1 disease 579 
being in the top 1% of diseases versus being in the top 1% most prevalent diseases. We use the 580 
top 1% most prevalent diseases instead of randomly chosen diseases as it represents a naive 581 
prediction model that predicts disease based on prevalence. The patient topic weights 582 
computation is in section Inference of ATM and the risk is computed as the linear combination 583 
of topics using topic weights as coefficients. We also compute the prediction odds ratio using the 584 
LDA model. We repeat the procedure for 10 times for each model configuration.  585 
 586 
We compared the prediction odds ratio for topic number between 5 to 20, with linear, quadratic 587 
polynomial, cubic polynomial, and splines with one, two and three knots. We also compare the 588 
ATM model with the LDA model of topic number between 5 to 20.  589 
 590 
Evidence Lower Bound (ELBO): ELBO evaluated the accuracy of the variational inference 591 
method on a specific data set. Mathematical expression of ELBO for ATM is presented in 592 
equation 9 in Supplementary Note. To find the best model that fit to the entire dataset, we 593 
evaluate the ELBO for models with topic numbers between 5 to 20, 25, 30, and 50 topics and age 594 
profiles configured by linear, quadratic polynomial, cubic polynomial, and splines with one, two 595 
and three knots. Each model is run for 10 times with random initialisations. We choose the 596 
model that has the highest ELBO after converging.  597 
 598 
AURPC: To evaluate whether a model could capture the comorbidity subtypes in simulation 599 
analysis, we compute the precision, recall, and area under precision-recall curve (AUPRC) to 600 
correctly classify disease diagnosis to be from the topic that it is generated from. The topic of 601 
each diagnosis is determined by diagnosis-specific topic probability. Note we could only 602 
evaluate AUPRC in simulations where the truth is known.  603 
 604 
Co-occurrence odds ratio: To verify that the comorbidity profiles that the model captured are 605 
capturing diseases that are more likely to present within the same individual, we estimate the 606 
odds ratio of the disease duo, trio, quartet, and quintet that are captured by the topic versus that 607 
of random combinations. We divide the population into an 80% training set and a 20% testing 608 
set. We trained the ATM model with five random initialisations and kept the inference with the 609 
highest ELBO. Each disease is assigned to a topic by the highest average topic assignments. 610 
(section Inference of ATM) We focus on the top 100 diseases ranked by prevalence to avoid the 611 
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combination being too rare to appear in the population. In the testing set, we computed the odds 612 
of individuals who have all diseases in the comorbidities versus the odds implied if all diseases 613 
are independent (computed as the product of disease prevalence). The odds ratio is computed for 614 
all combinations of duo, trio, quartet, and quintet that are assigned to the same topics. We 615 
perform the same analysis using PCA for comparison.   616 
 617 
 618 
Simulations of ATM method. 619 
To test whether the algorithm could assign disease diagnosis to correct comorbidity profiles, we 620 
simulated disease from two disease topics within a population of 10,000, using following 621 
parameters: 622 

● 𝑀	 = 	10,000; 623 
● 𝑁,PPP = 	6.1; 624 
● 𝑁, 	∼𝑒𝑥𝑝 {𝑁,PPP}; 625 
● 𝐷	 = 	20; 626 
● 𝐾	 = 	2; 627 

Here 𝑀 is the number of individuals in the population, 𝑁,PPP	is the average number of diseases for 628 
each individual, 𝐷 is the total number of diseases, 𝐾 is the number of comorbidity topics. The 629 
distribution of disease number per-individual 𝑁, is sampled from an exponential distribution, 630 
which matches those from UK Biobank data (Supplementary Figure 26). According to equation 631 
3.1 in Ghorbani et al.70, whether the topic model could capture the true latent structure is 632 
determined by the information signal-to-noise ratio and could be evaluated with limits 𝑀	 →633 

	∞; 	𝐷	 → 	∞; 	J
K
	→ 	𝛿, where 𝛿 is a constant. Therefore we choose 𝐷 and 𝑀 at scales that make J

K
 634 

approximately similar to those of the UK Biobank dataset (Samples size = 282,957; distinct 635 
disease number = 349).  636 
 637 
The simulated topics loadings are constructed as follows: 638 

● All but 𝐾 diseases are simulated to be associated with comorbidity profiles. Each of them 639 
has a risk period of 30 years and overlaps for 10 years with the next disease. For 640 
example, if disease 1 has a risk period from 30 to 59 years of age, disease 2 will have a 641 
risk period between 50 to 79 years of age. When the risk period reaches the maximal age, 642 
the truncated part will be carried to the next disease to create diseases with shorter risk 643 
period. All risk periods are assigned a value 1.   644 

●  𝐾 diseases that are not associated with comorbidity are simulated to span all topics. The 645 

values of these diseases are sampled from 𝑈𝑛𝑖𝑓(0, 0.1
M
) for each topic. Here  𝐾 is the 646 

number of topics.   647 
● The age profiles are then normalised at each age point to ensure ∑ 	J

1DE 𝛽1(𝑡) 	= 	1 for all 648 
𝑡. With this constraint we could sample a disease at each age 𝑡 using a multinomial 649 
probability with the topic loading as the parameter. The age range of the simulated topics 650 
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is 30 to 81 years of age, which is the minimal and maximal age at diagnosis of incident 651 
disease in the UK Biobank population. An example of a simulated topic is shown in 652 
Supplementary Figure 27. 653 

 654 
For each individual, we sampled the Dirichlet parameter 𝛼 from a gamma distribution (shape = 655 
50, rate = 50 ). Topic loadings are sampled from the Dirichlet distribution for each patient as the 656 
generative process. For each patient, we first sample the number of diseases 𝑁,. For each 657 
incident disease, we sample the disease age from uniform distribution between age 30 to 81 and 658 
a topic from the topic loading. We then choose the incident disease based on the age at diagnosis 659 
from the chosen topic. The procedure follows the generative process described in Supplementary 660 
Note. 661 
 662 
Since in real data we only use the first age at diagnosis for diseases that are recorded repeatedly 663 
within the same patient, we filter the simulated diseases accordingly. The filtered data are fed 664 
into the inference functions to infer the latent topics and disease assignments. The inferred topics 665 
resemble the true topics used to simulate diseases as shown in Supplementary Figure 27. For the 666 
initialisation of each inference, we first sample  𝛽 and 𝜃 from the Dirichlet distribution of non-667 
informative hyperparameters, then initialise other variables parameters following the generative 668 
process. The variational inference converged where the relative increase of ELBO is below 10!6.     669 
 670 
To simulate disease having distinct comorbidity subtypes, we first simulate diseases using the 671 
procedure described above. We consider two scenarios: (1) the subtype of diseases have the 672 
same age at diagnosis distribution. (2) the subtypes of disease have distinct age at diagnosis 673 
distribution.  674 
 675 
We create diseases with distinct comorbidity profiles by combining diseases that are sampled 676 
from distinct topics and labelling them as a single disease. We first chose one disease (disease 677 
A) then sampled a proportion of a second disease (disease B) to label as disease A. The 678 
proportion is varied to create a different sample size ratio of the two subtypes. In scenario one, 679 
disease B is a disease that has the exact same age distribution as disease A but from the other 680 
topic. In scenario two, disease B is from the other topic and has a different age distribution (age 681 
at diagnosis moves up for 20 years, 10 years, or 5 years, respectively) than disease A. After 682 
changing the labels of disease B to be the same as disease A, we used the inference procedure 683 
described as above to get the posterior distribution. 684 
 685 
To evaluate whether a model could capture the comorbidity subtypes, we compute the precision, 686 
recall, and area under precision-recall curve (AUPRC) to correctly classify incident disease B to 687 
be from the topic that it is generated from. The topic of each diagnosis is determined by 688 
diagnosis-specific topic probability. We use other diseases from the topic of disease B to 689 
benchmark the topic label. Topic modelling on the simulated data is performed with both ATM 690 
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and LDA (both implemented using collapsed variational inference for fair comparison) to 691 
compare the performances. 692 
 693 
We evaluate the subtype classification with varying values for three simulation parameters:  694 

● ratio of sample sizes between the two subtypes. We change the ratio of the two subtypes 695 
by a grid between 0 to 0.9 with a step size 0.1. The default value of sample size ratio is 696 
set as 0.1 in other simulations to test for other parameters that have impacts on the 697 
precision and recall.  698 

● Simulated population size. We simulated population sizes equal to 200, 500, 1000, 2000, 699 
5000, and 10,000. The default population size is 10,000 in other simulations.  700 

● Number of distinct diseases. We simulated datasets with 20, 30, 40, and 50 distinct 701 
diseases, with 2, 3, 4 and 5 underlying disease topics respectively. The default number of 702 
distinct diseases is 20 in other simulations.  703 

● Difference of age distribution. We considered three scenarios of subtype age distribution, 704 
with 0, 10, and 20 years of difference in the average age at diagnosis.   705 

 706 
 707 
UK Biobank comorbidity data. 708 
We analysed comorbidity data from 282,957 UK Biobank samples with diagnoses for at least 709 
two of the 348 focal diseases that we studied (see below). We use the hospital episode statistics 710 
(HES) data within the UK Biobank dataset, which records diseases using the ICD-10/ICD-10CM 711 
coding system. Codes started with letters from A to N are kept as they correspond to disease 712 
code (opposed to procedure codes). The disease records were mapped from ICD-10/ICD-10CM 713 
codes to PheCodes using a three-step procedure: Firstly, we map the first four letters of each 714 
ICD-10 records to the phecodes, using the map file downloaded from phewascatalog.org; 715 
Secondly, we map the remaining records using ICD-10CM map file downloaded from 716 
phewascatalog.org; Lastly, we map remaining records to a collapsed ICD-10CM mapping 717 
system which only use the first four character of ICD-10CM codes. We also noticed an ICD-718 
10/ICD-10CM code could map to multiple PheCodes. When a single ICD-10/ICD-10CM code s 719 
mapped to more than one PheCodes, we only kept the Phecode that are mapped to the most ICD-720 
10 codes (i.e. PheCode is constructed by combining ICD-10 that represent similar diseases. The 721 
Phecode that represent a larger number of ICD-10 codes are more likely to be a well defined 722 
disease, which we chose to keep.), which ensure that one ICD-10(CM) code only maps to one 723 
PheCode. Using the procedure above, we mapped 99.7% ICD-10/ICD-10CM code to PheCodes, 724 
with 4,637,127 records in total. 725 
 726 
The mapped Phecodes are filtered to keep only the first age at diagnosis for the same diseases 727 
within a patient. The age at diagnosis for each record is computed as the difference between 728 
month of birth to the episode starting date. We then computed the occurrence of each disease in 729 
the UK Biobank and kept 348 that have more than 1,000 occurrences (Supplementary Table 4). 730 
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Starting with all 488,377 UK Biobank patients (including both European and non-European 731 
ancestries), we filtered the patients to keep only those who have at least two distinct diseases 732 
from the 348 focal diseases, as we are most interested in the comorbidity information. We treated 733 
the death as an additional disease (8,666 records) to evaluate if certain comorbidities are more 734 
likely to lead to fatal events. After these procedures, there are in total 1,726,144 distinct records 735 
across 282,957 patients.  736 
 737 
To name the topics inferred from the UK Biobank, we take the sum of average topic assignments 738 
(section Inference of ATM) over diseases that are within each phecode system and extract the 739 
top 3 systems. Most of comorbidity topics are named using the first three topics (e.g. CER: 740 
cardiovascular, endocrine/metabolic, respiratory), except for topics that are predominantly 741 
associated with one system (LGI: lower gastrointestinal; UGI: upper gastrointestinal; CVD: 742 
cardiovascular).  743 
 744 
We present focal diseases for each topic in two ways. Firstly, we filter each topic using the 745 
profile mean value between age 30 to 81 to keep the top seven diseases. We chose seven for 746 
visualisation, as we found more diseases would be harder to read on a plot. Secondly, we also 747 
show seven diseases that have the highest average assignment to each topic. This will give a 748 
picture of diseases that are not the most prevalent in the population but are predominantly 749 
associated with the target topic. 750 
 751 
To compare the comorbidity heterogeneity between age groups, we group the incidences for each 752 
disease to two age groups: young group (<60 years of age) and old group (≥60 years of age). We 753 
compute the average topic assignment of each group as described in section Inference of ATM. 754 
Additionally, we inferred topics for male (984,554 records in 156,366 individuals) and female 755 
(741,590 records in 126,591 individuals) populations respectively using a model with 10 topics 756 
and spline function with one knot. We extract the average topic assignment for each disease, and 757 
use Pearson's correlation to match the topics for both sexes to the topics inferred on the entire 758 
population.  759 
 760 
Each diagnosis could be assigned to a specific topic using max diagnosis-specific topic 761 
probability. We focus our disease heterogeneity analysis on 52 diseases that have at least 500 762 
incidences assigned to a secondary topic.  763 
 764 
UK Biobank genotype data. 765 
For all analyses except BOLT-LMM we use 488,377 UK Biobank participants. For BOLT-LMM 766 
analyses, we constrain our analysis to 409,694 British Isle ancestry individuals to remove the 767 
possibility that topics are capturing population structure. For FST  analysis with PLINK we used 768 
805,426 genotyped SNPs; for BOLT-LMM PRS analysis we used 727,882 genotyped SNP with 769 
MAF>0.1%; for genetic correlation analysis using LDSC, we used 157,756 Genotyped SNPs 770 
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mapped to HapMap3 SNPs; for BOLT-LMM and subsequent LDSC analysis that use imputed 771 
SNPs, we used 1,201,838 imputed SNPs mapped to HapMap3 SNPs SNPs.  772 
 773 
Polygenic risk scores (PRS) analysis. 774 
To exclude the possibility of population stratification, we compute PRS using mixed-effect 775 
association on the British Isle ancestry group (N = 409,694) for the 10 heritable diseases that 776 
have the highest heritability z-scores. We used a mixed model to estimate effect size 777 
implemented by BOLT-LMM and constructed genome-wide PRS 50. For the computation of 778 
PRS, we randomly sampled half of the British isle ancestry population (N = 204,847) for 779 
computation efficiency (essential hypertension, arthropathy, asthma, and hypercholesterolemia) 780 
or sampled 9 controls for each case to ensure case proportion at or above 10% as recommended 781 
by BOLT-LMM (type 2 diabetes, varicose veins of lower extremity, hypothyroidism, other 782 
peripheral nerve disorders, major depressive disorder, and GRED). We used PLINK to select 783 
genotyped SNPs with MAF > 0.1% as recommended in BOLT-LMM. For each disease, we used 784 
5-fold cross validation to estimate effect sizes using BOLT-LMM and computed the PRS on the 785 
held-out testing set. The predictive PRS are then used to compute the excess PRS over different 786 
topic loadings, by a linear regression where PRS is the response variable and topic weights is the 787 
predictor.   788 
 789 
We compute the relative risk for each percentile of PRS using the following formula:  790 

𝑅𝑅5-,% =	
𝑛5-,% × 	100

𝑛,
, 791 

where 𝑅𝑅5-,% is the relative risk of 𝑠 subtype for the 𝑝𝑡-ℎ PRS percentile (computed for the entire 792 
population); 𝑛5-,% is the number of cases in 𝑠 subtype that has PRS within the 𝑝𝑡-ℎ  percentile; 𝑛, 793 
is the number of cases in the 𝑠 subtype. 794 
 795 
Genetic correlation analysis. 796 
For each disease and disease subtype, we use a case-control matching strategy to construct data 797 
to estimate coefficients for genetic correlation analysis. For each case in the disease group, we 798 
pick four nearest neighbors (without replacement) from the control group, matching sex, BMI, 799 
year of birth and 40 genetic principal components. The covariates are available within the UK 800 
Biobank data set, over which we computed the principal components.  We then compute the 801 
Euclidean distance of the principal components to find the nearest neighbours in the population. 802 
All cases are matched with four controls except for 401.1 essential hypertension which has a 803 
sample size larger than 20% of the population. We match only one control for each hypertension 804 
case.  805 
 806 
We perform logistic regression with sex and top 10 principal components as covariates to 807 
estimate the main variant effect of the 805,426 variants that are genotyped. We used PLINK 1.9 808 
for association analysis71. With the summary statistics from the association analysis, we use 809 
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LDSC to map the summary statistics to HapMap3 SNPs and match the effect and non-effect 810 
alleles2,72. Since UK Biobank is mostly of British Isle ancestry, we use the pre-computed LD 811 
score from the LDSC website. We estimated the heritability for each disease or disease subtype 812 
which has more than 1000 incidences (378 diseases subtypes and diseases). We use 1000 813 
incidence threshold as LDSC are more accurate with larger sample size. We focus on 71 disease 814 
and 18 disease subtypes that have heritability z-score above 4 for genetic correlation analysis.  815 
 816 
The genetic correlation is computed for each pair of disease/subtypes using the same summary 817 
statistics and LD score regression. We report the estimate of genetic correlation and z-scores. 818 
Additionally, for pairs that involve subtypes (disease-subtype or subtype-subtype), we compute 819 
the excess genetic correlation, defined as the difference between the genetic correlation 820 
involving subtypes and the genetic correlation involving all disease diagnoses. For example, the 821 
genetic correlation between T2D-CER and hypertension-CVD is compared to the genetic 822 
correlation between all T2D and all hypertension. The z-score and p-value of the genetic 823 
correlation differences are reported. We note that genetic correlations between subtypes of the 824 
same disease are compared to 1. We only reported p-values of excess genetic correlation when 825 
both genetic correlation estimation has standard error <0.1 and at least one of the genetic 826 
correlation has |z-score|>4.  827 
 828 
To avoid potential collider effects where subtypes are defined by topic components that are 829 
independent of the diseases, we further match cases in each subtype with controls that match the 830 
topic loadings. We computed PCs from 23 variables (10 topic loadings, 10 PCs, year of birth, 831 
sex, and BMI) and use the nearest neighbour procedure (by Euclidean Distance) to find controls 832 
for each case. Here controls are chosen from individuals without the targeting disease, i.e. an 833 
individual with one subtype of the target disease could not be a control for the other subtypes. 834 
We performed the same analysis using this case-control matching procedure and compared the 835 
genetic correlation with the case-control procedure described above. We perform the analysis for 836 
four diseases that have evidence for genetic subtypes: asthma, type 2 diabetes, 837 
hypercholesterolemia, and hypertension. For one subtype (hypertension-CVD), the heritability 838 
(0.0313, s.e. = 0.0289) is below threshold after matching the topic, which was excluded in 839 
genetic correlation analysis.  840 
 841 
FST analysis. 842 
To evaluate the genetic heterogeneity between disease subtypes, we estimated the FST for 52 843 
diseases that have at least 500 incidences assigned to a secondary topic. To test the statistical 844 
significance of Fst, we adopted a permutation strategy and sampled the same number of controls 845 
of similar topic weights distribution for each subtype. The topic weights are matched by 846 
sampling (without replacement) the same number of controls for each dominant topic weight 847 
quartile of the cases (i.e. matching the topic that defines the subtype), which ensures the controls 848 
have the same topic weight stratification as the disease subtypes. We then compute the FST across 849 
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the control groups matched for subtypes. We excluded three diseases, “hypertension”, 850 
“hypercholesterolemia”, and “arthropathy”, from FST analysis as we do not have enough controls 851 
that match topic weight distribution. The FSTs are computed using PLINK 1.9's weighted mean 852 
across all genotyped SNPs, which report F statistics across all subtypes.     853 
 854 
We obtained 1,000 permutation samples and reported the permutation p-value. Under the 855 
assumption that causal and non-causal variants have similar allele frequency differences across 856 
the subtypes, FST  could be a measure of causal genetic effect heterogeneity across subtypes.  857 
 858 
SNP x topic interaction test. 859 
For the diseases that have heritability z-score above 4 in the UK Biobank, we further investigated 860 
whether there are interactions between genetic risk factors with the topic loadings. We used a fit 861 
a logistic regression model using following model: 862 

𝑙𝑜𝑔𝑖𝑡(𝑝) 	= 	𝛽0 	+ 	𝛽1 	 ∗ 	𝑇	 +	𝛽2 ∗ 𝑇2 	+ 	𝛽3 	 ∗ 	𝐺	 +	𝛽4 	 ∗ 	𝐺	 ∗ 	𝑇,	 863 
where 𝑇 is individual topic weights for a specified topic, 𝐺 is the genotype, and 𝑝 is the 864 
probability of getting the disease. We computed the test statistics under the null that 𝛽4 = 0. We 865 
used QQ plots to check that the test statistics are well calibrated for each disease-topic pair.  866 
 867 
Since the simulation shows the interaction test is underpowered when the variant effects are 868 
small, we focus on the set of SNP that reaches genome-wide significance level to increase power 869 
to detect interaction effects. We performed LD-clumping using 𝑟2 	> 	0.6 to remove variants that 870 
are in strong LD with the lead variants. We computed the test statistics using the model above 871 
(for testing 𝛽4 = 0) and computed study-wise FDR across disease-topic pairs. 872 
 873 
To verify the significant interactions, we divided cases into quartiles based on topic loading for 874 
each disease-topic pair, and randomly sampled two controls that match the topic loading for each 875 
case. We estimated the main effect sizes for all GWAS-SNP within each quartile of topic 876 
loadings to capture effects that are modulated by topic weights. We focus on the SNPs that have 877 
significant interaction test statistics computed in the previous step and compare it with 878 
background SNPs that have genome-wide significant main effects but no interaction effect 879 
(P>0.05).     880 
 881 
Simulations of SNP x topic interaction 882 
We simulate comorbidity with genetics to test interaction between genetic and comorbidity 883 
topics. We simulated 100 independent variants with MAF randomly sampled from 𝑈𝑛𝑖𝑓(0, 0.5). 884 
We assumed an additive model and simulated genotypes for the population using Hardy-885 
Weinberg equilibrium. We simulated three types of genetic effects on topic and diseases on topic 886 
of the simulation framework described in Simulations of ATM method section: 887 

● Genetics-topic effect: each variant is simulated to have an linear effect of 0.04 on the 888 
topic loading. We choose this value as after normalising the topic, a regression of causal 889 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.10.23.22281420doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.23.22281420
http://creativecommons.org/licenses/by/4.0/


 

25 

variant to topic would have an effect size approximately 0.01 which is similar to our 890 
observation in the UK Biobank. The number of variants that are causal to the topic varies 891 
between 2 to 20. We simulated the effect on one topic by adding additive SNP effects and 892 
normalise the topic loadings of each patient. The topic-disease causality is a natural 893 
consequence following the generative process of sampling data.    894 

● Genetic-disease-topic effect: we simulated a heritable disease that is causal to the topic. 895 
The disease is simulated with 20 causal variants each of effect size 0.15. We vary the 896 
disease-to-topic causal effect from 0.05 to 0.5, with a default value of 0.1 in other 897 
analyses (similar to the correlation we found in UK Biobank analysis). We simulated the 898 
effect on one topic by adding additive causal disease effects and normalise the topic 899 
loadings of each patient.  900 

● The genetic effect could interact with the topic when contributing to disease risk. We 901 
simulated four additional diseases to represent different structures (Supplementary Figure 902 
22). 903 

○ Genetic effects interact with topic loading on altering disease risk. The interaction 904 
term is added to the mean of disease liability, which is sampled from a Gaussian 905 
distribution. The disease is then sampled by a threshold on the liability, where the 906 
incidence rate is by default 0.5. The interaction effect is varied from 0.4 to 4, with 907 
default value equal to 2. 908 

○ Pleiotropy effects are simulated with a variant that have both genetic-disease and 909 
genetic-topic-disease effects. Both genetic and topic effects are added to the mean 910 
of disease liability. A disease is sampled by a threshold with default incidence rate 911 
equal to 0.5. The topic-disease effect is varied from 0.4 to 4, with default value 912 
equal to 2. 913 

○ Pleiotropy effect with nonlinear topic-disease effect. A quadratic term of topic-914 
disease effect added to the second model. 915 

○ Pleiotropy effect with nonlinear genetic-disease effect. A quadratic term of 916 
genetic-disease effect added to the second model.  917 

 918 
For disease-topic or topic-disease causal effects, we simulated 50 repetition at each causal effect 919 
size. For interaction analysis, we repeated 10 times at each parameter value, as there are more 920 
SNPs for uncertainty estimation. The simulated disease sets are fed into the inference procedure 921 
to infer the patient topic weights.  922 
 923 
 924 

 925 

  926 
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Tables 927 

 928 

Acronym Disease systems Representative diseases 
Number of 
associated 
diseases 

NRI 
Neoplasms, 
respiratory, 

infectious diseases 

Secondary malignancy of lymph nodes; 
Pneumococcal pneumonia; 

Bacterial infection NOS 
53 

CER 
Circulatory system, 

endocrine/metabolic, 
respiratory 

Type 2 diabetes; 
Obesity; 

Chronic airway obstruction 
41 

SRD 
Sense organs, 

respiratory, 
dermatologic 

Cataract; 
Septal Deviations/Turbinate Hypertrophy; 

Benign neoplasm of skin 
38 

CVD Cardiovascular disease 
Hypercholesterolemia; 

Coronary atherosclerosis; 
Myocardial infarction 

27 

UGI Upper gastrointestinal 
disease 

Diaphragmatic hernia; 
Benign neoplasm of other parts of 

digestive system; 
Gastritis and duodenitis; 

22 

LGI Lower gastrointestinal 
disease 

Irritable Bowel Syndrome; 
Benign neoplasm of colon; 

Anal and rectal polyp; 
13 

FGND 
Female genitourinary, 

neoplasms, 
digestive 

Uterine leiomyoma; 
Malignant neoplasm of female breast; 

Hypothyroidism NOS 
34 

MGND 
Male genitourinary, 

neoplasms, 
digestive 

Urinary tract infection; 
Cancer of prostate; 

Other disorders of bladder 
33 

MDS 
Musculoskeletal, 

digestive, 
symptoms 

Back pain; 
Cholelithiasis; 

Other disorders of soft tissues 
29 

ARP Arthropathy-related 
disease 

Arthropathy NOS; 
Rheumatoid arthritis; 

Enthesopathy 
26 

 929 
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 930 
 931 
Table 1. Summary of 10 inferred disease topics in the UK Biobank. For each topic, we list its 932 
3-letter acronym, disease systems, representative diseases, and number of associated diseases 933 
(defined as diseases with average diagnosis-specific topic probability >50% for that topic). 934 
Topics are ordered by the Phecode system (see Figure 3). 316 of 348 diseases analysed are 935 
associated with a topic; the remaining 32 diseases do not have a topic with average diagnosis-936 
specific topic probability >50%. 937 
  938 

  939 
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Figures 940 

 941 
Figure 1: ATM provides an efficient way to represent longitudinal comorbidity data. Top 942 
left: input consists of disease diagnoses as a function of age. Top right: ATM assigns a topic 943 
weight to each patient. Bottom: ATM infers age-dependent topic loadings.  944 
 945 
 946 
 947 
 948 
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 949 
Figure 2: ATM outperforms LDA in simulations with age-dependent effects. In simulations 950 
at different levels of age-dependent effects (left panels), we report the area under the precision 951 
and recall curve (AUPRC) for ATM vs. LDA as a function of subtype sample size proportion 952 
(the proportion of diagnoses belonging to the smaller subtype) (right panels). Each dot represents 953 
the mean of 100 simulations of 10,000 individuals. Error bars denote 95% confidence intervals. 954 
(A) 20-year difference in age at diagnosis for the two subtypes. (B) 10-year difference in age at 955 
diagnosis for the two subtypes. (C) 5-year difference in age at diagnosis for the two subtypes. 956 
Numerical results are reported in Supplementary Table 2. 957 
 958 
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 959 
Figure 3. Age-dependent topic loadings of 10 inferred disease topics across 348 diseases in 960 
the UK Biobank. We report topic loadings averaged across younger ages (age at diagnosis < 60) 961 
and older ages (age at diagnosis > 60). Row labels denote disease categories ordered by Phecode 962 
systems, with alternating blue and red color for visualisation purposes; “Other” is a merge of five 963 
Phecode systems: “congenital anomalies”, “symptoms”, “injuries & poisoning”, “other tests”, 964 
and “death” (which is treated as an additional disease, see Methods). Topics are ordered by the 965 
corresponding Phecode system. Further details on the 10 topics are provided in Table 1. Further 966 
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details on the diseases discussed in the text (type 2 diabetes and breast cancer) are provided in 967 
Supplementary Figure 6. Numerical results are reported in Supplementary Table 4. 968 
 969 
 970 

 971 
Figure 4. Topic loadings capture age-dependent comorbidities. (A) Age-dependent topic 972 
loadings for two representative topics, CER and CVD; for each topic, we include the top seven 973 
diseases with highest topic loadings. Results for all 10 topics are reported in Supplementary 974 
Figure 13. (B) Box plot of disease topic loading as a function of rank; disease topic loadings are 975 
computed as a weighted average across all values of age at diagnosis. (C) Box plot of patient 976 
topic weight as a function of rank. Numerical results are reported in Supplementary Table 5. 977 
  978 
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 979 

 980 
Figure 5.  Polygenic risk scores vary across disease subtypes defined by distinct topics. (A)  981 
Stacked barplots of age-dependent subtypes (defined by topics) for 4 representative diseases 982 
(type 2 diabetes, asthma, hypercholesterolemia, and essential hypertension); for each disease, we 983 
include all subtypes with at least one diagnosis. Results for all 52 diseases are reported in 984 
Supplementary Figure 16. (B) Standardised excess PRS values in disease cases (s.d. increase in 985 
PRS per unit increase in patient topic weight) for 4 representative diseases and 4 corresponding 986 
topics. (C) Relative risk for cases of type 2 diabetes and hypercholesterolemia of CVD and 987 
MGND subtypes (vs. controls) across PRS percentiles. Each point spans 2 PRS percentiles. 988 
Lines denote regression on log scale. Error bars denote 95% confidence intervals. Numerical 989 
results are reported in Supplementary Table 6. 990 
     991 
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 992 
Figure 6. Genetic correlations vary across disease subtypes defined by distinct topics. (a)  993 
Excess genetic correlations for pairs of 15 disease subtypes or diseases (9 disease subtypes 994 
(denoted with asterisks) + 6 diseases without subtypes), relative to genetic correlations between 995 
the underlying diseases. Full square with asterisk denotes FDR < 0.1; less than full squares have 996 
area proportional to z-scores for difference. Grey squares denote NA (pair of diseases without 997 
subtypes or pair of same disease subtype or disease). (b) Genetic correlations between the 998 
underlying diseases. Full circle denotes |z-score| > 4 for nonzero genetic correlation; less than 999 
full circles have area proportional to |z-score|. Numerical results are reported in Supplementary 1000 
Table 9.  1001 
 1002 
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 1003 
Figure 7. Examples of SNP x topic interaction effects on disease phenotypes. For each 1004 
example, we report main SNP effects (log odds ratios) specific to each quartile of topic weights 1005 
across individuals, for both the focal SNP (blue dots) and background SNPs for that disease and 1006 
topic (genome-wide significant main effect (P < 5 × 10!N) but non-significant SNP x topic 1007 
interaction effect (P > 0.05); grey dots). Dashed red lines denote aggregate main SNP effects for 1008 
each focal SNP. Error bars denote 95% confidence intervals. Grey lines denote linear regression 1009 
of grey dots, with grey shading denoting corresponding 95% confidence intervals. Numerical 1010 
results are reported in Supplementary Table 14. 1011 

  1012 
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