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Abstract 

 

Genome-wide association studies (GWAS) are overwhelmingly biased toward European ancestries. 

Nearly all existing studies agree that transferring genetic predictions from European ancestries to other 

populations results in a substantial loss of accuracy. This is commonly referred to as low portability of 

polygenic risk scores (PRS) and is one of the most important barriers to the ethical clinical deployment 

of PRS. Yet, it remains unclear how much various genetic factors, such as linkage disequilibrium (LD) 

differences, allele frequency differences or causal effect differences, contribute to low PRS portability. In 

this study, we used gene expression levels in lymphoblastoid cell lines (LCLs) as a simplified model of 

complex traits with minimal environmental variation, in order to understand how much each genetic factor 

contributes to PRS portability from European to African populations. We found that cis-genetic effects on 

gene expression are highly similar between European and African individuals (𝜌̂𝑔=0.95, S.E.=0.09). This 

stands in stark contrast to the very low estimates of cis-genetic correlation between Europeans and 

Africans in previous studies, which we demonstrate are artifacts of statistical bias. We showed that 

portability decreases with increasing LD differences in the cis-regions. We also found that allele 

frequency differences of causal variants have a striking impact on PRS portability. For example, PRS 

portability is reduced by more than 32% when the causal cis-variant is common (minor allele frequency, 

MAF > 5%) in European samples (training population) but is rarer (MAF < 5%) in African samples 

(prediction population). While large allele frequency differences can decrease PRS portability through 

increasing LD differences, we also show that causal allele frequency can significantly impact portability 

independently of LD. This observation suggests that improving statistical fine-mapping alone does not 

overcome the loss of portability caused by causal allele frequency differences. Lastly, we also found that 

causal allele frequency is the main genetic factor underlying differential gene expression levels across 

ancestries. We conclude that causal genetic effects are highly similar in Europeans and Africans, and 

low PRS portability is primarily due to allele frequency differences.  
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Background 
 
 
Many common diseases have genetic basis. Genome-wide association studies (GWAS) were designed 

to identify genetic risk alleles of common diseases by performing population-based genetic profiling, 

which has identified thousands of genetic loci associated with complex traits and diseases1–3. Disease-

associated loci and their effects can be summed to generate polygenic risk scores (PRS), which are used 

to predict complex traits and disease risk in genotyped individuals. Genetic risk prediction has the 

potential to enable earlier and tailored disease prevention, particularly if the ancestry of the genotyped 

individual resembles the ancestry of the GWAS samples. However, the majority of GWAS participants 

are of European ancestry, which leads to poor prediction accuracy of complex diseases in non-European 

populations4,5. This is known as low cross-ancestry PRS portability. Improving cross-ancestry PRS 

portability is essential to equitable clinical use of PRS. 

 

The limited portability of cross-ancestry PRS can be attributed to several genetic differences across 

ancestries, such as linkage disequilibrium (LD) differences, causal allele frequency differences or genetic 

effect differences. Differential LD between causal genetic variants and the variants used in building PRS 

(PRS variants) is among one of most well-studied factors lowering portability. Several studies over the 

past few years have focused on improving PRS portability by developing better statistical methods to 

overcome the LD differences and more accurately fine-mapping causal genetic variants6,7. One recent 

study8 estimated that differences in LD and minor allele frequencies (MAF) of PRS variants together 

could explained 70-80% of loss of portability from European GWAS to African samples. However, it 

remains unknown whether and to what extent differences in causal genetic effects and causal alle le 

frequency contribute to low portability. Knowing the contribution of these factors is important because it 

will inform sampling strategies for future GWAS and aid in development of new statistical methods. For 

example, if LD contributes to low portability, improved statistical fine-mapping should improve portability. 

Whereas, if allele frequency or effect size differences are found to affect portability independent of LD, 

other strategies, such as developing larger study cohorts in non-European populations, would be more 

effective.  

 

Differences in genetic effects across ancestries can be assessed by quantifying cross-ancestry genetic 

correlations ( 𝜌𝑔) . A recent study9 estimated the genetic correlation of 31 complex traits between 

European and East Asian ancestries. The average genetic correlation was high (𝜌𝑔 = 0.85), suggesting 

that genetic effects on complex traits in European and East Asian populations are largely shared. 

However, the estimates varied substantially across different traits. For example, the genetic correlation 

estimates range from 0.34 for major depressive disorder to ~1 for glomerular filtration rate (a measure of 

kidney function). In general, variable genetic correlation estimates across complex traits are expected 

because they are complicated by inconsistent disease phenotype definitions across studies, potential cell 

type composition differences in individuals of different ancestries10–12, environmental factors, gene-

environment (GxE) interaction, and other non-genetic factors. Thus, it remains unclear how much genetic 

effects are shared across ancestries, and it is unknown whether differences in genetic effects 

compromise PRS portability. 

 

 

Because gene expression can be measured quantitatively from the same cell type in a controlled 

environment, genetic correlation estimates among gene expression levels are expected to be less 
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affected by non-genetic factors than correlation estimates for organism-level traits. Here, we studied the 

sharing of genetic effects on gene expression levels and the portability of gene expression level PRS 

between European and African individuals13. We elected to study gene expression in lymphoblastoid cell 

lines (LCLs), instead of organismal traits or gene expression in other cell types for several reasons. Firstly, 

gene expression levels have relatively sparse genetic architecture and large effects that imparts power 

to identify genetic effects12,14. Second, studying genetic effects in a single cell type allows us to avoid the 

complexity of cell-type specific cis-eQTL effects and the potential cell type composition differences in 

individuals of different ancestries10–12. Lastly and importantly, because these LCLs were cultured in the 

same lab environments, there is minimal environmental variation and contribution of GxE effects to gene 

expression differences between the two groups should be minimal. This experimental approach to 

minimize GxE improves our power to quantify the sharing of genetic effects and PRS portability. 

 

Using gene expression data from LCLs derived from European and African individuals, we aim to answer 

a few fundamental questions. How do genetic effects differ between ancestries? How do LD differences, 

allele frequency differences and genetic effect differences across ancestries affect portability of gene 

expression PRS? And finally, how much do these differences explain differential gene expression 

between ancestries? The answers to these questions are essential for understanding and improving PRS 

portability.  

 

By carefully analyzing gene expression levels in LCLs from European and African individuals, we 

provided concrete answers to all three questions for the first time. We found that cis-genetic effects are 

highly similar across ancestries, which agrees with a recent study in organism-level complex traits15 and 

is not expected to affect portability. Interestingly, we found that when causal variants differ in allele 

frequency between ancestries, PRS portability is substantially diminished independently of LD. Lastly, 

we found that allele frequency differences are also the major genetic factor underlying differential gene 

expression. Our findings significantly change the common understanding of PRS portability. 

 

Results 

Cis-genetic effects in European and African populations are highly similar  

To compare genome-wide cis-genetic effects in different ancestral backgrounds, we obtained DNA- and 

RNA-sequencing data collected from LCLs as part of the GEUVADIS study13, which includes 358 

individuals from four European (EUR) populations (CEU, FIN, GBR, and TSI; see Methods) and 87 

Yoruba individuals from Ibadan, Nigeria (YRI). We used these samples to represent European and 

African populations, respectively. We performed cis-eQTL calling separately in each population, where 

cis regions are defined as regions within 100kb upstream and downstream from the transcription start 

sites. Our choice to focus on 200kb windows (instead of the 2Mb windows typically used for eQTL 

mapping10,16) allowed us to capture large effect cis-eQTLs while limiting the number of possible causal 

variants, which is useful in our downstream analysis. Using FastQTL17 ,we identified 2,885 genes with at 

least significant cis-eQTLS (ie. eGenes) in EUR and 469 eGenes in YRI that had at least one cis-eQTL 

at 10% FDR (Benjamini-Hochberg procedure).  We estimated cis SNP heritability of gene expression in 

each population separately using GCTA18. Across all genes, the cis average SNP heritability is 0.119 in 

EUR (S.E.=0.003) and 0.096 in YRI (S.E.=0.002, Table S1). 
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To estimate the cross-population genetic correlation of cis effects on gene expression, we used the 

unconstrained bivariate GREML model from GCTA18,19. Across all genes, the average genetic correlation 

is 0.95 (S.E.= 0.09, Figure 1A and 1B), which suggests that genetic effects on gene expression are 

largely shared between EUR and YRI populations. This result is surprising given that previous studies 

have reported much lower estimates of cis-genetic correlation between the two populations, for example, 

0.313 in Brown et al20 and 0.47 in Mogil et al21).  

 

To better understand the cause of this discrepancy, we evaluated the methods employed by previous 

studies. Heritability estimates are typically constrained to a range from 0 to 1, and genetic correlation 

estimates are usually constrained to a range from -1 to 1 (including ref20 and ref21). However, we 

previously showed that constraining heritability between 0 and 1 can produce substantially biased 

heritability estimates22. Here, we show that the same principle applies to constraining genetic correlation 

estimates. To demonstrate this bias, we simulated genetic effects on gene expression using real EUR 

and YRI genotypes within cis regions in GEUVADIS. Specifically, we simulated gene expression levels 

assuming various levels of SNP heritability (h2
g) and identical effects in each ancestry (𝜌𝑔 = 1) (see 

Methods for details). We used GCTA to estimate both the standard constrained genetic correlation 

estimates (i.e. constrained from -1 to 1, as was done in previous studies) and the unconstrained estimates. 

We performed 10,000 simulations for different h2 values ranging from 0 to 1, totaling nearly 1,000,000 

simulations. We found that constraining the genetic correlation estimates caused substantial downward 

biases, especially at lower simulated heritability levels (Figure 1B, Figure S1). In contrast, unconstrained 

estimates are largely unbiased and much more stable across almost all heritability values. We also 

confirmed empirically that constraining the genetic correlation estimates in our dataset resulted in a 

substantially lower average genetic correlation of 0.35 (S.E.=0.01) (Figure 1A) and lower genetic 

correlation estimates across all heritability bins (Figure 1C).  

 

 

To further examine the sharing of cis genetic effects across ancestries, we used a mixed model 

implemented in GxEMM to quantify the proportion of gene expression heritability explained by shared 

and population-specific genetic effects23 (see Methods). Across all genes, the proportion of heritability 

explained by shared (h2_hom) effects is 0.136 (S.E.=0.006). In contrast, the proportion of heritability 

explained by ancestry-specific (h2_het) genetic effects is 0.007 (S.E.=0.004, P value=0.1, Figure 1D, 

Table S1), which is not significantly greater than 0 and indicates that population-specific effects explain 

a negligible proportion of gene expression heritability. These results are expected based on our cross-

ancestry genetic correlation estimates being indistinguishable from 1 and further emphasize that genetic 

effects on gene expression are highly shared between EUR and YRI. 
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Figure 1. Highly shared genetic effects across ancestries. A. Unbiased vs. biased genetic 

correlation estimates in GEUVADIS dataset. Error bars are confidence intervals. B. Unconstrained 

and constrained genetic correlation estimates in simulations. The genetic correlation is set to 1 in 

all simulations. Unconstrained genetic correlation estimates (Green) are mostly unbiased and stable 

across different heritability settings. Constrained genetic correlation estimates (Orange) are substantially 

biased, especially at low heritability settings. Error bars are confidence intervals. C. Genetic correlation 

estimates at different heritability thresholds in GEUVADIS dataset. Y-axis is the average genetic 

correlation estimates for all genes with estimated heritability larger than a heritability threshold (defined 

in X-axis). Constrained genetic correlation estimates (Orange) are much lower than unconstrained 

genetic correlation estimates, which agrees with the simulation results. Constrained estimates show a 

pattern of increasing genetic correlation at higher heritability thresholds, which is a thresholding bias also 

seen in ref20 Figure 3 and ref21 Figure 2. D. Heritability explained by shared and population-specific 

effects across ancestry. Heritability explained by population-specific effects across ancestries is h2_het 

(Orange). Heritability explained by shared effects across ancestries is h2_hom (Orange). Confidence 

intervals are plotted as error bars but are too small to be visible.  
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PRS portability is significantly impacted by allele frequency differences at causal loci 

 

We next studied the portability of gene expression prediction (gene expression PRS) across ancestries 

in the GEUVADIS data. We split the 358 EUR samples into 271 training samples and 87 prediction 

samples. We trained SNP weights of cis genetic variants using elastic-net in 271 EUR samples; we then 

used the trained weights to predict gene expression in 87 YRI and 87 held-out EUR samples. We defined 

portability from EUR to YRI as the ratio of prediction R2 in YRI to the prediction R2 in EUR. Across genes, 

we estimated the portability as poratbility =
∑ 𝑅𝑌𝑅𝐼,𝑖

2
𝑖

∑ 𝑅𝐸𝑈𝑅,𝑖
2

𝑔𝑒𝑛𝑒 𝑖
. This ratio of the averages is more stable than 

the average of the ratios. We obtained standard errors (S.E.) of portability by jackknifing across genes. 

We estimated that the average portability is 0.63 (S.E.=0.01) across the 7360 genes, which has at least 

one SNP with non-zero coefficient fitted by elastic-net in the EUR samples. We note that these genes 

are likely a subset of genes with high heritability in EUR samples. Therefore, the portability estimates of 

these genes do not represent genome-wide estimate of portability, because portability depends on 

heritability in EUR (Figure S2). Yet this approach accurately reflects common practice of PRS 

construction and validation, in which PRS typically has reasonable accuracy in EUR. The prediction 

accuracy R2 and portability of genes can be found in Table S2. 

 

We found that the portability of gene expression PRS was highly variable across genes. This variability 

allowed us to examine the effects of different genetic factors on PRS portability. Since we found that 

genetic effects are highly shared between EUR and YRI, population specific effects are not expected to 

contribute much to portability. We therefore examined how differences in LD patterns within cis regions 

across ancestries and differences in causal cis variant allele frequencies could impact portability (Figure 

2). We stratified genes based on LD pattern differences in cis regions across the two populations. We 

quantified the extent of cross-ancestry LD differences in cis regions by using varLD24,25. The varLD 

method first performs eigen decomposition on the local LD matrices for each population and then uses 

the differences in the eigenvalues as varLD scores 24. Higher varLD scores indicate larger LD differences 

(see Methods, Table S3). We observed high portability (72%, S.E.=0.11, Figure 2A) when LD patterns 

are highly similar in EUR and YRI (i.e., the lowest 5 percentiles of varLD scores). PRS portability 

decreases with increasing dissimilarity in LD, and the portability is only 54% (S.E.=0.11) at the highest 

5% of varLD scores. These observations show that LD differences influence portability.  

 

To demonstrate the impact of causal allele frequencies on portability, we stratified genes by the allele 

frequencies of the fine-mapped cis-eQTLs. To avoid winner’s curse, we used fine-mapped cis-eQTLs 

identified in GTEx LCL samples 25, which do not overlap with our GEUVADIS samples. We used fine-

mapped SNPs from Wang et al25, which performed fine-mapping of cis-eQTLs by applying SuSiE26 with 

functionally informed priors, which improve accuracy over flat priors. For each gene, we define its causal 

cis-eQTL as the fine-mapped cis variant with the maximum posterior inclusion probability (PIP) in the 

GTEx LCL samples. We focused on a subset of 1025 genes with fine-mapped cis-eQTLs and portability 

estimates in our study. We stratified these genes into categories based on the GEUVADIS allele 

frequencies of the causal cis-eQTLs: causal cis-eQTLs common (MAF>5%) in both populations 

(CommonBoth), causal cis-eQTLs common in EUR but low frequency in YRI (commonEUR-lowYRI), and 

causal cis-eQTLs common in YRI but low frequency in EUR (lowEUR-commonYRI). We observed that 

the PRS portability of genes in the CommonBoth category is 0.59 (S.E.=0.05, Figure 2B). Interestingly 

and importantly, we observed a drop in PRS portability of more than 32% (P value of difference is 2.9x10-

3) for genes in the commonEUR-rareYRI category, whose average portability is only 0.40 (S.E.=0.08; 
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Figure 2B). These results support that allele frequency differences of causal cis-eQTLs have a significant 

impact on PRS portability.  

 

It is difficult to tease apart the impact on portability from LD versus causal allele frequencies in studies of 

organismal complex traits, because of the highly polygenic genetic architecture and small genetic effects 

at the majority of disease loci. In our study, we leveraged high quality fine-mapped cis-eQTLs to separate 

the impact of LD and causal MAF on portability. To demonstrate that causal allele frequency differences 

can significantly impact portability independent of LD, we focus on a subset of 192 genes in the 

CommonBoth and CommonEUR-LowYRI categories, whose causal variants were successfully included 

in PRS. In this set of genes, LD is expected to contribute little to prediction portability, and yet we observed 

much lower portability in the CommonEUR-LowYRI category (Figure 2C, Methods) than in the 

CommonBoth category (P value of difference=8.5x10-4). The substantial decrease in portability in the 

CommonEUR-LowYRI category can be traced to the low heritability and prediction accuracy explained 

by low frequency/rare causal variants in YRI (Figure 2D). More specifically, we observed significantly 

lower prediction accuracy R2 and heritability of genes in YRI of the CommonEUR-LowYRI category than 

the CommonBoth category (P-value of difference for prediction accuracy R2=2.25x10-7; P-value of 

difference for heritability=8.30x10-6; t-test), while the heritability in EUR is comparable across the two 

categories (P-value of difference for prediction accuracy R2=0.10; P-value of difference for 

heritability=0.18; t-test, Figure 2D).  
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Figure 2. Effects of different genetic factors on portability. A. Portability of genetic scores of gene 

expression decreases by increasing LD differences. The sharing of LD patterns of cis regions were 

quantified by varLD scores, where smaller varLD scores indicate smaller differences in LD and larger 

varLD scores indicate larger differences in LD. Error bars are confidence intervals.  B. Portability from 

EUR to YRI drops significantly in genes whose causal cis-eQTLs are common in EUR but low in 

YRI. Genes are stratified by the allele frequency of causal cis-eQTLs fine-mapped in GTEx LCL 

samples25. Low frequency variants are variants with MAF < 5%, whereas common variants are variants 

with MAF > 5%. Error bars are confidence intervals. C. Portability of a subset of 192 genes whose 

causal cis-eQTLs are used to predict gene expression levels. Error bars are confidence intervals. D. 

Heritability and portability of 192 genes whose causal cis-eQTLs are included in predicting PRS. 

Y axis on the left are SNP heritability and prediction accuracy measured in R2. Y axis on the right is 

portability. Error bars are confidence intervals. The stars denote the significance of differences in 

prediction accuracy R2 and heritability. P-value of difference (t-test) for prediction accuracy R2 in YRI is 

2.25x10-7; P-value of difference (t-test) for heritability in YRI is 8.30x10-6. 

 

 

Finally, we examined how often genes have different causal allele frequencies and are therefore 

expected to have low portability. In the set of 1,851 genes whose cis-eQTLs were successfully fine-

mapped in GTEx LCLs25, the allele frequencies of causal cis-eQTLs are largely comparable across EUR 
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and YRI (Pearson correlation = 0.66, p value<10-16, Figure S3A). However, we observed a slightly higher 

proportion of low frequency variants in YRI (Figure S3B and S3C), likely because the GTEx dataset is 

predominantly of European ancestry. 288 (15.6%) genes have causal cis-eQTLs that are common in 

EUR but rare in YRI, which are likely to suffer from low PRS portability. We observed a similar proportion 

in whole blood eQTL data from GTEx: 1,097 out of 6,392 (17.2%) genes that were successfully fine-

mapped25 have causal cis-eQTLs that are common in EUR but rare in YRI.  

 

Allele frequency difference of causal variants and non-genetic effects drive differential 

expression across ancestries 

Many complex traits and diseases vary across different ancestral groups. Organismal-level phenotypic 

differences, including differences in disease prevalence, may be mediated by differential gene expression. 

Many genes are differentially expressed across ancestries, but the mechanisms driving differential 

expression are largely unknown.  

 

To better understand what drives differential expression across populations, we performed differential 

gene expression analysis in the GEUVADIS dataset. We identified 6,128 differentially expressed genes 

(FDR < 5% and absolute expression fold change > 1.1, Table S4) using DESeq227.  To identify causal 

cis-eQTLs, we used SuSiE26 to fine-map causal variants in EUR and YRI populations separately. We 

identified 95% credible sets of causal variants for 2,096 genes in EUR and 347 genes in YRI (Methods). 

We used the overlap of variants in credible sets as a proxy for shared common causal effects. However, 

we note that due to incomplete power, overlap does not necessarily imply sharing of the causal variants 

themselves. Similarly, a lack of overlap does not imply the existence of population-specific causal variants. 

We fine-mapped a total of 190 genes to credible sets with at least one overlapping variant in YRI and 

EUR. We defined the causal cis-eQTL of each gene to be the SNP with the maximum product of PIPs in 

the two populations. 

 

We first examined the impact of causal cis-eQTL allele frequency differences on differential gene 

expression. Among the fine-mapped SNPs for each eGene, we defined the expression-increasing allele 

as the allele that has positive effects in both EUR and YRI populations. We found that allele frequency 

differences strongly correlated with gene expression differences (Figure 3A, Table S5). Specifically, for 

genes exhibiting higher expression levels in EUR (purple dots, “higher EUR” in Figure 3A), the allele 

frequencies of expression-increasing alleles are significantly higher in EUR (Pearson correlation=0.4; p 

value=0.0058). This pattern also holds for genes exhibiting higher expression levels in YRI (Pearson 

correlation=0.4, p-value =0.01; orange dots in Figure 3A) and the genes without significant differential 

expression (Pearson correlation=0.32, p-value=0.0051, gray dots in Figure 3A). For example, the cis-

eQTLs of PPIL3 were fine-mapped to rs7559150 in both populations, but PPIL3 exhibits higher 

expression in EUR (Figure 3B). As expected, the expression-increasing T allele has a much higher allele 

frequency in EUR (0.736) than in YRI (0.259) (Figure 3B).  

 

We next sought to quantify how allele frequencies and eQTL effects contribute to differential gene 

expression between populations. We developed a model to partition differential gene expression into 

three terms: (1) population-specific eQTLs; (2) population AF differences (3) nongenetic population 

differences (Methods, Supplement). Component (1) captures differences in population-specific (non-

portable) causal effects.  Component (2) captures population differences in allele frequency at eQTLs. 

Component (3) captures both nongenetic differences as well as unmodelled genetic effects in cis or trans. 
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No matter how large the sample size from population A, the information in components (1) and (2) will 

never benefit prediction in population B; in contrast, the nongenetic factors in component (3) are irrelevant 

for PRS portability, specifically, though they could certainly be relevant for other questions. 

 

We applied this model to 190 genes where SuSiE identifies an overlapping high-confidence fine-mapped 

eQTL in both populations (Figure 3C). On average, population-specific eQTL effects explain 1.1% 

(S.E.=2.1%) of differential gene expression, which is not significantly different from 0. AF differences 

explain 17.5% (S.E.=2.7%) and non-genetic differences explain 50.4% (S.E.=3.8%). Thus, we conclude 

that in this set of well-mapped eQTLs, AF differences are the dominant genetic component, and non-

genetic differences are the major player overall. 

 

 

 
 

Figure 3. Cross-ancestry differential gene expression can be explained by allele frequency (AF) 
differences and non-genetic factors. A. Allele frequency differences of the expression-
increasing allele strongly correlate with gene expression fold change in the two populations. 
Purple dots denote cis variants of genes that are significantly more expressed on EUR than in YRI. 
Orange dots denote cis-variants of genes with significantly higher gene expression in YRI than in EUR. 
The lines are the lines of best fit. Gray dots and the gray line denote variants of genes that are not 
significantly differentially expressed between the two populations. Allele frequencies are the 
frequencies of the expression increasing allele (Table S5). B. Allele frequency differences of 
rs7559150 correspond to differential expression of PPIL3. Purple denotes the expression levels of 
the European individuals carrying CC/CT/TT genotypes and the overall expression levels. Orange 
denotes the expression levels of the Yoruba individuals carrying CC/CT/TT genotypes and the overall 
expression levels. The numbers in purple and orange boxes are the genotype frequencies in EUR and 
YRI samples. C. The proportion of differential gene expression explained by non-genetic factors, 
allele frequency difference, and population- specific genetic effects. Non-Genetic factor and AF 
explain bulk of differential expression, while population-specific effects explain little differential gene 
expression. Error bars are confidence intervals. 
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Discussion 
 

Our study aimed to answer three important questions: How similar are genetic effects on gene expression 

across ancestries? How do differences in causal allele frequencies, causal effect sizes, and LD patterns 

affect PRS portability? What factors drive differential gene expression across populations? By carefully 

analyzing gene expression in LCLs from EUR and YRI individuals, we provided concrete answers for all 

three questions for the first time.  

 

We found that cis genetic effects on gene expression in LCLs are highly shared across between EUR 

and YRI populations. This contrasts with previous low estimates of genetic correlation, which were proved 

to be statistical artifacts from constraining correlation estimates. This bias is large when sample size 

and/or heritability are low, but is not likely to substantially affect analyses in large datasets28. A caveat is 

that our approach does not model population-specific LD patterns; nonetheless, this is unlikely to 

upwardly bias our estimates, hence our results are conservative. While we observed high average 

genetic correlation in gene expression, we stress that this will not necessarily be the case for all complex 

traits. The etiology of organism-level complex traits may involve multiple cell types, tissues and their 

interactions, which largely remain unclear. Organism-level complex traits may also have higher 

contributions of environmental factors, and, likely, gene-environment interactions, both of which may vary 

across individual populations. Finally, we did not model epistasis. A recent study has shown that epistasis 

can drive heterogeneity of causal effects for gene expression and other complex traits29, although it is 

unclear if epistasis is important for complex traits. 

 

We found that allele frequencies of causal cis-eQTLs play an important role in reducing portability of gene 

expression prediction. When causal variants are common in EUR but rare or low frequency in YRI, we 

observed a ~32% drop in portability. Causal allele frequency can impact PRS portability through the 

influence of LD, and it is difficult to tease apart LD and causal allele frequency differences. In our analyses, 

we managed to tease apart the impact of LD and causal allele frequency differences on portability for the 

first time by using carefully fine-mapped SNPs to identify causal variants with large effects. We focused 

on a subset of genes whose causal variants are included in the PRS variants to predict gene expression 

levels. We found that allele frequency difference, separately from LD, can significantly impact portability. 

A direct implication of this observation is that even when causal variants were successfully fine-mapped, 

portability would remain poor if the causal variants have low or rare allele frequency in the PRS population 

samples. Therefore, improved statistical fine-mapping alone is not sufficient to improve PRS portability 

caused by causal allele frequency differences; instead, equitable PRS prediction requires novel 

methodological approaches and increased diversity in GWAS data. 

 

We found that a sizable fraction (15.6%-17.2%) of genes have causal cis-eQTLs that are common in 

EUR but have low frequency in YRI, and these genes are expected to suffer low portability. Large allele 

frequency differences between populations of different ancestries are common because of genetic drift, 

demographic histories and, in some cases, natural selection. We expect that the impact of frequency 

differences on portability to vary across different complex traits, because they are under different levels 

of selection. For example, recent studies have shown that complex traits under strong negative selection 

suffer worse portability30. Organismal complex traits undergo different levels of selection pressure than 

gene expression levels, and the impact of causal allele frequency difference on portability of organismal 

level complex traits should be further evaluated.  
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There are several limitations of the study. First, we assumed that there was one causal variant in 200kb 

cis-regions of each gene in statistical fine-mapping, which may not hold true for every gene. However, 

recent study12 has shown that more than 80% eGenes in GTEx LCL have only one cis-eQTL in the 2Mb 

cis-region. Our definition of cis-region is much shorter than 1Mb and the one cis-eQTL per gene 

assumption might work well for most genes. Second, the tools we used to estimate heritability and genetic 

correlations, such as GCTA, work the best with polygenic or even infinitesimal genetic architecture, yet 

cis gene regulation is known to have a sparse genetic architecture. Our previous has shown that GCTA 

generates unbiased results in very sparse settings31. We also performed simulation with GCTA where 

only 1% of SNPs in the 200kb cis regions are causal, and unbiased estimates were generated under the 

unconstrained model for most heritability settings (Figure 1B). Third, we assumed that the fine-mapped 

causal variants by SuSiE26 are the causal variants in our analyses of portability and differential gene 

expression. SuSiE is among the best methods for fine-mapping causal variants. While the fine-mapping 

may not be perfect, we demonstrated that the prediction accuracy and the heritability of genes is higher 

when causal allele frequency is common in YRI and lower when the allele frequency is of low frequency, 

which are expected when we have the true causal variants. We also showed that the causal allele 

frequency correlates well with the differential gene expression levels, which is also expected when we 

have the true causal variants.  

 

Finally, while there are other gene expression datasets involving samples of multiple ancestries, 

GEUVADIS provided the best available dataset for our analyses, despite its small sample sizes. Other 

gene expression datasets21,32 are either comprised of microarray data that are significantly noisier than 

RNA-sequencing datasets (average cis SNP heritability is only 0.02 in array data at much larger sample 

sizes in comparison to 0.1 in RNA-seq data33,34), or the datasets contain admixed samples that require 

more complex statistical methods, which should be developed in future work. Future datasets with larger 

sample sizes, more complex traits and a more equitable collection of continental ancestries will further 

improve our understanding of the extent to which genetic effects are shared across ancestries and, in 

turn, improve the clinical utility of PRS for all.  

 

Materials and Methods 

Gene expression dataset 
We used the transcriptome data of the 445 unrelated individuals from the GEUVADIS project13, where 

LCL RNA-sequencing data are collected from African (Yoruba in Ibadan, Nigeria, or YRI) and European 

groups (https://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/). We validated the sequencing quality of the 

fastq files using FastQC  (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The RNA-

sequencing reads were mapped to the human reference genome (hg19) and quantified using Kallisto35. 

Only 12980 genes with counts per million reads (CPM) > 0.5 in more than half of the total samples 

were kept for further analysis. Expression levels of these genes were quantified as Transcripts Per Million 

(TPM). We performed quantile normalization across all samples and then normalized the expression 

levels to a standard normal distribution across genes. We used the SVA36,37 package to identify surrogate 

variables. We excluded 235 genes in the HLA region (hg19 chr6: 29691116–33054976) due to their 

extreme variation and complexity.  

 

Genotype dataset 
The genotypes of GEUVADIS samples are in the 1000 Genomes phase 3 dataset. Of the 465 unrelated 

individuals in the GEUVADIS dataset, we used 445 matched individuals in the 1000 Genomes 
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genotype data (358 European and 87 Yoruba individuals)13.  Using VCFtools38, we selected bi-allelic 

autosomal variants with >1% minor allele frequency in the total population for the subsequent eQTL 

analysis. Allele frequency and genetic principal components (PCs) were calculated by plink 1.90 39 and 

VCFtools38. We excluded 44 multi-allelic SNPs that are reported as bi-allelic SNPs.  

 

Cis-eQTL mapping analysis 
We used fastQTL 17 for cis-eQTL mapping. We defined cis-region as 100kb upstream and downstream 
regions from the transcription start site (TSS)  for each gene. Sex, the top three gene PCs, and seven 
surrogate variables were used as covariates. Permutation analysis was conducted with a total of 1,000 
permutations17. In total, we identified 2885 cis-eGenes with at least one cis-eQTL in European and 469 
cis-eGenes with at least one cis-eQTL in Yoruba, at 10% FDR (Benjamini-Hochberg procedure) in each 
population. 

 
Genetic correlation analysis and simulations 

We used the bivariate genome-based restricted maximum likelihood (GREML) analysis in GCTA 18,19 to 

estimate the genetic correlation of gene expression between EUR and YRI samples in GEUVADIS. By 

default, GCTA constrains genetic correlation estimates to lie between -1 and 1. We also fit 

unconstrained genetic correlation estimates using the option “--reml-no-constrain --reml-bivar-no-

constrain” option when running GCTA. Without this command, GCTA wil yield genetic correlation 

estimates constrained to a range between -1 and 1.  

 
We performed extensive simulations to evaluate biases of genetic correlation estimates. We used real 
genotypes (denoted as X) of cis-regions from a randomly selected gene in GEUVADIS EUR and YRI 
samples. We simulated identical genetic effects in EUR and YRI, ie. 𝜌𝑔 = 1. We simulated genetic effects, 

β, by assuming p=1% of SNPs in the cis region are causal. Specifically, β follows a point normal 

distribution, such that β~N(0,
ℎ𝑔

2

𝑀∗𝑝
) for p=0.01, and β = 0 otherwise. ℎ𝑔_𝑐𝑖𝑠

2  is the cis heritability, which is 

set to a sequence of 100 values between 0 and 1 (ℎ𝑔_𝑐𝑖𝑠
2 =0.01,0.02…1). M is the number of SNPs in the 

cis region. Expression  y  in each population was simulated as y = Xβ + ϵ , where ϵ~N(0, 𝜎𝑒
2) . We 

performed 10,000 simulations at each heritability value, totaling 1,000,000 simulations. We also 
performed 1,000,000 simulations assuming p=10%, and the results can be found in Figure S1. 
 
For each simulation, we performed bivariate GREML analysis to generate the unconstrained and 
constrained genetic correlation estimates. We computed the average genetic correlation estimates at 
each cis heritability level. 
 
Estimating heritability of gene expression explained by population specific effects  

To quantify gene expression heritability explained by shared and population specific effects, we used 
GxEMM23. GxEMM uses a mixed model to estimate the heritability specific to different environments 
(h2_het) and heritability shared by the environments (h2_hom). We used binary population labels as the 
“Environments” (E) in GxEMM. We fit GxEMM using the HE regression option because it is 
computationally stable and roughly unbiased estimates, even for small sample sizes.  

 
Genetic prediction of gene expression and portability between EUR and YRI populations 

To compute genetic scores of gene expression (gene expression PRS) and the portability of genetic 
scores, we first split the EUR samples from the GEUVADIS dataset into 271 training samples and 89 
testing samples. The 89 YRI samples were also used as testing samples. We used the glmnet R 
package40 to fit the elastic net model to predict gene expression of the 271 training samples from cis 
region SNP genotypes. We used the mixing parameter of 0.5, and we also included three genetic PCs 
and seven surrogate variables as the covariates in the model. We then used the SNP weights to derive 
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the PRS of gene expression in the 89 EUR and 89 YRI samples, by computing the weighted sum of 
genotypes. The 𝑅2 of PRS in each population were computed with 𝑅2(actual gene expression, predicted 

PRS). We defined the portability as 
∑ 𝑅𝑌𝑅𝐼,𝑖

2
𝑖

∑ 𝑅𝐸𝑈𝑅,𝑖
2

𝑔𝑒𝑛𝑒 𝑖
. 

 
VarLD Analysis 

We quantified the LD differences of cis regions between EUR and YRI using varLD24,41. VarLD first 

quantified LD using signed r2 between every pair of SNPs in a predefined window, which resulted in a 

symmetric LD matrix in each population. Eigen decomposition was then performed on the LD matrices. 

Raw varLD scores were computed as the sum of the absolute differences between the ranked 

eigenvalues of the two populations. In our analysis, each window was defined as 200 SNPs common to 

the two populations, as suggested in ref24. We ran a sliding window of 200 SNPs in the cis regions of all 

genes. We normalized the raw varLD scores across all the windows. Finally, for each gene, we used 

the maximum varLD scores within the sliding windows to represent the varLD score of the cis region. 

The maximum varLD score for each gene can be found in Table S3.  

 

 
Differentially expressed gene analysis 

Differential expression analysis was performed by DESeq227, which calculates the fold change of 

transcription of each gene using the Wald test and a correction for multiple hypotheses. Sex, the top 

three genetic PCs, and seven surrogate variables were used as covariates. We defined genes with an 

adjusted p-value of < 0.1 and absolute expression fold change > 1.1 as differentially expressed between 

the two populations. We identified 6,128 differentially expressed genes using DESeq2. 

 

Fine-mapping cis-eQTLs 

To fine-map causal cis-eQTLs, we used SuSiE26. We define cis regions as 100kb upstream and 

downstream regions from the transcription start site of each gene. We then ran susieR on the cis-eGenes 

for each population separately, allowing up to 10 credible sets (L = 10, coverage = 0.95, 

scaled_prior_variance = 0.95). 95% credible sets of cis-eGenes were reported in both populations. For 

each gene, if the credible sets have at least one overlapping SNP, we define the overlapping SNPs as 

the “shared” causal SNPs. We also tried using EMS as priors to fine-map causal cis-eQTLs in GEUVADIS 

data. However, since EMS priors resulted in smaller credible sets, there were only 23 genes with “shared” 

causal SNPs, which is too few genes for downstream analysis. Therefore, we only used the susieR results 

of flat priors in our main analysis.  

 

Model to partition differential gene expression 

To partition differential gene expression into different components, we assume a simple additive model 

for gene expression, assuming a single shared causal cis- variant per gene: 

 
where 𝑦 is the expression of a gene. 𝜇𝑘̃ is the population-specific mean expression. 𝑔𝑖̃ ∈ {0,1,2}𝑁 is the 

genotype of the causal SNP. 𝛽𝑘̃  is the eQTL effect size in population k, and 𝜖𝑖  is random noise. 
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We define genotype mean in population 𝑘, 𝛼𝑘 as: 𝛼𝑘 =
1

𝑛𝑘
∑ 𝑔𝑖𝑖∈𝑘 . We then decompose the causal effect 

size by : 𝛽𝑘̃ = 𝛽0 + 𝛽𝑘, where : 𝛽0 is the population-shared eQTL effect and 𝛽𝑘 is the population-specific 

eQTL effect. Likewise, we decompose the genotype into population-specific variation by  𝑔𝑖̃ = 𝛼𝑧𝑖
+ 𝑔𝑖 , 

where 𝑧𝑖 is an indicator whether sample 𝑖 is in population 1 or 2.  

 

Using these definitions, we can rewrite the above model in terms of population-shared and -specific 

parameters. This allows us to decompose differential gene expression as:  

 
The first term captures mean differential expression between populations due to nongenetic effects 

and/or unmodelled eQTLs. The second term captures the effect of population-level allele frequency 

differences (𝛼𝑘), which is scaled by the shared eQTL effect size in each population. The third term capture 

population-specific eQTLs, which are weighted by their respective MAFs. The fourth term is the 

contribution of noise. The key feature of this decomposition is that it is invariant to recoding the reference 

allele for SNP 𝑔--because the sign of 𝛼𝑘 flips and so do the signs of 𝛽0 and 𝛽𝑘—and to changes in the 

overall MAF or nongenetic mean—because only the differences between populations enter the equation. 

We note that generalizing this approach to multiple populations (and/or admixed populations) is 

mathematically straightforward, but the notation is considerably more complex.  

 

Partitioning GEUVADIS eQTLs into population-shared eQTLs 

For each gene that has overlapping credible sets between EUR and YRI, we obtain the shared fine-

mapped set of cis-variants. Since we assumed there was only one causal variant in the cis region, we 

used only the top fine-mapped variant per gene, defined as the variant with the greatest product of 

population-specific PIPs. We partitioned the variance of gene expression into four components: non-

eQTL population differences; MAF differences; specific eQTL effects, and noise. For each gene, we 

calculate the proportion of variance explained across these four components. We also adjust for the same 

technical covariates as used in fine-mapping, but we exclude this component from our decomposition. 

 

URLs 

All codes used in this analysis can be found in https://github.com/XuanyaoLiuLab/AF_PRS_portability 
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