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Abstract 
 
Hundreds of common variants have been found to confer small but significant differences in 
breast cancer risk, supporting the polygenic additive model of inherited risk.  This widely 
accepted model is at odds with twin data indicating highly elevated risk in a subgroup of women.  
Using a novel closed-pattern-mining algorithm, we provide evidence that rare variants or 
haplotypes may underlie the association of breast cancer risk with common germline alleles.  
Our method, called Chromosome Overlap, consists in iteratively pairing chromosomes from 
affected individuals and looking for noncontiguous patterns of shared alleles without exhaustive 
enumeration.  We applied Chromosome Overlap to haplotypes of genotyped SNPs from 9,011 
female breast cancer cases from the UK Biobank (UKBB) at three topologically associating 
domains containing well-established common-allele “hits” for breast cancer.  A total of 181,034 
UKBB women of “white British” ancestry were used to assess the discovered haplotypes, and 
55,346 cases and controls of European ancestry in the Discovery, Biology, and Risk of Inherited 
Variants in Breast Cancer (DRIVE) case-control study were used for replication.  Out of twenty 
rare (frequency < ~0.1%) risk haplotypes of large effect identified in UKBB at P < 1.0 × 10−5, 
four (hazard ratio: 4.22–20.2) were subsequently replicated in DRIVE (odds ratio: 2.13–11.9) at 
P < 0.05.  Our results support the genetic heterogeneity and rare-variant/haplotype basis of breast 
cancer risk and suggest a novel type of “synthetic association” wherein common risk alleles on a 
rare risk haplotype may misrepresent disease risk through their tagging of many “false positive” 
haplotypes. 
 
Significance      
 
Chromosome Overlap reveals that common alleles identified by GWAS may be poor surrogates 
for underlying high-risk haplotypes, necessitating a reappraisal of the polygenic model of disease 
risk. 
 
Introduction 
 
Genome-wide association studies (GWAS) have discovered many single nucleotide 
polymorphisms (SNPs) associated with small, yet robustly replicated, differences in breast 
cancer risk (1,2).  Polygenic risk scores (PRSs) of these common variants can differentiate 
women’s breast cancer risk by up to several fold (3).  While the PRS is useful for risk 
stratification in a population, the causal germline genetic variation underlying many of these 
GWAS hits remains unclear.  For example, while SNPs on DNA microarrays are designed to tag 
common haplotypes, it is not clear whether the haplotypes tagged by GWAS hits are causal or if 
there are haplotypes or rare variants of large effect correlated, perhaps weakly, with the GWAS 
hits (hence their small effect sizes) that truly cause changes in breast cancer risk.  Here we 
consider the latter hypothesis that rare haplotypes or variants of large effect underlie the 
associations of the GWAS hits with breast cancer risk.  This hypothesis addresses two key 
inconsistencies of the prevailing additive, polygenic, common-variant model for breast cancer 
risk (1-4) that is seemingly supported by the evidence of GWAS hits.  One is the remarkably 
high incidence rates in first-degree relatives of breast cancer cases (5). This observation is 
incompatible with common SNPs being the determinants of breast cancer risk but is consistent 
with rare haplotypes or mutations of large effect (6).  The other is the equality of monozygotic 
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and dizygotic twins’ breast cancer incidence interval when both twins develop breast cancer (7).  
This observation suggests that, when both twins develop breast cancer, there is no difference 
between monozygotic and dizygotic twins regarding their overall genetic susceptibility, a 
conclusion which is incompatible with the polygenic model of inheritance but consistent with the 
hypothesis that the specific genetic risk factor in a given family is monogenic, coming from a 
single locus (6).     
 
Related hypotheses have been proposed attempting to explain similar shortcomings in the 
polygenic model.  One is the hypothesis that so-called “synthetic associations” of rare variants 
near GWAS hits explain observed GWAS signals (8).  While theoretical and sequencing studies 
have not provided strong evidence for this hypothesis (9-12), it has not been considered whether 
rare haplotypes, instead of rare variants, underlie GWAS hits.  Another hypothesis is that human 
diseases have substantial “genetic heterogeneity,” being due primarily to rare mutations, such as 
those of the BRCA1/2 genes, which segregate in families (13).  Neither of these hypotheses 
explicitly consider the possibility that rare haplotypes composed of SNPs may be tags for rare 
causal variants or haplotypes, or, by virtue of their particular allele combinations, causal 
themselves.   
 
The problem of looking for risk haplotypes is combinatorial complexity: there will be a total of 
3m − 1 possible non-contiguous haplotypes for every m independent SNPs.  We avoid this 
combinatorial explosion using tools from the pattern-mining literature (14-16).  Our approach, 
called Chromosome Overlap, is to iteratively pair chromosomes from affected individuals and 
look for shared sets of alleles.  The resulting patterns, called closed patterns, are then tested for 
association with breast cancer risk.  Closed-pattern mining and related techniques that avoid the 
task of exhaustive enumeration have been used previously to detect genetic epistasis (17-19), but 
not to discover risk haplotypes composed of SNPs underlying GWAS hits.  We applied 
Chromosome Overlap to phased genotype data in the UK Biobank (UKBB) (20) to discover risk 
haplotypes of large effect composed of SNPs in the vicinity of three of the strongest GWAS hits 
(by p-value) in the GWAS Catalog (https://www.ebi.ac.uk/gwas/home) associated with breast 
cancer risk: rs2981578 on chromosome 10q26 in an intron of FGFR2 (21); rs554219 on 
chromosome 11q13 upstream of  CCND1 (22); and rs4784227 on 16q12 in an intron of CASC16 
(23).  Subsequently, we replicated several of these haplotypes in the Discovery, Biology, and 
Risk of Inherited Variants in Breast Cancer (DRIVE) case-control study 
(http://epi.grants.cancer.gov/gameon/), generating support for the genetic heterogeneity of breast 
cancer and the notion of synthetic associations of rare haplotypes with GWAS hits.    
 
Materials and Methods 
 
Chromosome Overlap: An iterative, parallel procedure for discovering risk haplotypes 
 
For this paper, a pattern is a subset of (not necessarily contiguous) SNP-alleles, and a 
chromosome is said to contain a pattern if each of its alleles agrees with the alleles of the pattern.  
A pattern is called closed if it is the longest pattern shared by a set of chromosomes (15).  For 
example, Abd is the longest pattern shared by chromosomes AbCde, AbCdE and AbcdE.  Closed 
patterns were introduced by Pasquier et al. (14) as a minimal but lossless representation of the 
frequent transactions in a database.  Terada and colleagues used a linear-time closed-pattern-
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mining algorithm, called LCM (16), in conjunction with a multiple-testing procedure to find 
gene-expression and SNP patterns that are associated with different phenotypes (18,19,45).  A 
limitation of their approach is that it only identifies patterns consisting of minor alleles (45) and 
builds patterns from the bottom up (i.e., short to long). 
 
Recognizing that risk haplotypes may be very long and comprise reference and alternate alleles 
alike, we developed a new pattern-mining method, called Chromosome Overlap, to select and 
test haplotypes of common SNP-alleles in phased genotype data for breast cancer risk 
association.  Our method is a top-down scheme that forms combinations of chromosomes from 
affected individuals and looks for shared alleles.  The shared alleles of a σ-tuple of chromosomes 
constitute a closed pattern called a meta-chromosome (Fig. 1A).  Meta-chromosomes can 
themselves be overlapped to find additional closed patterns (Fig. 1C).  The following steps, 
described with additional mathematical details in the Supplementary Methods Section 1–3, are 
used to discover the complete set of closed patterns: 
  
1. Initiation phase forming all pairs (σ = 2) of chromosomes of breast cancer cases and 
identifying shared allele patterns in a genomic region of interest. 
2. Filtering of the shared patterns (meta-chromosomes) that pass a statistical-significance cutoff 
in the association analysis of breast cancer risk determined to prevent a combinatorial explosion. 
3. Iterated pairwise overlap of meta-chromosomes until all closed patterns (among the filtered set 
from step 2) have been found. 
 
A key feature of this method, which distinguishes it from earlier top-down approaches (15), is a 
triangular-array algorithm (Fig. 1B; Supplementary Methods Section 2) that allows the overlap 
operations to be parallelized among different computing nodes without exhaustive enumeration 
of a combinatorically large set.  Chromosome Overlap was designed to run on IBM Spectrum 
LSF for distributed high-performance computing environments, but sample code executable on a 
single machine is available at https://github.com/wletsou/ChromosomeOverlap. 
 
Haplotype data 
 
Phased haplotype data from the UK Biobank (UKBB) was used for the discovery analysis.  As 
described previously (20), this phased dataset consists of 487,409 samples phased at 658,720 
autosomal SNPs on the Applied Biosystems UK BiLEVE Axiom Array.  A total of 181,034 
women who were designated as “white British” in UKBB were included in our analysis after 
excluding those who: (1) were identified to be outliers in heterozygosity or genotype missingness 
rates; (2) showed any sex chromosome aneuploidies; (3) were second-degree or closer relatives 
of any or third-degree relatives of more than ten other genotyped individuals; or (4) withdrew 
from UKBB before this study began.  Genotype principal components for the discovery analysis 
in the 181,034 women were provided by the UK Biobank from a larger set of 407,219 
individuals at 147,604 genotyped markers (Supplementary Fig. S2).  The preceding steps were 
performed in PLINK (46) and KING (47).  Breast cancer (UKBB data-field 40006, ICD10 code 
C50) was reported in 9,011 women with a mean (SD) age of onset of 56.2 (8.6) years; the 
remaining 172,023 women free of breast cancer had mean (SD) age of 65.0 (7.9) years at the end 
of follow-up. 
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Female subjects in the Discovery, Biology, and Risk of Inherited Variants in Breast Cancer 
(DRIVE) study were used for replication.  Briefly, the DRIVE study was initiated in 2010 as part 
of the NCI's Genetic Associations and Mechanisms in Oncology initiative 
(http://epi.grants.cancer.gov/gameon/) and includes data from 60,015 breast cancer cases and 
controls genotyped on the custom Illumina OncoArray (48).  The 528,620 OncoArray SNPs 
were filtered to remove SNPs that: (1) had genotype missingness rate >10%; (2) were 
monomorphic; or (3) were not in Hardy-Weinberg equilibrium (P < 1 × 10−10), leaving a total of 
433,297.  A total of 4,669 subjects were excluded who: (1) showed any sex chromosome 
aneuploidies; (2) had genotyping rate <90%; (3) were identified as male by PLINK's sex check; 
(4) were second-degree or closer relatives of any other subject; (5) separated from the European 
cluster in PCA (Supplementary Fig. S3); or (6) had missing age data.  The preceding steps were 
performed in PLINK (46), KING (47), and FlashPCA2 (49), leaving 30,064 cases (mean (SD) 
age at onset: 61.7 (10.7) years) and 25,282 controls (mean (SD) age at end of follow-up: 59.6 
(10.7) years).    
 
Because SNPs were genotyped on different arrays in UKBB and DRIVE, we carried out 
genotype imputation to improve the coverage of UKBB Axiom SNPs on the DRIVE OncoArray.  
Imputation was performed in three batches of 15,000–20,000 samples using the TOPMed 
Imputation Server (https://imputation.biodatacatalyst.nhlbi.nih.gov) running Minimac4 (50) and 
phased using Eagle2 (51), based on the TOPMed reference panel including 194,512 haplotypes 
and 308 million sequenced variants (https://topmed.nhlbi.nih.gov) (52).  In order to improve 
phasing consistency between UKBB and DRIVE, UKBB subjects were phased and imputed 
through the TOPMed pipeline; UKBB-phased genotypes were not used.  PCA based on the 
imputed markers was used to generate genotype principal components for the replication analysis 
(Supplementary Figs. S4–S5).  However, only the subset of imputed SNPs that were (1) 
genotyped on the UKBB Axiom Array, (2) imputed with Minimac's quality statistic Rsq ≥ 0.8, 
and (3) biallelic in both cohorts were used to form haplotypes in the vicinity of the three strong 
GWAS hits. 
 
Statistical analysis 
 
For the UKBB discovery analysis, we used Cox proportional-hazards models, adjusted for the 
first ten genotype principal components, with age as the time axis to assess the association of the 
discovered pattern(s) (either a single haplotype or multiple) with breast cancer incidence, where 
the number (zero, one, or two) of copies of each candidate haplotype was modeled as a 
continuous variable, as per the additive genetic model.  The adjusted hazard ratio (HR) and P-
value per haplotype copy were estimated using the one-degree-of-freedom likelihood ratio test 
(LRT) compared to the model without the haplotype.  Because there were many overlapping, 
correlated patterns, we used stepwise forward-selection to add candidate haplotypes sequentially 
that had the smallest P-value until no candidate haplotype had P < 1 × 10−5.  The reported p-
values of the haplotypes were found by removing each surviving haplotype individually and 
computing the LRT statistic. 
 
To reduce the number of SNP-alleles that defined each haplotype without changing the 
carrier/non-carrier status of each UKBB woman (i.e., to remove SNP-alleles unnecessary for 
indicating the same haplotype carriers), we used rpart (24), the recursive partitioning procedure 
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implemented in R, with parameters cp = −1 and minsplit = 1 to ensure that the full tree was 
grown within the 30 steps allowed by R.  SNP-alleles for splitting at each step were chosen to 
maximize the Gini impurity reduction of the node.  Reduction was deemed necessary for 
removing extraneous SNP-alleles from common haplotypes in Phase 1 but was not used for rare 
haplotypes in Phase 2 where frequencies in the replication population could be sensitive to the 
removal of even a few SNP-alleles. 
 
For the DRIVE replication analysis, we used logistic regression, adjusting for age and the first 
ten genotype principal components, and Fisher's Exact test to assess the patterns (i.e., 
haplotypes) identified in the discovery analysis for association with breast cancer risk (DRIVE is 
not a cohort study, so Cox regression was inappropriate).  The odds ratio (OR) and P-value per 
haplotype copy were estimated using the one-degree-of-freedom LRT (compared to the model 
without the haplotype) for each haplotype individually or using Fisher’s Exact test when the 
expected counts fell below 5 in any cell of the 2 × 2 table, with P < 0.05 deemed a successful 
replication.  In the event that controls haplotype frequencies were not statistically significantly 
different between DRIVE and UKBB (Fisher Exact Test P  ≥ 0.05), a combined analysis was 
carried out in a similar manner using DRIVE cases versus DRIVE and UKBB controls, adjusting 
for age and ten genotype principal components of the combined cohort for sufficiently common 
haplotype or using Fisher’s Exact test when the expected counts fell below 5 in any cell of the 2 
× 2 table. 
 
Power to detect replicated haplotypes as a function of OR and controls frequency was evaluated 
using the R method power.fisher.test running nsim = 10,000 simulations of the 2 × 2 haplotype-
by-disease table, with the power defined as the fraction of tables with cases and controls 
haplotypes frequencies significantly different at the α = 1.0 × 10−5 (discovery) or 0.05 
(replication) level (Supplementary Methods Section 8). 
 
The prior steps were carried out using R version 3.6.1. 
 
Data availability statement 
 
Accession of the UK Biobank (UKBB) data used in this study was approved under UKBB 
project #44891.  Accession of the Discovery, Biology, and Risk of Inherited Variants in Breast 
Cancer (DRIVE) data used in this study was approved under dbGaP project #28544 and made 
through the NIH dbGaP (Study Accession phs001265.v1.p1).  
 
TF-binding data in MCF-7 cells from ENCODE 3 (https://www.encodeproject.org/) (26,27) were 
downloaded through the UCSC Genome Browser (https://genome.ucsc.edu/index.html) (28) for 
the following factors: CTCF (experiment: ENCSR000DMR; bed file: ENCFF785NTC), ESRRA 
(experiment: ENCSR954WVZ; bed file: ENCFF541DRZ), FOXA1 (experiment: 
ENCSR126YEB; bed file: ENCFF160RLI), and MYC (experiment: ENCSR000DMQ; bed file: 
ENCFF370EQJ).  
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Results 
 
Exhaustive enumeration of combinations of SNPs is not an efficient way to look for genetic 
interactions.  An alternative is to ask which patterns appear frequently in a dataset and test their 
association with a phenotype.  In pursuit of the latter strategy, we performed two phases of 
Chromosome Overlap at three breast cancer GWAS hits to first identify haplotypes tagged by the 
GWAS hits (Phase 1) and then refine the haplotypes in a conditional analysis (Phase 2). 
 
Phase 1: Chromosome Overlap of regions containing a GWAS hit 
 
For Phase 1, we selected regions that contained 50–60 genotyped SNPs within approximately 
100 kb of (but not necessarily including) the GWAS hits: GRCh38 chr10:121,481,608–
121,680,765 (55 SNPs around rs2981578), chr11:69,419,318–69,616,860 (57 SNPs around 
rs554219), and chr16:52,486,414–52,645,181 (56 SNPs around rs4784227).  See Supplementary 
Table S1 for lists of these SNPs.  Starting with 18,022 UKBB chromosomes from 9,011 breast 
cancer cases, we formed all pairwise (σ = 2) overlaps in the initiation step and retained the 
following numbers of meta-chromosomes that showed evidence of breast cancer risk association 
and passed filtering by Fisher's Exact Test with the indicated P-value thresholds: for the 
chromosome 10 region (hereafter abbreviated as “chr10”), 85 of 2,512,100 (P < 8.0 × 10−21); for 
chr11, 115 of 2,963,982 (P < 9.75 × 10−10); and for chr16, 245 of 3,459,313 (P < 1.0 × 10−16).  
These thresholds were chosen to prevent the total number of patterns at any iteration from 
reaching more than 300,000 (Supplementary Fig. S1; Supplementary Table S2).  We iteratively 
formed meta-chromosomes by pairwise overlap, starting with the meta-chromosomes which 
passed filtering, and looked for unique patterns to be included in the next iteration; no additional 
filtering was applied.  For chr11, the maximum number of unique patterns (285,829) was 
achieved at iteration 4, after which point there was a steady decline (Supplementary Fig. S1B); 
for chr10 and chr16, the maximum occurred at iteration 4 and 3, respectively (Supplementary 
Fig. S1A,C).  At each step we determined the closed patterns by comparing the sets of meta-
chromosomes before and after overlap and finding those that disappeared, i.e., did not appear in 
the newly formed set.  After reaching the maximum, the number of closed patterns equaled the 
difference in the number of total patterns between subsequent iterations.  Importantly, no new 
patterns appeared after the maximum, indicating that the algorithm could have terminated after 
three or four iterations.  For example, the total number (286,393) of closed patterns found after 
32 iterations for chr11 was equal to the number (27 + 77 + 160 + 300 + 285,829) of closed 
patterns that disappeared in iterations 1–4 plus the number remaining after iteration 4.  See 
Supplementary Table S2 for the complete results. 
 
Among the closed patterns found in each region, we expected to find haplotypes that were 
strongly linked to the GWAS hits and highly associated with breast cancer risk.  The patterns 
that had the minimal likelihood ratio test (LRT) P-value for association with breast cancer risk 
were referred to as h1 (Table 1).  Indeed, within our subset of UKBB women, each h1 was in 
strong linkage disequilibrium (LD) with its GWAS hit (h1-rs2981578: r2 = 0.70, D′ = 0.99; h1-
rs554219: r2 = 0.78, D′ = 1.0; h1-rs4784227: r2 = 0.87, D′ = 1.0) and had a similar effect size 
(rs2981578[C]: HR = 1.25, P = 1.7 × 10−51; rs554219[G]: HR = 1.24, P = 3.0 × 10−22; 
rs4784227[T]: HR = 1.25, P = 1.2 × 10−40) and frequency.  Note that rs4784227 on chr16 was 
the only GWAS hit genotyped in UKBB and part of h1; the other two GWAS-hit SNPs were not 
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genotyped in UKBB but were imputed with high quality so that their effect sizes and LD 
properties could be measured. 
 
The h1’s on chr10, chr11, and chr16 comprised 11, 19, and 26 non-contiguous SNP-alleles, most 
of which were the GRCh38 reference allele.  Because closed patterns are the longest pattern 
shared by a group of chromosomes, it is possible that they contain a shorter pattern with the same 
support.  Thus, we assessed whether some of the h1 alleles were unnecessary in specifying h1 
and whether a reduced set of alleles could suffice.  To test this possibility, we used rpart (24), the 
recursive partitioning method implemented in R, to derive three new sets of 10, 17, and 20 SNP-
alleles, respectively, which had the same cases and controls frequencies as their longer versions.  
Because the shorter patterns were also subset patterns, and every chromosome with a superset 
pattern must have the subset, the reduced haplotypes were guaranteed to be perfectly correlated 
with their full-length versions.  Henceforward, h1 refers to the reduced haplotype.  The SNP-
alleles of the three h1’s are given in Supplementary Table S5. 
 
Phase 2: Conditional analysis of h1-bearing chromosomes 
 
Our original hypothesis was that rare haplotypes of large effect underlie the associations of 
GWAS hits with breast cancer risk.  Specifically, the modest effect sizes of h1 and the GWAS 
hit we observed were due to a small subset of h1-bearing chromosomes associated with increased 
breast cancer risk along with many “false positive” haplotypes that carried the GWAS hit.  To 
test this hypothesis, we applied Chromosome Overlap on h1-bearing case chromosomes in the 
topologically associating domains (TADs) containing the h1’s (see Figs. 2–4 below) whose 
boundaries were predicted using the 3D Genome Browser (25).  We selected regions of the 
TAD, excluding the Phase 1 SNPs, which showed the greatest intensity of normalized Hi-C 
contacts on the hypothesis that risk haplotypes would physically interact with regulatory 
elements of nearby genes.  For chr10 and chr11, the Phase 2 regions were directly upstream of 
h1, within approximately 55 and 10 kb of the Phase 1 regions, respectively: GRCh38 
chr10:121,065,946–121,434,484 (103 SNPs); chr11:69,083,946–69,414,699 (92 SNPs).  For 
chr16, the Phase 2 region spanned two sides of h1 and CASC16, removed by 150–200 kb from 
the Phase 1 region boundaries to capture a strong peak in the Hi-C matrix between the ends of 
the TAD (Fig. 4): chr16:52,168,409-52,313,907 and chr16:52,794,506–53,053,996 (30 + 72 = 
102 SNPs).  See Supplementary Table S3 for a complete list of the included SNPs.  We were 
able to include more SNPs in Phase 2 than in Phase 1 because only a subset of case 
chromosomes carried h1: 7,934 chromosome 10’s, 2,100 chromosome 11’s, and 4,595 
chromosome 16’s.   
 
After forming all pairwise overlaps during the initiation step, we found 7,887,179 unique 
patterns on chr10, 242,042 on chr11, and 5,136,876 on chr16.  The difference in the number of 
patterns between chr11 and the other two chromosomes is owing to the difference of ten or 
eleven SNPs, illustrating the combinatorial complexity of the overlap process.  Different 
association P-value thresholds (chosen to prevent the number of patterns from exceeding 
400,000 at any iteration) were used to filter meta-chromosomes after the initiation step: 64 meta-
chromosomes had P < 2.25 × 10−6 on chr10, 44 had P < 1.0 × 10−4 on chr11, and 33 had P < 6.0 
× 10−6 on chr16.  These were further filtered by removing patterns with identical cases/control 
frequencies and ORs to 39, 28, and 25, respectively, because Phase 2 was very sensitive to the 
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number of starting patterns.  We found a total of 397,819 closed patterns in 33 iterations on 
chr10; 167,998 in 25 iterations on chr11; and 368,806 in 24 iterations on chr16 (Supplementary 
Table S4). 
 
Following overlap, we applied stepwise forward-selection to select an independent set of patterns 
associated with breast cancer risk using Cox regression.  To assess the effect and independence 
of any new h1-subtype hx in the multi-haplotype model, we compared the model with h1 to the 
model with “h1 without hx”  and “h1 with hx”; h1 was continually modified as new, statistically 
independent hx’s were added.  We found several risk-associated patterns by this procedure: h2–
h7 on chr10, h2–h4 on chr11, and h2–h12 on chr16 (Table 1; Supplementary Table S5).  Each 
pattern was rare (controls frequency approximately 0.01–0.1%) and strongly risk-elevating (HR 
estimates in the range 2.68–50.4).  We again tried to use recursive partitioning on h1-containing 
chromosomes to reduce the haplotypes but determined that the controls frequencies in the 
replication analysis (below) were better preserved by using full-length haplotypes (data not 
shown), which (except for h1) are used throughout. 
 
To summarize the UKBB discovery analysis, we found six rare haplotypes on chr10, three on 
chr11, and eleven on chr16, which were all strongly associated with breast cancer risk. 
 
Replication in DRIVE 
 
Next, we assessed whether the UKBB discovery-analysis findings could be replicated in an 
independent, large case-control study of breast cancer.  For this analysis, we used 30,064 breast 
cancer cases and 25,282 controls in the DRIVE cohort.  DRIVE haplotypes were imputed and 
phased at UKBB-genotyped SNPs using the TOPMed Imputation Server.   
 
We first confirmed each of the three h1 associations with breast cancer risk in DRIVE using 
logistic regression, adjusting for age and the first ten genotype principal components (Table 2).  
For all three h1's, an effect size and P-value similar to the UKBB results were observed.  We 
next tested the Phase 2 results (h2–h7 on chr10, h2–h4 on chr11, and h2–h12 on chr16) 
individually by comparing the model with h1 alone to the model with h1 and hx (x = 2,…,12), 
both adjusted for age and the first ten genotype principal components.  Since hx-bearing 
chromosomes also contained h1, h1 in the latter model was “h1 without hx” (as in the discovery 
analysis), allowing us to estimate the effect due to hx.   
 
We found that h2 and h4 on chr11 replicated directly in DRIVE with P < 0.05.  The effect sizes 
of the replicated haplotypes were moderated in DRIVE but still larger than those of typical 
GWAS hits.  It was also observed during the model-fitting process that genotype principal 
components had large and highly significant effects on breast cancer risk (Supplementary Table 
S7).  Thus, we also computed the replication P-value by Fisher’s Exact Test, which is not 
adjusted for any genotype principal components, for haplotypes with expected counts less than 5 
in any cell of the 2 × 2 table.  No haplotype which satisfied this condition was directly replicated 
in DRIVE by this method. 
 
We next asked whether the remaining haplotypes failed to replicate due to insufficient power.  
The DRIVE study has more breast cancer cases than UKBB but significantly fewer controls.  If a 
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haplotype frequency were elevated in cases relative to controls, our power to detect its effect 
would be increased if we had more controls who incidentally came from a population with 
similar haplotype frequency.  To this end, we tested by Fisher’s Exact Test whether the DRIVE 
and UKBB controls frequencies were sufficiently similar to warrant our making a single group of 
combined controls: we pooled the controls when the differences were not statistically significant, 
i.e., P ≥ 0.05 (see Supplementary Table S6).  The results of the model fitting are shown in Table 
2 for the many haplotypes that met this criterion.  We found that chr10 h5 and chr16 h6 (both 
with at least one expected cell count less than 5) replicated at P < 0.05 level by Fisher’s Exact 
Test.  Taken together, one of six, two of three, and one of eleven rare haplotypes from the UKBB 
discovery analysis on chr10, chr11, and chr16, respectively, replicated at P < 0.05. 
 
Permutation analysis 
 
We next asked whether replication of any of the rare haplotypes could have been expected by 
chance.  To test this possibility, we repeated the Phase 2 analysis of chr11 using a permuted 
discovery dataset.  Specifically, we permuted case/control status only among the 32,969 h1-
carriers in UKBB such that the numbers of h1 homo- and heterozygotes were unchanged in each 
of the case and control groups.  This step ensured that h1 had the same frequency and breast 
cancer association as the original unpermuted dataset; but any subtypes of h1 found in the 
(permuted) Phase 2 discovery analysis should have been associated with breast cancer only by 
chance and should not have replicated in DRIVE.  We performed the Phase 2 analysis in the 
same manner as the original discovery analysis, including the same number (28) of filtered 
haplotypes kept in the original Phase 2 analysis for the remaining iterations.  Then we assessed 
the replication of the discovered subtypes of h1 in the DRIVE data in the same manner as the 
original replication analysis, again combining controls when the DRIVE and UKBB controls 
frequencies were sufficiently similar (P ≥ 0.05).  The results for a total of three permutations are 
shown in Table 3. 
 
Two notable observations can be made of the results of the permutation experiment.  First, the 
UKBB discovery analysis could generate a small number (one or two) of haplotypes by chance 
alone.  Second, none of the h1-subtypes discovered in the permuted UKBB data replicated by the 
LRT in DRIVE, suggesting the replication of h2 and h4 in the original analysis was likely valid.   
 
Features of the haplotypes 
 
We next investigated the chromosomal locations and bioinformatics features of the SNPs of the 
replicated haplotypes.  Figs 2–4 show the SNPs of the haplotypes in each chromosome region.  
Also included are HMEC Hi-C data from the 3D Genome Browser (http://3dgenome.org) (25) 
and ENCODE 3 (26,27) MCF-7 ChIP-seq data from the UCSC Genome Browser 
(http://genome.ucsc.edu) (28).  The SNPs are not contiguous but lie in clusters throughout the 
TADs.  The Hi-C data show that the 5′ region of the chr11 TAD interacts strongly with the 3′ 
region where CCND1 is located (Fig. 3); haplotype SNPs are notably involved in the interaction.  
The chr10 TAD involves several interactions, although somewhat weaker than the strong peak 
on chr11.  The chr16 TAD has the weakest interactions, although a broad peak between the ends 
of the TAD gave rise to several split haplotypes, only one of which replicated.  As described 
above, because we pre-selected this region of the chr16 TAD for Phase 2, the absence of SNPs in 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.21.22281361doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281361
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

other regions is not evidence of their not being involved in risk rare haplotypes.  At the chr11 
locus, we also observed at least four clusters of CTCF, ESRRA, and FOXA1 co-binding events 
(Fig. 3), suggesting that these transcription factors (TFs) may mediate the physical interactions.  
Importantly, this triplet of TFs is known to mediate cells’ response to estrogen (29,30).  We also 
queried the HACER database (of Human ACtive Enhancers to interpret Regulatory variants) (31) 
to find other TFs binding enhancers of CCND1 in MCF7 cells.  A notable feature of this data 
was that all enhancers bound MYC, which also appeared in conjunction with the other three TFs 
(Fig. 3).  The ChIP-seq data for these factors were sparser on chr10 and chr16 (Figs. 2 and 4). 
 
Discussion 
 
Through the method developed in this paper, we have detected several rare haplotypes of large 
effect underlying GWAS hits associated with breast cancer risk.  We discuss below (1) how our 
findings support a model of breast cancer risk driven by rare variants and genetic heterogeneity 
(13), (2) limitations of this study and alternative interpretations, and (3) methodological points 
regarding Chromosome Overlap. 
 
Our findings in the vicinity of three strong GWAS hits support a model wherein rare haplotypes 
or mutations underlie the germline genetic risk for breast cancer associated with GWAS hits.  
Despite low power and a genetically heterogeneous replication population (see below), we 
discovered and replicated four of twenty rare haplotypes in the three chromosomal regions we 
examined.  While each of the effect estimates was attenuated in the replication analysis, the 
DRIVE ORs of the replicated haplotypes were all 2.0 or larger, consistent with the twin data 
supporting a single high-risk variant’s being the cause of familial aggregation of breast cancer 
(6); in contrast, each GWAS hit was associated with increased risk by a factor of approximately 
1.2.  Although these rare haplotypes alone do not fully capture the association of each of the 
GWAS hits with breast cancer risk, when pooled with other rare haplotypes they might.  We 
estimate that chr11 haplotypes h2 and h4 contribute an amount 2p(1 − p)β2 = 0.00050 and 
0.00024, respectively, to the narrow-sense frailty-scale heritability, where p is the frequency in 
replication controls and β is the logarithm of the effect size (1,2), in comparison with 0.0080 for 
the much more common GWAS hit rs554219.  But power calculations (Supplementary Methods 
Section 7; Supplementary Table S9) suggest that at least 16 and 5 haplotypes with similar 
respective frequencies and effect sizes to h2 and h4 should exist, which together account for 
more than 100% of the tagged heritability.  If genuine, these haplotypes represent either (a) 
approximations of single risk-elevating mutations or (b) true (or approximate) risk-elevating 
haplotypes with interacting combinations of alleles.  Our study was not able to distinguish these 
two possibilities, but various plausible scenarios are conceivable that explain the results in terms 
of hypotheses (a) or (b). 
 
According to quantitative evolutionary theory (9), mutations arise on ancestral haplotypes in 
proportion to their frequency in the population, so that the rarer the haplotype, the stronger its 
correlation with the mutation.  If the risk mutation arose only recently, the rare haplotype on 
which it arose would be unbroken by recombination and associated with disease risk.  In 
contrast, if the mutation is old, only a short region of the haplotype about the mutation will be 
shared among affected individuals.  A short segment is necessarily more common than a long 
one, so the risk attributed to it (or to common variants it comprises) will eventually be diluted by 
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many “false-positive” non-mutation carriers.  Paradoxically, as the region of the mutation 
becomes more precisely pinpointed, the risk attributed to it decreases.  Thus, it appears that 
Chromosome Overlap is designed to specifically detect recent mutations that arose on rare 
haplotypes.  However, our detecting a rare haplotype in each of three regions seems a priori 
unlikely, because it is on common haplotypes that mutations tend to arise.  On this argument, the 
Chromosome Overlap strategy appears destined to fail.  However, an important caveat to this 
deduction is that any haplotype is rare if it is long enough.  Indeed, each replicated haplotype we 
found was long (spanning 0.5–1 Mb of a TAD) and constituted of independent, individually 
common blocks of SNPs in strong LD (determined using the R package Big-LD (32) in 
Supplementary Methods Section 7; Supplementary Table S8; Supplementary Figs. S3–S5).  
These haplotypes cannot be too old, or else the only shared segment will be a short (and 
therefore likely common) region containing the mutation.  These considerations imply that the 
haplotypes detected by Chromosome Overlap carry relatively recent mutation events, with the 
stronger results on chr11 likely indicating more recent risk mutations resulting in extensive 
haplotype sharing and the weaker results on chr16 being due to older mutations with less 
haplotype sharing.  A rare-haplotype model such as this would help explain why GWAS hits are 
poor approximations for rare causal variation. 
 
It is, however, also possible that the rare haplotypes do not represent single risk mutations, but 
rare combinations of alleles whose interaction predisposes to disease.  Few rare single variants 
have been found to explain synthetic associations of GWAS hits at breast cancer loci (11,12).  
Furthermore, despite the prevalence of GWAS hits, comparatively few rare mutations have been 
found in family-based linkage studies of breast cancer with subsequent positional cloning 
(33,34).  The alternative that explains these observations is a preponderance of cis interactions of 
variants on the same chromosome.  These allele combinations would not be detected easily by 
linkage analysis if they are rare or not frequently shared across case families; they are therefore 
not inconsistent with the general absence of linkage-analysis discoveries in regions with GWAS 
signals that are predicted to exist under the synthetic-associations model (8,10).  Neither is the 
causal-haplotype hypothesis inconsistent with the finding that genetic epistasis—the interaction 
between genes—makes a relatively minor contribution to heritable risk (35,36), because previous 
studies that have looked at variant combinations (17-19,35) have considered trans interactions 
between chromosomes.  The ChIP-seq and Hi-C data, especially on chr11, suggest that the whole 
of the haplotype may be involved in altering disease risk.  For example, the high-intensity of Hi-
C contacts on chr11 are complemented by ChIP-seq peaks for CTCF, FOXA1, and ESRRA 
(Estrogen Related Receptor Alpha).  The estrogen receptor (ER) binds throughout the genome at 
enhancers distant from the start sites of genes it regulates (37,38), including CCND1.  Several 
proteins are involved its recruitment, including the pioneer factor FOXA1 (29,38) and CTCF 
which acts upstream of FOXA1 to drive ER-mediated transcription via chromosome loops (39) 
and partitions the genome into ER-responsive blocks (40).  A small fraction of binding events 
genome-wide involve all three factors which then contribute to down-regulation of estrogen 
target-genes (29,30).  A fourth TF with frequent binding in the CCND1 TAD is coded by the 
proto-oncogene MYC.  MYC-binding was identified by computational analysis in a CCND1 
enhancer encompassing the original GWAS hit rs614367 (31), later replaced with rs554219 
using fine-mapping (22), and it has long been known that MYC can repress CCND1 expression 
(41,42).  As certain SNPs in the haplotype involve simultaneous binding of all these factors, 
suppression of CCND1 may be the high-risk event leading to breast cancer that is captured by 
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the rare haplotypes.  On this hypothesis, a rare, unfortunate series of recombination events that 
juxtaposes key alleles results in a risk haplotype and the disease; different families could 
segregate the same risk haplotype through recombination despite its not being inherited from a 
common ancestor.  Although we observed the strongest evidence of consequential TF-binding 
around rs554219 on chr11, others have demonstrated robust, allele-specific interactions between 
rs4784227 and a SNP in the TOX3 promoter on chr16, possibly involving FOXA1 (43), and 
OCT4 and RUNX2 binding have been implicated in mediating the effect of rs2981578 on chr10 
(21). 
 
The generalizability of our results to other GWAS hits needs to be investigated.  An alternative 
interpretation of our findings is that the haplotypes we identified reflect small but direct effects 
of the GWAS hits (as per the polygenic model) and that the large hazard ratios of the rare 
haplotypes we found are statistical artifacts.  Using reporter assays, other studies have found that 
alternate alleles of the GWAS hit at each of the three loci can cause changes in gene expression 
or TF-binding (21-23,43).  Against this interpretation, a non-BRCA1/2 family from the 
Netherlands with six cases of breast cancer was found to have a strong linkage peak at the 11q13 
locus as well as in a chromosome 14 region containing the FOXA1 gene (44).  The strength of 
this effect is inconsistent with the small OR of the GWAS hit, and the involvement of another 
gene known to be important in CCND1 regulation (i.e., FOXA1) suggests that a specific pathway 
may be driving disease risk.  There are two points that need to be considered when weighing the 
evidence for these two interpretations.  First, the women in our DRIVE analysis, although all of 
European ancestry, are genetically more diverse than their counterparts in our UKBB analysis.  
Genetic diversity has limited the generalizability of results from previous linkage studies of 
breast cancer (33,34), and in fact, we observed strong and significant correlations between 
genetic ancestry PCs and breast cancer risk in DRIVE (even after selecting the European-
ancestry subset (Fig. S2B)) that were not present in the more homogeneous UKBB “white 
British” sample (Supplementary Table S7).  Second, an important limitation of our study was 
low power.  For example, the estimated power to discover in UKBB a haplotype like chr11 h2 
was only 6% (Supplementary Methods Section 7; Supplementary Table S9), suggesting that 16–
17 such haplotypes may exist that could not be detected.  Similarly, we had only 17% power to 
discover (in UKBB) rarer haplotypes like chr11 h4 with higher replication ORs, suggesting that 
5–6 similar ones may exist (Supplementary Table S9).  Finally, because our study was limited to 
UKBB-genotyped SNPs, there may be many other risk haplotypes in the population that we 
could not observe or measure.  In summary, while the reporter-assay evidence is supportive of 
the polygenic model, it does not refute the genetic heterogeneity and multiple-rare-
variant/haplotype basis of breast cancer risk.  On the other hand, the evidence from linkage 
analysis as well as large twin/family studies supports the latter model and is inconsistent with the 
polygenic interpretation. 
  
Chromosome Overlap is a complementary method to bottom-up closed-pattern miners like LCM 
(16) and has the potential for further improvement.  LCM and Chromosome Overlap share 
similar limitations when the number of SNPs becomes large.  Relator et al. had to split thousands 
of genes into several blocks of 250 in order to find closed gene-expression patterns by LCM 
among hundreds of breast- and ovarian cancer patients (19).  Chromosome Overlap is also 
limited in the number of SNPs it can handle, but it differs from LCM in that the longest patterns 
are found first; LCM appears to take longer to find these patterns, especially in large datasets, 
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because it only finds them after mining shorter patterns.  While we used pattern disappearance as 
the criterion to ensure that we captured all closed patterns, we found empirically that most, if not 
all, closed patterns appeared within the first few iterations.  If this observation can be 
theoretically justified, or if we are willing to forfeit the patterns of later iterations, denser 
genotype data and longer regions can be studied in the future by Chromosome Overlap.  
Currently, the initiation and filtering steps of Chromosome Overlap knowingly reject some 
patterns in order to capture the most likely candidates in reasonable time, but by increasing the 
value of σ it may be possible to capture more of them.  Finally, Chromosome Overlap is fully 
parallel, and with enough computing nodes, the overlaps can be computed in a relatively short 
time. 
 
In conclusion, through a new closed-pattern-mining method called Chromosome Overlap, we 
discovered and replicated several rare, risk haplotypes underlying three breast cancer GWAS 
hits, with the possibility that there may be many more.  Similar to the synthetic-associations and 
genetic-heterogeneity hypotheses, these results suggest that GWAS hits derive their signal by 
averaging over many “false positive” haplotypes and artificially smooth the risk gradient across 
women.  If replicated in the vicinity of other GWAS hits and backed up by functional studies, the 
rare-haplotype hypothesis may challenge the prevailing polygenic, additive model of breast 
cancer risk.  
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Figures 
 

 
Figure 1: The Chromosome Overlap method.  (A) Illustration of the initiation step forming 
meta-chromosomes in the case σ = 2.  One chromosome (xi1 = x3) is fixed and overlapped with 
all variable chromosomes xj satisfying iσ = j > 3 in the non-hatched region of the haplotype 
matrix.  The operation in which x3 forms a non-contiguous meta-chromosome with column i2 = 4 
is shown in detail.  (B) A general triangular array for choosing σ-tuples of chromosomes from a 
fixed total, which can be used to partition of all possible overlap operations to different 
computing nodes.  The figure shows how all combinations of σ = 4 chromosomes (e.g., (1,2,3,4), 
(1,2,5,8), (5,6,7,8)) from a fixed total of 8 can be indexed.  The lowest index iσ – 3 = i1 takes all 
values from 1 to 8 − σ + (σ − 3) = 5, corresponding to the layers of the array, and in general, 
index iσ − j spans the integers iσ − j − 1 + 1 to 8 − j in the j + 1th dimension.  The process may be 
generalized to any value of σ by adding the appropriate number of dimensions.  (C) A schematic 
representation of the overlap iterations with σ = 2 (pairing), illustrating the overlap of 
chromosome pairs to form meta-chromosomes and the overlap of meta-chromosome pairs to 
form meta-meta-chromosomes.  Note that, in general, meta-chromosomes need be neither 
contiguous nor of the same length. 
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Figure 2: Haplotypes SNPs for replicated haplotypes at chromosome locus 10q26 (chr10). Top: 
Normalized HMEC Hi-C contact frequency and TAD boundaries from the 3D Genome Browser 
(25).  Bottom: MCF-7 ChIP-seq peaks from ENCODE 3 (26,27) visualized in the UCSC 
Genome Browser (28).  SNP tracks are shown in red and blue for reference and alternate alleles, 
respectively, and the GWAS hit rs2981578 (not part of the haplotype) is indicated in black.  
ChIP-seq for CTCF, ESRRA, FOXA1, and MYC are shown in purple.  Genomic coordinates are 
GRCh38. 
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Figure 3: Haplotypes SNPs for replicated haplotypes at chromosome locus 11q13 (chr11). 
Normalized HMEC Hi-C contact frequency and TAD boundaries from the 3D Genome Browser 
(25).  Bottom: MCF-7 ChIP-seq peaks from ENCODE 3 (26,27) visualized in the UCSC 
Genome Browser (28).  SNP tracks are shown in red and blue for reference and alternate alleles, 
respectively, and the GWAS hit rs554219 (not part of the haplotypes) is indicated in black.  
ChIP-seq for CTCF, ESRRA, FOXA1, and MYC are shown in purple.  Genomic coordinates are 
GRCh38. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.21.22281361doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281361
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

 
Figure 4: Haplotypes SNPs for replicated haplotypes at chromosome locus 16q12 (chr16). 
Normalized HMEC Hi-C contact frequency and TAD boundaries from the 3D Genome Browser 
(25).  Bottom: MCF-7 ChIP-seq peaks from ENCODE 3 (26,27) visualized in the UCSC 
Genome Browser (28) SNP tracks are shown in red and blue for reference and alternate alleles, 
respectively, and the GWAS hit rs4784227 (part of the haplotype) is indicated in black/blue.  
ChIP-seq for CTCF, ESRRA, FOXA1, and MYC are shown in purple.  Genomic coordinates are 
GRCh38.  
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Tables 
 
Table 1: Frequency and breast cancer risk association of h1-subtypes in UKBB 

Variable HR LRT P-valuea Relative frequency / 10−4 
(cases/controls)b 

Chr10 
h1 1.30 1.0 × 10−65 4,402/3,766 
rs2981578[C] 1.25 1.7 × 10−51 5,178/4,608 

LDc: r2 = 0.70, D′ = 0.99 
h2 18.8 8.9 × 10−11 6.659/0.2616 
h3 10.2 6.6 × 10−9 7.768/0.5813 
h4 3.85 1.0 × 10−7 18.31/4.825 
h5 10.5 2.2 × 10−7 6.104/0.6852 
h6  6.29 2.5 × 10−6 7.768/1.105 
h7 8.77 3.8 × 10−6 5.549/0.4651 

Chr11 
h1 1.26 1.5 × 10−21 1,165/947.1 
rs554219[G] 1.24  3.0 × 10−22 1,425/1,182 

LDc: r2 = 0.78, D′ = 1.0 
h2 4.22 2.0 × 10−7 14.44/3.372 
h3 5.87 3.2 × 10−7 9.433/1.424 
h4 16.8 6.9 × 10−6 3.329/0.1453 

Chr16 
h1 1.27  1.2 × 10−41 2,550/2,118 
rs4784227[T] 1.25 1.2 × 10−40 2,808/2,367 

LDc: r2 = 0.87, D′ = 1.0 
h2 50.4 1.7 × 10−7 2.774/0.0 
h3 
 

5.36 2.6 × 10−7 10.54/1.773 

h4 7.49  1.9 × 10−7 7.768/0.8720 
h5 3.22 1.6 × 10−7 22.20/7.092 
h6 20.2 3.4 × 10−7 3.884/0.1163 
h7 6.11 2.2 × 10−6 7.768/1.105 
h8 2.68  2.7 × 10−6 26.08/9.621 
h9 14.4  3.3 × 10−6 3.884/0.1453 
h10  27.2 3.7 × 10−6 2.774/0.02907 
h11 5.36  4.6 × 10−6 8.323/1.453 
h12 6.41 7.0 × 10−6 6.659/0.8720 

a P-value for the 1-d.f. likelihood ratio test between the model with h1 alone (resp. the null model) and the model 
with h1 and hx (resp. just h1 or the GWAS hit), adjusted for age, the first ten genotype principal components, and 
the remaining variables 
b Among 18,022 case chromosomes and 344,046 control chromosomes 
c Computed in UKBB cases and controls  
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Table 2: Frequency and breast cancer risk association of h1-subtypes in DRIVE 
Variable DRIVE 

OR 
DRIVE P DRIVE relative 

frequency / 10−4 
(cases/controls)c 

Combinedd 
OR 

Combinedd 
P 

Combinedd 
relative 
frequency / 10−4 
(cases/controls)e 

Chr10 
h1 
 

1.26 1.1 × 10−75a 4,354/3,812    

rs2981578[C] 
 

1.22  7.3 × 10−60a 5,239/4,755    

LDf: r2 = 0.67, D′ = 0.98    
h2 0.656 0.23a 0.9979/1.582     
h3 2.78 0.63b 0.4989/0.1978 1.00 1.0b 0.4989/0.5322 
h4 2.00 0.066a 7.817/4.549 1.84 0.059a 7.817/4.790 
h5 2.69  0.18a 1.663/0.7911 4.22 0.024b 1.663/0.6842 
h6 1.44 0.75a 2.328/1.780 1.85  0.32a 2.328/1.191 
h7 0.923 1.0b 0.1663/0.1978 0.563 0.50b 0.1663/0.4308 

Chr11 
h1 1.21 9.2 × 10−22a 1,135/967.9    
rs554219[G]  1.21 3.2 × 10−27a 1,464/1,252     

LDf: r2 = 0.74, D′ = 1.0    
h2 2.13 0.022a 8.648/4.351 2.17 1.8 × 10−3a 8.648/3.497 
h3 1.07  0.68a 4.490/4.351    
h4 
 

11.9 2.7 × 10−3a 2.162/0.1978 6.89 4.7 × 10−8b 2.162/0.1520 

Chr16 
h1 1.22  1.1 × 10−42a 2,431/2,093    
rs478227[T]  1.23 1.9 × 10−50a 2,822/2,434     

LDf: r2 = 0.82, D′ = 1.0    
h2 >100 1.0b 0.1663/0.00 >100 0.13b  0.1663/0.00 
h3 1.94 0.31a 2.328/1.384 1.58 0.40a 2.328/1.723 
h4 
 

0.640 0.26a 0.8316/1.582 0.578 0.16a 0.8316/0.9630 

h5 0.971 0.31a 7.151/7.713 1.02  0.37a 7.151/7.172 
h6 2.89 0.38b 0.6652/0.1978 3.13 0.022b 0.6652/0.1267 
h7 0.343 0.020a 0.6652/2.175 0.503  0.089a 0.6652/1.242  
h8 1.51 0.34a 8.482/5.933    
h9 1.08 1.0b  0.1663/0.1978 0.924 1.0b 0.1663/0.1520 
h10 0.988 1.0b  0.1663/0.1978  2.51 0.35b 0.1663/0.05068 
h11 1.12 1.0b 0.8316/0.7911 1.04 0.76a 0.8316/1.368 
h12 0.801 0.38a 1.497/1.780 1.66 0.41a 1.497/0.9883 

a P-value for the 1-d.f. likelihood ratio test between the model with h1 alone (resp. the null model) and the model 
with h1 and hx (resp. just h1 or the GWAS hit), adjusted for age and the first ten genotype principal components 
b Fisher’s Exact Test P-value (unadjusted) 
c Among 62,128 case chromosomes and 50,564 control chromosomes 
d DRIVE and UKBB control chromosomes were only combined if the controls frequency difference was not 
statistically significant (Fisher's Exact Test p ≥ 0.05; Table S6) 
e Among 62,128 case chromosomes and 394,610 control chromosomes 
f Computed in DRIVE cases and controls  
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Table 3: Frequency and breast risk association of chr11 h1-subtypes in UKBB (permuted) and 
DRIVE 

Variable HR/ORa LRT P-
valueb 

Relative 
frequency / 10−4 
(cases/controls)c 

Combinedd 
OR 

Combinedd P Combinedd 
relative 
frequency / 10−4 
(cases/controls)e 

Permutation 1 (50,058 closed patterns) 
UKBB discovery 
h2′ 4.58 1.4 × 10−8 15.54/3.168    
h3′ 6.18 3.8 × 10−7 8.878/1.192    
DRIVE replication 
h2′ 1.35 0.68  5.821/4.549 1.21 0.92 5.821/3.345 
h3′ 1.23 0.93 9.480/7.911    

Permutation 2 (36,021 closed patterns) 
UKBB discovery 
h2′′  5.45 4.6 × 10−6 8.323/1.221    
DRIVE replication 
h2′′ 1.08  0.74 3.493/3.362    

Permutation 3 (23,169 closed patterns) 
UKBB discovery 
h2′′′ 2.42 2.5 × 10−6 34.40/13.52    
DRIVE replication 
h2′′′ 1.12 0.61 16.80/15.43 1.12 0.67 16.80/13.76 

a Hazard ratio for UKBB, odds ratio for DRIVE 
b P-value for the 1-d.f. likelihood ratio test between the model with h1 alone and the model with h1 and hx, adjusted 
for age, the first ten genotype principal components, and (in UKBB only) the remaining variables 
c Among 18,022 case and 344,046 control chromosomes in UKBB and 62,128 case and 50,564 control 
chromosomes in DRIVE 
d DRIVE and UKBB control chromosomes were only combined if the controls frequency difference was not 
statistically significant (Fisher's Exact Test P ≥ 0.05) 
e Among 62,128 case and 394,610 combined control chromosomes 
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