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Abstract  

 

Background 

We previously reported inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) 

immunity in 1-5% of unvaccinated patients with life-threatening COVID-19, and auto-

antibodies against type I IFN in another 15-20% of cases.  

Methods 

We report here a genome-wide rare variant burden association analysis in 3,269 unvaccinated 

patients with life-threatening COVID-19 (1,301 previously reported and 1,968 new patients), 

and 1,373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. A quarter of 

the patients tested had antibodies against type I IFN (234 of 928) and were excluded from the 

analysis.  

Results 

No gene reached genome-wide significance. Under a recessive model, the most significant gene 

with at-risk variants was TLR7, with an OR of 27.68 (95%CI:1.5-528.7, P=1.1x10-4), in 

analyses restricted to biochemically loss-of-function (bLOF) variants. We replicated the 

enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved 

in TLR3-dependent type I IFN immunity (OR=3.70 [95%CI:1.3-8.2], P=2.1x10-4). Adding the 

recently reported TYK2 COVID-19 locus strengthened this enrichment, particularly under a 

recessive model (OR=19.65 [95%CI:2.1-2635.4]; P=3.4x10-3). When these 14 loci and TLR7 

were considered, all individuals hemizygous (n=20) or homozygous (n=5) for pLOF or bLOF 

variants were patients (OR=39.19 [95%CI:5.2-5037.0], P=4.7x10-7), who also showed an 

enrichment in heterozygous variants (OR=2.36 [95%CI:1.0-5.9], P=0.02). Finally, the patients 
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with pLOF or bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 

[20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10-5).  

Conclusions 

Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-

threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old. 

 

Keywords 

Rare variants, COVID-19, Immunity, Type I Interferon 
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Background 

Clinical variability is high in unvaccinated individuals infected with severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), ranging from silent infection to lethal 

disease. In ˜ 3% of cases, infection leads to critical COVID-19 pneumonia, requiring high-flow 

oxygen (O2> 6 L/min), mechanical ventilation (non-invasive or by intubation), or 

extracorporeal membrane oxygenation (ECMO) [1]. Advanced age is by far the strongest 

predictor of COVID-19 severity, with the risk of death doubling every five years of age from 

childhood onward [2,3]. Men are also at greater risk of death than women [3–5]. Genome-wide 

(GW) association studies have identified several common loci associated with COVID-19 

severity, the most significant being a region on chromosome 3p21.31 that was introduced by 

archaic introgression from Neanderthals [6–10]. The risk haplotype encompasses six genes and 

confers an estimated OR per copy of between 1.6 and 2.1, with higher values for individuals 

under 60 years old [7,11]. Twenty-four GW regions have been shown to be significantly 

associated with critical COVID-19 [10–12]. Four of these regions encompass genes involved 

in type I IFN immunity. The first, on chr12q24.13, containing protective variants, is also a 

Neanderthal haplotype and includes the OAS1, OAS2, and OAS3 cluster, which are interferon 

stimulated genes (ISGs) required for the activation of antiviral RNaseL [13]. The second, a 

region on chr21q22.1, includes IFNAR2. The third, a region on chr19p13.2, includes TYK2. The 

fourth, a region on chr9p21, includes IFNA10. However, common variants have a modest effect 

size and explain only a very small fraction of the clinical variability [6,8]. This prompted us to 

search for rare variants conferring a stronger predisposition to life-threatening COVID-19. 

Through a candidate approach focusing on influenza susceptibility genes, the COVID 

Human Genetics Effort (CHGE, www.covidhge.com) provided proof-of-concept that 
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autosomal inborn errors of TLR3-dependent and -independent type I interferon (IFN) 

immunity, including autosomal recessive (AR) deficiencies of IFNAR1 or IRF7, can underlie 

critical COVID-19 [14]. Other children with AR IFNAR1, IFNAR2, TBK1, or STAT2 

deficiency were subsequently reported, as well as children with AR TYK2 deficiency [15–19] 

(Figure 1). Some other groups were unable to replicate these findings, but the variants were not 

tested biochemically and it is unclear whether recessive defects were considered [11,20–22]. 

There may also be other reasons for their findings [1,23], the most important being the age 

distribution of the case cohorts. The other case cohorts were much older than ours (mean age 

of 66 vs. 52 years) and we found that inborn errors of immunity (IEI) were more frequent in 

patients under 60 years old. Consistently, we recently reported that ~10% of children with 

moderate, severe, or critical COVID-19 pneumonia had recessive inborn errors of type I IFN 

immunity [18]. Moreover, older patients are more likely to carry pre-existing autoantibodies 

(auto-Abs) neutralizing type I IFN, which are found in about 15% of critical cases and up to 

21% of patients over the age of 80 years [24,25]. The presence of such auto-Abs has been 

replicated by at least 26 studies worldwide [26,27], and we also recently showed that 

autoimmunity to type I IFNs is a strong common predictor of COVID-19 death in unvaccinated 

individuals, providing further evidence for the role of type I IFN immunity in life-threatening 

COVID-19.   

Using an unbiased X-wide gene burden test, we also identified X-linked recessive (XR) 

TLR7 deficiency in 17 male patients aged 7-71 years with critical COVID-19 pneumonia, 

accounting for ~1% of cases in men (Figure 1) [28]. Moreover, six of the 11 TLR7 variants 

previously reported in patients from other studies were deleterious (carried by nine of 16 

patients) [29–34], whereas the TLR7 variants in other studies were not disclosed [20,21]. TLR3 

senses viral dsRNA in respiratory epithelial cells, whereas TLR7 senses ssRNA in plasmacytoid 
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dendritic cells [1]. Both pathways induce the production of type I IFNs. TLR7 gain-of-function 

variants were recently shown to be associated with human systemic lupus erythematosus [35], 

providing an example of mirror genetic effects between infectious and 

inflammatory/autoimmune diseases [36]. Collectively, these findings suggest that type I IFNs 

are essential for protective immunity to SARS-CoV-2 in the respiratory tract, with insufficient 

type I IFN activity accounting for up to 15-20% of cases of life-threatening COVID-19. Despite 

this high proportion, the determinants of critical COVID-19 pneumonia remain to be identified 

in ~80% of cases. Here, we tested the hypotheses that other IEI may underlie critical COVID-

19 pneumonia in at least some patients, and that our initial findings could be replicated in a new 

cohort. With the CHGE, we performed a GW gene-based rare variant association analysis. This 

analysis was performed in both previously investigated patients who had not been screened at 

the GW level [14,18,28], and in newly recruited patients.  

 

Materials and Methods 

Cohort  

Since the beginning of the pandemic, we have enrolled more than 9,000 individuals with SARS-

CoV2 infection and broad clinical manifestations from all over the world through the COVID 

Human Genetic Effort (CHGE). In this study we focused on patients with life-threatening 

COVID-19 and asymptomatic/mild infection. Life-threatening COVID-19 cases are defined as 

patients with pneumonia who developed critical disease, whether pulmonary with high-flow 

oxygen (>6 liter/min) or mechanical ventilation [continuous positive airway pressure (CPAP), 

bilevel positive airway pressure (BIPAP), and intubation], septic shock, or any other type of 

organ damage requiring intensive care unit admission (N=3503). We screened for the presence 
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of autoantibodies (auto-Abs) against type I IFNs all patients for whom plasma was available 

(N=928) as previously described [24,25]. We excluded from the present analysis 234 patients 

who tested positive for auto-Abs as they already have a major risk factor for developing critical 

COVID-19 [27]. Controls are defined as individuals infected with SARS-CoV-2 who remained 

asymptomatic or pauci-symptomatic, with the presence of mild, self-healing, ambulatory 

disease (N=1373). Presence of infection has been assessed based on a positive PCR test and/or 

serological test and/or the presence of typical symptoms such as anosmia or agueusia after 

exposure to a confirmed COVID-19 case. Cases and controls were whole-exome (N= 2003 

cases and 866 controls) or whole-genome (N=1266 cases and 507 controls) sequenced and high 

quality variants were obtained from the sequencing data as detailed in the Supplementary 

Methods. 

 

Population stratification 

Principal component analysis (PCA) was performed with PLINK v1.9 software [37] on a 

pruned subset of ~14,600 SNPs in linkage equilibrium (maximum r2 value of linkage 

disequilibrium 0.4 between pairs of SNPs) with minor allele frequency (MAF) > 1% , call rate 

> 99% and P value for departure from Hardy-Weinberg equilibrium > 10-5 as previously 

performed [38]. Ethnic origin was inferred from the PCA as previously described [38].   

 

Variant selection  

For each gene, we considered several sets of candidate coding variants, defined according to (i) 

the functional annotation: predicted loss-of-function (pLOF) variants only (including stop 
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gain/lost, start lost, frameshift,  or splice variants), or pLOF with  missense and inframe variants 

(MISSLOF); (ii) the Gnomad v2.1 allele frequency: variants with a Gnomad allele frequency  

below 1%, 0,1%, or 0,01%; and (iii) the CADD score for missense and inframe variants: 

missense and inframe variants with  CADD score ≥ MSC  for the corresponding gene or all the 

variants regardless of the CADD score.   

 

Rare variants burden analysis 

We performed a genome-wide gene-based rare variants burden analysis. For each gene, the 

genotypic information at the candidate rare variants was summarized into a genetic score 

defined according to three genetic models: (i) co-dominant: samples are coded 2 if they carry 

at least one homozygous variant, 1 if they carry at least one heterozygous variant and 0 

otherwise; (2) heterozygous: samples are coded 1 if they carry at least one heterozygous variant 

and 0 otherwise; and (3) recessive: samples are coded 1 if they carry at least one homozygous 

variant and 0 otherwise. For the X chromosome, hemizygous males are considered as 

homozygous females. Association between the genetic score for each gene and the disease 

status was tested by means of logistic regression-based likelihood ratio test (LRT) using 

EPACTS (Efficient and Parallelizable Association Container Toolbox) 

(http://genome.sph.umich.edu/wiki/EPACTS) for the genome-wide burden analysis or R 3.6.0 

(https://cran.r-project.org/) for the candidate type I IFN related pathway. Firth’s bias correction, 

using the fast.logistf.fit function of EPACTS or the logistf function of the R logistf package, 

was applied if the P value of the LRT was below 0.05. Analyses were adjusted on sex, age (in 

years) and five first PCs of the PCA In Firth’s regression, a penalty term is placed on the 

standard maximum likelihood function used to estimate parameters of a logistic regression 
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model when there are rare events or when complete separation exists [39]. With no covariates, 

this corresponds to adding 0.5 in every cell of a 2 by 2 table of allele counts versus case-control 

status. For a given gene and variant set, the burden test was not performed if the number of 

carriers across all samples was lower than 3. 

We used three analysis strategies: 1) joint analysis of all samples; 2) trans-ethnic meta-analysis: 

the analysis was stratified according to 7 inferred ancestry subgroups (African, North African, 

European, admixed American, Middle Eastern, South Asian, East Asian). For each subgroup, 

an ethnic specific PCA was computed and used in the logistic regression model; and 3) trans-

pipeline meta-analysis to account for the heterogeneity due to the type of sequencing data: the 

analysis was stratified according to the type of data shared (FASTQ vs VCF). Subgroups P 

values were further meta-analyzed accounting for the direction of effect and sample size using 

METAL [40].   

 

Multiple testing correction 

For each gene, up to 18 burden tests were performed. Because these tests were not independent, 

we assessed the effective number of burden tests Meff by a method adapted from Patin et al. 

[41], based on the approach of Li and Ji [42]. This approach makes use of the variance of the 

eigenvalues of the observed statistics correlation matrix to estimate Meff. The Bonferroni 

corrected threshold was then defined as 0.05/Meff.  

 

Odds ratio (OR) equality for homozygous/hemizygous versus heterozygous carriers of pLOF 

variants at type I IFN genes 
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We tested whether the odd of critical COVID-19 for carriers versus non-carriers of pLOF 

variants at the type I IFN differed according to the zygosity status (homozygous/hemizygous 

vs heterozygous). In the full sample, we compared using LRT a full Firth bias corrected logistic 

regression model including two different parameters for carriers of pLOF according to the 

zygosity status (alternative hypothesis) with a Firth bias corrected logistic regression model 

including only one parameter for carriers of pLOF regardless of the zygosity status (null 

hypothesis). Analysis was performed with the R logistf package.  

 

Results 

Cohort description 

Through the CHGE, we collected whole-exome sequencing (WES) or whole-genome 

sequencing (WGS) data for 3,503 patients with life-threatening COVID-19 pneumonia 

(hereafter referred to as “patients”; see Supplemental Methods) and 1,373 individuals with mild 

or asymptomatic infection, i.e. without pneumonia (hereafter referred to as “controls”). In total, 

928 of the 3,503 patients were screened for the presence of auto-Abs to type I IFN [24,25] 

(Supplemental methods) and the 234 patients who tested positive were excluded from this 

analysis as they already have a major risk factor to develop critical COVID-19 [27]. In total, 

1,301 of the 3,269 remaining patients had been included in previous studies restricted to a short 

list of 18 candidate genes [14,18] or to the X chromosome [28], and 1,968 had not been studied 

before. The mean age (SD) of the patients was 55.7 (17.4) years, with a male-to-female ratio of 

2.4 (Table 1). The controls were significantly younger than the patients (P < 0.0001), with a 

mean age (SD) of 43.8 years (20.1 years) and were more likely to be female (P < 0.0001; male-

to-female ratio = 0.7). The patients and controls were of various ethnic origins, mostly of 
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European and Middle Eastern ancestry, according to principal component analysis (PCA) 

(Figure 2). Raw sequencing data were either centralized in the HGID laboratory and processed 

with the HGID pipeline (2,492 cases and 870 controls) or processed separately by each 

sequencing hub (777 cases and 503 controls; See Supplemental Methods). A joint analysis was 

performed first on the combined sample of 3,269 patients and 1,373 controls. Given the 

heterogeneity of the cohort due to different ancestries and processing pipelines, we also 

performed a trans-ethnic and a trans-pipeline meta-analysis; only results consistent across the 

three analyses are reported here (See Supplemental Methods). 

 

Genome-wide analysis under a co-dominant model 

We first performed a GW rare variant burden analysis on the 3,269 patients with life-

threatening COVID-19 and 1,373 controls with asymptomatic/mild COVID-19 under a co-

dominant model, using nine sets of variants (See Supplemental Methods). The QQ plots for the 

joint analysis of the samples revealed no systematic deviations from the null hypothesis, and 

the genomic inflation factors (λ) were close to 1 (Supplemental Table 1). In total, 18,064 genes 

were analyzed with at least one of the nine variant sets, resulting in an effective number of 

independent tests (Meff) for the joint analysis of 108,384, giving a Bonferroni-corrected 

significance threshold of 4.61 x 10-7. No gene was found to be of GW significance (see the 

Manhattan plot in Figure 3A, Supplemental Table 2). The gene with the strongest association 

was TREH, encoding the trehalase enzyme, which hydrolyses trehalose, with rare (GnomAD 

allele frequency [AF] < 10-4) non-synonymous variants associated with a lower risk of life-

threatening COVID-19 (OR=0.12[95% CI 0.05-0.28], P = 1.9x10-6; Supplemental Table 3). In 

analyses of genes for which rare predicted loss-of-function (pLOF) variants were associated 
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with an increase in the risk of life-threatening COVID-19 (Table 2), the strongest association 

was that for NPC2, for rare (GnomAD AF < 0.01) pLOF variants, with 28 heterozygous carriers 

among patients (0.9%), and four heterozygous carriers (0.3%) among controls (OR = 5.41 [95% 

CI 1.8-16.4], P = 5.8 x 10-4). NPC2 encodes the Niemann-Pick disease type C2 protein and 

homozygous LOF mutations of this gene cause Niemann-Pick disease [43]. NPC2 interacts 

with NPC1, which is also an essential endosomal receptor for the Ebola virus [44,45]. Both 

NPC1 and NPC2 were implicated in the regulation of SARS-CoV-2 entry in a CRISPR 

screen[46]. Finally, we analyzed the 19 loci associated with critical pneumonia by GWAS 

[8,10,12]. None of them showed a significant association (Supplemental Table 4). The GW 

burden analysis under a dominant model yielded similar conclusions (Supplemental table 3). 

 

Genome-wide analysis under a recessive model 

We then performed a GW screen under a recessive model (autosomal and X-linked). In 

total, 4,511 genes were analyzed with at least one of the nine variant sets, resulting in 27,066 

independent tests, giving a Bonferroni-corrected significance threshold of 1.85 x 10-6. No gene 

reached GW significance (Figure 3B). In analyses of genes with rare variants increasing the 

risk of life-threatening COVID-19, TLR7 was, by two orders of magnitude, the most significant 

gene, with 51 carriers (1.6%) of at least one rare (GnomAD AF < 0.01) missense or pLOF 

variant in patients versus two carriers (0.1%) in controls (OR = 8.41[95% CI 1.9-35.5], P = 

8.95x10-5) (Table 3). Most of the carriers were male, with only one carrier among the patients 

and one among the controls being female. The variants carried by the two controls were 

previously shown to be biochemically neutral [18,28] (Supplemental table 5). The 51 cases 

carried 33 different variants, 13 of which had been shown to be neutral; 16 were previously 
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shown to be hypomorphic or amorphic [18,28], and four were previously unknown. The four 

new variants were tested: one was found to be neutral and the other three were deleterious 

(Supplemental Figure 1). Restricting the analysis to biochemically proven LOF variants (bLOF) 

decreased the number of carriers (20 cases vs. 0 controls), but the association signal remained 

highly significant, with a much higher odds ratio (OR = 27.68 [95% CI 1.5-528.7], P = 1.08x10-

4) (Table 3). These findings confirm that TLR7 is a critical COVID-19 susceptibility locus, 

responsible for 0.9% of critical cases in male patients. 

 

Enrichment in rare pLOF variants at 13 type I IFN-related influenza susceptibility 

loci 

Following on from our initial analysis [14], we also performed a candidate pathway 

enrichment analysis focusing on the 13 genes involved in Toll-like receptor 3 (TLR3)– and 

interferon regulatory factor 7 (IRF7)–dependent type I IFN immunity to influenza virus 

(IFNAR1, IFNAR2, IRF3, IRF7, IRF9, IKBKG, STAT1, STAT2, TBK1, TICAM1, TLR3, TRAF3 

and UNC93B1) (Figure 1). We confirmed the significant enrichment in rare (GnomAD AF < 

10-3) pLOF variants at the 13 loci in patients with critical COVID-19, with 34 carriers among 

patients versus six among controls (OR = 3.70 [95% CI 1.7-9.5], P = 2.1x10-4) under a co-

dominant model; Table 4). We also estimated this p-value by a simulation study taking at 

random 13 loci over the whole genome (see supplemental methods). We found an empirical p-

value of 2.5x10-4. Excluding the 550 cases and 314 controls screened in a previous study [14] 

resulted in a similar conclusion (OR = 3.21 [95% CI 1.3-8.2], P = 5.97x10-3). Significant 

replication was also observed in the trans-ethnic (P = 0.01) and the trans-pipeline (P = 0.009) 

analyses. We found that 31 of the 34 carriers of pLOF variants were heterozygous, and three 
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were homozygous: one for a frameshift variant in IRF7 described in a previous study [14], one 

for a previously reported deletion spanning 4,394 base pairs in IFNAR1 [15,18], and one for a 

previously unknown deletion spanning 6,624 base pairs of IFNAR1 (Supplemental Table 6). 

All the homozygous pLOF variants were found in patients. Consequently, the OR for 

homozygous carriers (OR = 15.79 [95%CI: 1.4-2170.4], P = 0.02) was higher than that for 

heterozygous carriers (OR = 3.11 [95%CI: 1.4-8.6], P = 5.2x10-3), but both were significant.  

 

Rare pLOF variants of TYK2 and bLOF variants of TLR7  

Since the publication of the aforementioned study [14], AR TYK2 deficiency has been 

reported in children with COVID-19 pneumonia [18]. We identified two patients, already 

described in another previous study [18], carrying a rare homozygous pLOF variant of TYK2, 

and one patient and one control carrying a rare heterozygous pLOF variant (Supplemental Table 

6). Adding these patients to the analysis gave very similar results under a co-dominant model 

(OR = 3.30[95% CI 1.6-7.8], P =1.4x10-4) and increased the evidence for association under a 

recessive model (OR = 19.65[95% CI 2.1-2635.4], P =3.4x10-3) (Table 4). Analysis of the rare 

pLOF variants at these 14 loci plus the bLOF variants of TLR7 revealed highly significant 

enrichment (OR = 3.82 [95%CI 2.0-7.2], P = 1.3x10-7 under a co-dominant model). The effect 

was stronger for homozygous/hemizygous carriers (OR = 39.19 [95%CI 5.2-5037.01], P = 

4.7x10-7) than for heterozygous carriers (OR = 2.27 [95%CI 1.0-5.2], P = 0.04), and these two 

ORs were significantly different (P = 0.008). We also found that the 57 patients with critical 

COVID-19 carrying a rare pLOF or bLOF variant of one of these 15 genes were significantly 

younger than the remaining 3,212 patients in the cohort (mean age [SD] in years: 43.25 [20.3] 

vs. 56.0 [17.3] years; P = 1.68x10-5), consistent with our previous reports that IEIs conferring 
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a predisposition to life-threatening COVID-19 are more frequent in young patients [1,14,28]. 

Moreover, homozygous/hemizygous carriers were significantly younger than heterozygous 

carriers (35.2 [20.3] vs. 49.5 [18.2] years, P =0.008). Overall, these analyses indicate there is 

an enrichment in rare pLOF variants at 15 loci involved in type I IFN immunity in patients with 

critical COVID-19 pneumonia. 

 

In-frame nonsynonymous variants at the 15 loci  

We further screened our cohort for rare in-frame nonsynonymous variants with a 

GnomAD AF < 10-3 at these type I IFN-related susceptibility loci. For the 13 initial loci, the 

enrichment disappeared when in-frame nonsynonymous variants were added to pLOF variants 

under a co-dominant model (OR = 1.08 [95%CI 0.9-1.3], P = 0.42) (Supplemental Table 7), 

whereas a non-significant trend persisted under the recessive model (OR = 5.02 [95% CI 0.7-

52.7], P = 0.06). Focusing exclusively on in-frame variants decreased the strength of this trend 

considerably, with only eight homozygous carriers among patients and one among controls (OR 

= 1.14 [0.2-912.5], P = 0.68). Adding TYK2 variants led to similar conclusions (Supplemental 

table 7). We then added TLR7 variants and considered the 15 loci together. Under a co-dominant 

model, the enrichment became non-significant when in-frame nonsynonymous variants were 

added (OR = 1.15 [1.0-1.4], P = 0.09), but it remained significant under a recessive model (OR 

= 6.54[2.4-24.8], P = 5.3x10-6; Supplemental Table 7). In analyses considering only rare in-

frame homozygous/hemizygous nonsynonymous variants, the effect size was smaller, but the 

enrichment remained significant (OR = 3.52[1.3-13.3], P = 2.8x10-3). In total, 41 patients 

carried a rare homozygous/hemizygous in-frame nonsynonymous variant in one of the 15 loci, 

and 16 of these variants (carried by 16 patients) were TLR7 in-frame variants already shown to 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.22.22281221doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.22.22281221


26 

 

be bLOF. After excluding the TLR7 bLOF variants, there was no residual significant enrichment 

in rare in-frame nonsynonymous variants in patients relative to controls, whatever the genetic 

model considered.  

 

Discussion 

In this exome-wide gene burden analysis for rare variants underlying critical COVID-

19, no gene reached GW statistical significance after accounting for multiple testing. These 

results are consistent with those of two previous large exome-wide studies including more than 

1,000 critical cases and thousands of population-based controls that did not find statistically 

significant autosomal gene burden associations at stringent significance thresholds accounting 

for the number of phenotypes and variant sets analyzed [11,21]. However, under a recessive 

model, the strongest association - although not statistically significant at the GW level - was 

obtained with the X-linked TLR7 gene, for which association has consistently been reported 

across studies [20,28,29], reaching the less conservative exome-wide significance threshold of 

2.5x10-6 in some of these previous studies [20,21]. It should be stressed that stringent correction 

for multiple testing, while necessary to avoid false positives, is a conservative strategy, and that 

the lack of formal statistical significance at a GW level does not preclude biological causality 

and medical significance. The burden of proof can be provided experimentally via biochemical, 

virological, and immunological experiments, as we previously did for TLR7 by showing that 

biochemically deleterious TLR7 variants blunted the pDC-dependent sensing of SARS-CoV-2 

and induction of type I IFN, thereby accounting for ~1% of critical pneumonia cases in men 

[28]. Additional genes may be found by restricting the association analysis to variants 

experimentally proven to be deleterious. 
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This analysis also confirms our previous findings of an enrichment in rare pLOF variants 

of 13 genes involved in TLR3- and IRF7-dependent type I IFN immunity to seasonal influenza 

virus in critical cases relative to controls with mild/asymptomatic infection [14]. These results 

were strengthened by the addition of TYK2, which was recently shown to underlie severe 

COVID-19 [18,19], and TLR7, especially under a recessive model. We found that 

homozygous/hemizygous carriers of rare pLOF or bLOF variants at the 15 loci had a 

significantly higher risk of life-threatening COVID-19 than heterozygotes. This is consistent 

with the generally higher clinical penetrance of recessive than dominant IEI [1]. Overall, 1.7% 

of the patients with life-threatening COVID-19 carried a rare pLOF or bLOF variant at one of 

the 15 loci, these variants being homozygous/hemizygous in 0.8%. The study of in-frame 

nonsynonymous variants might increase this proportion, but would require the experimental 

characterization of all these variants. Indeed, in analyses restricted to rare in-frame 

nonsynonymous variants, we detected no significant enrichment in patients relative to controls. 

This result is not surprising, as we showed in a previous study [14] that less than 15% of the 

rare in-frame nonsynonymous variants at the 13 initially studied loci carried by cases were 

bLOF variants, whereas all the pLOF variants were found to be bLOF. Similar results were 

obtained for TLR7, with only 10 of 108 (9.2%) in-frame nonsynonymous variants observed in 

GnomAD being bLOF [28]. This high proportion of neutral variants strongly affects the power 

of burden tests and highlights the need for the experimental characterization of variants. 

We also showed that patients carrying rare pLOF or bLOF variants at these 15 type I 

IFN-related genes were significantly younger than the remaining patients (mean age [SD] in 

years: 43.3 [20.3] vs. 56.0 [17.3] years). This was particularly true for carriers of a 

homozygous/hemizygous rare pLOF or bLOF variant (35.2 [20.3] years), potentially 

accounting for the lack of replication of this finding by other studies including older patients 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.22.22281221doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.22.22281221


28 

 

[11,20–22]. Consistent with this result, we recently found that ~10% of children hospitalized 

for COVID-19 pneumonia carry recessive inborn errors of type I IFN immunity [18]. In 

addition, older patients are more likely to carry auto-Abs against type I IFN, and contrary to 

other previous studies, we excluded patients carrying such antibodies from the analysis. None 

of the 234 patients with critical COVID-19 excluded from this study due to the presence of 

auto-Abs against type I IFN carried a rare pLOF variant of the 15 genes. Hence, samples in 

which the vast majority of patients are over the age of 60 years and of unknown status for auto-

Abs against type I IFNs would have much reduced power to identify these rare inborn errors of 

type I IFN immunity. In conclusion, rare autosomal inborn errors of type I IFN-dependent 

immunity to influenza viruses can underlie critical forms of COVID-19, especially in subjects 

below 60 years of age, in addition to X-linked TLR7 deficiency. The search for additional rare 

mutations conferring a strong predisposition to life-threatening COVID-19 should focus on 

young patients with critical COVID-19 without auto-Abs against type I IFNs. 
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Figure legends 

 

Figure 1. Type I IFN immunity genes associated with life-threatening COVID-19  

Inborn errors of type I IFN immunity and autoantibodies neutralizing type I IFNs (α, β, ω) 

underlie life-threatening COVID-19 pneumonia by interfering with type I IFN immunity in 

respiratory epithelial cells (RECs) and blood plasmacytoid dendritic cells (pDCs). SARS-CoV-

2 infection can induce type I IFN production in a TLR3-dependent manner in tissue-resident 

RECs (which express TLR3 but not TLR7) and in a TLR7-dependent manner in circulating 

pDCs (which express TLR7 but not TLR3). IRF7 is constitutively expressed in pDCs, at higher 

levels than in other cell types, whereas it is mostly induced by viral infection in RECs. Reported 

in red are the 13 genes (IFNAR1, IFNAR2, IRF3, IRF7, IRF9, IKBKG, STAT1, STAT2, TBK1, 

TICAM1, TLR3, TRAF3 and UNC93B1) investigated in a previous study [14]; TYK2 and TLR7 

were subsequently shown to underlie severe COVID-19 [18,28]. 

 

Figure 2. Principal component analysis of patients with life-threatening COVID-19 (red) 

and controls with asymptomatic or mild infection (green). 

Principal component analysis (PCA) was performed with PLINK v1.9 software [37] on a 

pruned subset of ~14,600 exonic SNPs in linkage equilibrium (maximum r2 value for linkage 

disequilibrium of 0.4 between pairs of SNPs) with a minor allele frequency (MAF) > 1%, call-

rate > 99% and P value for departure from Hardy-Weinberg equilibrium >10-5. Samples were 

of diverse ethnic origins, including European (EUR), admixed American (AMR), North-

African (NAFR), sub-Saharan African (AFR), Middle Eastern (ME), South Asian (SAS) and 

East Asian (EAS). 
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Figure 3. Manhattan plot for the genome-wide burden analysis under the co-dominant 

(A) and recessive (B) models.  

The red lines represent the significance threshold after Bonferroni correction accounting for the 

total number of independent tests (P = 4.61 x 10-7 under a co-dominant model and 1.85 x 10-6 

under a recessive model).   
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Table 1 – Baseline characteristics of study participants 

 

Life-threatening COVID-19 Infected controls 
P valuea 

n = 3269 n = 1373 

Sex, no. (%)   

<0.0001 Male 2314 (70.8%) 542 (39.5%) 

Female 955 (29.2%) 831 (60.5%) 

Age (years)    

Mean (SD) 55.74 (17.40) 43.83 (20.14) <0.0001 

Median (range) 57 (0.08-99) 43 (0.08-105)  

Processing pipeline, no. (%)   

<0.0001 HGID laboratoryb 2492 (76.2%) 870 (63.4%) 

Other 777 (24.8%) 503 (36.6%) 

Ancestry, no. (%)   

<0.0001 

European 1374 (42.0%) 960 (69.9%) 

Middle Eastern 483 (14.8%) 158 (11.5%) 

Admixed American 466 (14.3%) 109 (7.9%) 

North African 300 (9.2%) 24 (1.7%) 

South Asian 279 (8.5%) 36 (2.6%) 

Sub-Saharan African 234 (7.1%) 43 (3.1%) 

East Asian 133 (4.1%) 43 (3.1%) 

a Chi-squared tests were used to compare proportions, and t tests were used to compare the 

mean ages. 

bHGID: Human Genetics of Infectious Diseases
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Table 2. Top results of the genome-wide burden analysis for rare pLOF variants increasing the risk of life-threatening COVID-19 under 
a co-dominant model. 

Chr Gene 
GnomAD AF 

threshold 

No. carriers of at least one (no. 
homozygous) pLOF variant 

 Joint analysis 

Trans-ethnic 

meta-analysis 

Trans-pipeline 

meta-analysis 

Cases 

(n=3269) 

Controls 

(n=1373) 

 OR[95%CI] P value P value P value 

14 NPC2 0.01 28 (0) 4 (0)  5.41[1.8-16.4] 5.8x10-4 2.1x10-3 3.3x10-4 

3 DLEC1 0.01 56 (0) 16 (0)  2.55[1.3-4.9] 3.6x10-3 0.013 4.9x10-3 

13 NEK5 0.001 16 (0) 0 (0)  27.03[0.9-864.2] 4.0x10-3 1.5x10-3 0.011 

5 CCNI2 0.01 19 (1) 1 (0)  7.15[1.2-43.1] 4.1x10-3 4.1x10-3 5.0x10-3 

22 C22orf29 0.001 13 (0) 0 (0)  15.6[0.8-315.8] 4.5x10-3 7.9x10-3 4.6x10-3 

20 DLGAP4 0.001 37 (0) 3 (0)  4.35[1.3-14.5] 4.8x10-3 8.3x10-3 0.011 

AF: allele frequency 

Only genes with a P value ≤ 5x10-3 in the joint analysis and P values < 0.05 in trans-ethnic and trans-pipeline meta-analyses are displayed. 
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Table 3. Top results of the genome-wide burden analysis for rare variants increasing the risk of life-threatening COVID-19 under a 
recessive model. 

Chr Gene Variant set 
CADD 

> MSC a 

GnomAD AF 

threshold 

No. carriers of at least one rare 

homo-/hemizygous variant 
 Joint analysis 

Trans-ethnic 

meta-analysis 

Trans-pipeline 

meta-analysis 

Cases 

(n=3269) 

Controls 

(n=1373) 
 OR[95%CI] P value P value P value 

GW analysis 

X TLR7 MISSLOF FALSE 0.01 51 2  8.41 [1.9-35.5] 8.95x10-5 7.04x10-4 2.66x10-4 

14 AHNAK2 MISSLOF TRUE 0.001 37 2  4.45 [1.1-17.7] 0.01 2.15x10-3 8.84x10-3 

Refined analysis on TLR7 

X TLR7 bLOF - 0.01 20 0  27.68[1.5-528.7] 1.1x10-4 6.6x10-3 2.7x10-4 

AF: allele frequency 

Only genes with P values ≤ 0.01 in the joint analysis and P values < 0.05 in trans-ethnic and trans-pipeline meta-analyses are displayed. 

 

a Combined Annotation Dependent Depletion (CADD) score [47] greater than the Mutation Significance Cut-off (MSC) for the corresponding gene. The MSC 

is defined for a given gene as the lower limit of the confidence interval (95%) of the CADD score of all its known pathogenic mutations [48]. 
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Table 4. Enrichment in pLOF/bLOF rare variants of genes involved in type I IFN immunity  

 

Gene set Cohort Model 
No. carriers 

 
Joint analysis 

Trans-pipeline 

meta-analysis 

Trans-ethnic 

meta-analysis 

Cases Controls  P value OR[95%CI] P value P value 

13 genesa 
Samples independent 

of [14]b 
Co-dominant 25 5 

 
5.97x10-3 3.21[1.3-8.2] 9.15x10-3 0.01 

13 genes Fullc Co-dominant 34 6  2.13x10-4 3.70[1.7-9.5] 7.45x10-4 6.52x10-4 

13 genes Full 
Heterozygous 

onlyd 
31 6 

 
5.21x10-3 3.11[1.3-8.6] 7.88x10-3 5.98x10-3 

13 genes Full Recessive 3 0  0.02 15.79[1.4-2170.4] 0.05 0.03 

13 genes + TYK2 Full Co-dominant 37 7  1.40x10-4 3.30[1.6-7.8] 5.77x10-4 5.64x10-4 

13 genes + TYK2 
Full Heterozygous 

only 
32 7 

 
0.02 2.53[1.1-6.6] 0.03 0.02 
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13 genes + TYK2 
Full 

Recessive 5 0 
 

3.36x10-3 
19.65 [2.1-

2635.4] 
9.84x10-3 0.03 

13 genes + TYK2 + 

bLOF TLR7 

Full 
Co-dominant 57 9 

 
1.27x10-7 3.82 [2.0-7.2] 1.99x10-7 2.20x10-6 

13genes + TYK2 + 

bLOF TLR7 

Full Heterozygous 

only 
32 9 

 
0.04 2.27[1.0-5.2] 0.04 0.02 

13genes + TYK2 + 

bLOF TLR7 

Full 
Recessive 25 0 

 
4.69x10-7 

39.19[5.2-

5037.01] 
2.39x10-6 6.66x10-5 

 

aIFNAR1, IFNAR2, IRF3, IRF7, IRF9, IKBKG, STAT1, STAT2, TBK1, TICAM1, TLR3, TRAF3 and UNC93B1 

b2719 patients and 1059 controls newly recruited and not screened in [14] 

cThe full cohort includes 3269 patients and 1373 controls 

dIn this model, only subjects with heterozygous variants are considered as carriers 
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Figure 1

Respiratory epithelial cells 

TLR7

TLR3 MDA5 RIG-1

MAVS

UNC93B1

TRIF

TBK1

NEMO

IRF3 IRF7

TRAF3

IF
N

A
R

1

IF
N

A
R

2

JAK1 TYK2

STAT1 STAT2

IRF9

IRF7
IRF7

IRF7

ISGs

Plasmacytoid dendritic cells 

IFN-β
IFN-α IFN-ω

Virus
IFN-α

IFN-ω

IFN-βY Auto-Ab

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.22.22281221doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.22.22281221


Figure 2
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Figure 3

A – Co-dominant model B – Recessive model
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