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Running title 

Rare Haplotypes Confer Susceptibility to Breast Cancer 

 
Abstract 

While numerous common variants have been linked to breast cancer (BCa) risk, they explain only partially the 
total BCa heritability. Inference from the Nordic population-based twin data indicates that rare high-risk loci are 
the chief determinant of BCa risk. Here, we use haplotypes, rather than single variants, to identify rare high-risk 
loci for BCa. With computationally phased genotypes from 181,034 white British women in the UK Biobank, we 
conducted a genome-wide haplotype-BCa association analysis using sliding windows of 5-500 consecutive array-
genotyped variants. In the discovery stage, haplotype associations with BCa risk were evaluated retrospectively 
in the pre-study-enrollment portion of data including 5,487 BCa cases. BCa hazard ratios (HRs) for additive 
haplotypic effects were estimated using Cox regression. Our replication analysis included women free of BCa at 
enrollment, of whom 3,524 later developed BCa. This two-stage analysis detected 13 rare loci (frequency <1%), 
each associated with an appreciable BCa risk increase (discovery: HRs=2.84-6.10, P-value<5x10-8; replication: 
HRs=2.08-5.61, P-value<0.01). In contrast, the variants that formed these rare haplotypes individually exhibited 
much smaller effects. Functional annotation revealed extensive cis-regulatory DNA elements in BCa-related cells 
underlying the replicated rare haplotypes. Using phased, imputed genotypes from 30,064 cases and 25,282 
controls in the DRIVE OncoArray case-control study, six of the 13 rare-loci associations proved generalizability 
(odds ratio estimates: 1.48-7.67, P-value<0.05). This study demonstrates the complementary advantage of 
utilizing rare haplotypes to capture novel risk loci and possible discoveries of more genetic elements 
contributing to BCa heritability once large, germline whole-genome sequencing data become available. 
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Introduction 
Common- and rare-variant models are two contrasting hypotheses under active debate regarding how germline 
genetic variants drive disease risk (1). In the past decade, efforts for identifying germline determinants of breast 
cancer (BCa) risk have been largely led by genome-wide association studies (GWAS) of single nucleotide 
polymorphisms (SNPs), which have identified hundreds of common risk variants in large samples (2,3). Polygenic 
risk scores comprised such GWAS-discovered risk variants have shown ability to grade women’s BCa risk by 
several fold (3,4). Inference from the Nordic twin data (5), however, clearly supports the rare-variant model over 
the common-variant counterpart, explaining the specific epidemiological patterns of BCa in the largest, 
population-based twin study of cancer (Yasui et al. submitted as a separate manuscript), consistent with 
McClellan and King’s hypothesis that genetic heterogeneity involving many rare mutations drives the risk of BCa 
and other common diseases (6).  
 
GWAS methodologies for testing common-variant associations with disease risk are mature and have widely 
been applied. In GWAS, genotype imputation increases genomic coverage and allows researchers to combine 
multiple studies with potentially different genotyping platforms for higher statistical power (7). On the other 
hand, testing rare variant associations with disease risk across the genome in a sample of unrelated subjects has 
been challenging, if not infeasible, because doing so requires sample sizes large enough to identify rare-variant 
carriers and a genotyping platform appropriate for rare variants. Whole-genome sequencing (WGS) data from a 
large cohort would enable studies of rare variant associations. This important data collection is currently 
underway, but WGS data are still unavailable in large cohorts or case-control studies. 
 
Here, we consider rare haplotypes, instead of rare, single variants, formed by sets of genotyped variants on an 
array in large epidemiological studies for identifying rare, genetic determinants of BCa risk. We submit two 
reasons for considering rare haplotypes: 1) multiple loci interact to exsert biological function (e.g., those of 
regulatory regions to control gene expression); and 2) each risk mutation must have arisen on a chromosome 
whose rare haplotypes may serve as proxies if unbroken by recombination over time (e.g., the mutation arose 
recently). Note, however, that this analysis does not consider haplotypes involving an ungenotyped variant and 
thus is far from a comprehensive examination of all rare haplotypes. Nonetheless, the novel rare haplotypes we 
identify provide further support for the rare-variant model and suggest consideration of haplotypes for the 
search for additional genetic contributions to BCa risk (and other common diseases). 
 
Specifically, this paper reports genome-wide discovery and replication analyses involving haplotypes of variants 
genotyped in the UK Biobank (UKBB) (8) with its Axiom Array for BCa-risk association in 181,034 “white British” 
women, including 9,011 BCa cases. The UKBB findings were further evaluated using the Discovery, Biology, and 
Risk Inherited Variants in Breast Cancer (DRIVE) project (9) for generalizability evaluation with 30,064 cases and 
25,282 controls of females with European genetic ancestry.  
 

Methods 

Study subjects  
For discovery and replication analysis, we utilized the data from the UK Biobank (UKBB), a large cohort study 
that has collected extensive phenotypic and genetic data on approximately half a million participants across the 
United Kingdom (8). Upon accessing the UKBB resource under application number 44891, 181,034 women who 
self-reported as “white” and “British” with very similar genotype principal components (PCs) (the “white British 
ancestry subset” designated by UKBB) were included in our analysis. We excluded women who: 1) were 
identified to be an outlier in heterozygosity and missing genotyping rates; 2) showed any sex chromosome 
aneuploidies; 3) were related to other genotyped participants, as inferred by KING (30); or 4) withdrew from the 
UKBB before this study began. BCa incidence (UKBB Data-Field: 40006 and ICD-10 codes: C50.0 - C50.9) and 
other clinically relevant variables were extracted from the UKBB portal. Women selected for this study had ages 
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between 40 and 71 years old at the time of enrollment, of whom 5,487 were diagnosed with BCa before 
enrollment at an average age of 52.9 years (standard deviation (SD)=7.4 years). This group was used in our 
discovery analysis. During follow-up after UKBB enrollment, 3,524 additional women developed BCa with an 
average age of 61.2 years (SD=7.7 years). This group was used in our replication analysis. The remaining 172,023 
women without a BCa had an average age of 65.0 years (SD=7.9 years) at the last follow-up with a median 
follow-up time of 8.5 years. 
 
To evaluate the generalizability of our UKBB findings (“generalizability analysis”), we used subjects in the DRIVE 
study, which started in 2010 as part of the GAME-ON initiative (https://epi.grants.cancer.gov/gameon/) to 
detect new genetic loci for five common cancer types using the Illumina custom OncoArray (9). The DRIVE study 
comprised 17 studies and collected 60,015 participants from 15 countries. We accessed the DRIVE OncoArray 
dataset through the NIH dbGaP (Study Accession: phs001265.v1.p1) and removed 4,669 (7.8%) participants 
based on our genotype quality control (QC) and limited the sample to those of European genetic ancestry (see 
below for details). A final set of 55,346 women, including 30,064 BCa cases and 25,282 controls, was assembled 
as an independent, slightly broader genetic-ancestry population than UKBB’s “white British” for assessing the 
generalizability of our findings from the UKBB discovery and replication analyses. All women had ages between 
18 and 91 years old at the recruitment, and the BCa case group had an average age of onset of 61.7 years 
(SD=10.7 years). For both UKBB and DRIVE, all participants provided written informed consent under local IRB-
approved protocols. 
 
The UKBB Phased Genotype Data 
The current study utilized the phased genotype data provided by the UKBB as the output of whole-chromosome 
phasing during the genotype imputation process. Details regarding the UKBB’s Axiom Array, haplotype 
estimation, and genotype imputation have been previously described by UKBB scientists (8). Briefly, the phased 
data downloaded from UKBB included 487,409 participants phased on a per-chromosome basis at 658,720 
autosomal genotyped variants with SHAPEIT3 (31) using the 1000Genome Phase 3 haplotypes (32) as the 
reference. We converted the supplied phased data in the BGEN v1.2 format to a new data structure, called GDS 
(33), to facilitate genome-wide haplotype analysis. Then we created a subset of the phased data for the 181,034 
women selected for our analysis. The UKBB phased data had a 100% genotyping rate on all variant sites; 
therefore, the only exclusions we made were 12,274 variants that were either monomorphic (i.e., minor allele 
frequency (MAF) = 0) or failed the Hardy-Weinberg equilibrium (HWE) test (i.e., P <1x10-10) in our analytic 
subset. After QC, 646,446 variants (643,307 SNPs and 3,139 insertion/deletions) remained for analysis. The 
above data processing was implemented with PLINK (34) and R package “SeqArray” (33). 
 
The DRIVE OncoArray Data and Genotype Imputation 
We obtained the DRIVE OncoArray data, containing 528,620 variants genotyped in 60,015 BCa cases and 
controls, from dbGaP under our approved project #28544. Given the limited overlap of variants between the 
UKBB’s Axiom Array and the DRIVE’s OncoArray, we first filtered the DRIVE genotype data through variant- and 
sample-QCs, as described below, and then performed genotype imputation to improve DRIVE coverage of the 
UKBB’s genotyped variants. We filtered out variants based on the following filters: 1) sex chromosome 
aneuploidies; 2) missing genotyping rate >10%; 3) MAF=0; and 4) HWE test P< 1x10-10. We excluded samples 
who: 1) had a genotyping rate <90%; 2) failed in the PLINK’s sex check (i.e., F-score above 0.3); 3) were related 
to any other samples with second-degree or closer relationship, as detected by KING (30); or 4) separated from 
European-ancestry samples in the 1000 Genomes Phase 3 data (32), according to the first two PCs computed by 
flashPCA (35). Women identified as of European ancestry in this study had PC1 ≤0.0025 and PC2 ≥-0.007, as 
indicated by vertical and horizontal dotted lines in Suppl. Fig. S3B. The cleaned data contained 433,297 variants 
and 55,450 unrelated women of European genetic ancestry. Besides, we performed the second PCA on the 
55,450 women and the derived top 10 PCs were used to control the fine-scale population structure. 
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Genome-wide imputation of the cleaned DRIVE genotype data was carried out using the online Trans-Omics for 
Precision Medicine (TOPMed) Imputation Server (https://imputation.biodatacatalyst.nhlbi.nih.gov), which 
automatically executes its own QC, phasing with Eagle2 (36), and genotype imputation with Minimac4 (37) on a 
per-chromosome basis. The TOPMed pipeline was built on a large reference panel of 194,512 haplotypes and 
308 million variants generated by the TOPMed program of the US National Heart, Lung and Blood Institute (38) . 
Due to the sample limit of the server, the QCed DRIVE OncoArray data were split randomly into three subsets. 
Each subset contained 15,000-20,000 samples and was submitted for genome-wide imputation. After obtaining 
three sets of imputed data, we calculated the Rsq quality metric for each variant among the 55,450 women 
according to the Minimac formula (37):  𝑅𝑠𝑞 = (1/2𝑛) × ∑ (𝐻𝐷𝑆! − �̂�)""#

!$% [�̂�(1 − �̂�)]⁄ , where 2𝑛 denotes the total 
number of phased  chromosomes with the variant (among n women), 𝐻𝐷𝑆!  indicates the estimated haploid 
alternate allele dosage (between 0 and 1) for the variant on the 𝑖-th chromosome, and �̂� is the observed 
alternate allele frequency. Rsq ranges from 0 to 1 with values close to 1 indicating high imputation quality. 
Variants with Rsq³0.8 were used for our DRIVE analysis. Moreover, 104 women of unknown age (code=888) 
were removed. In the end, we generated a subset of 615,181 phased imputed variants on 55,346 women, 
containing 95% of UKBB-phased variants, for the generalizability analysis.  
 
Genome-wide Haplotype Analysis: Discovery and Replication  
Genome-wide haplotype analysis for BCa risk was carried out using the UKBB-phased genotypes under the 
following discovery-replication framework. In the discovery stage, haplotypes were directly constructed from a 
set of consecutive genotyped variants in windows of fixed size W = 5, 10, 20, 30, 50, 100, 250, and 500 variants. 
For each chromosome, we shifted the window by one variant in the 5’ -> 3’ direction. As such, our analysis was 
designed to cover every set of 5-500 consecutive genotyped variants. Each haplotype was coded as 0, 1, or 2 
copies per person in the same way as SNPs, and its additive effect was tested statistically. The number of 
haplotypes observed in a window varied depending on the window size and the underlying linkage 
disequilibrium (LD) pattern. In the discovery analysis, each haplotype was tested for association with BCa risk in 
the pre-enrollment portion of the UKBB data, consisting of 5,487 BCa cases and 175,547 women free of BCa at 
study enrollment. To reduce the unnecessary computational burden, our discovery analysis tested only the 
haplotypes with frequency ³ 0.1% (10 per 10,000 chromosomes) in the 5,487 pre-enrollment cases. For each 
haplotype, the hazard ratio (HR) of developing BCa was estimated by multivariable Cox regression with age as 
the time axis and right censoring at the study enrollment, controlling for the first ten genotype PCs. The analysis 
was implemented using R packages “survival” (https://CRAN.R-project.org/package=survival) and “SeqArray” 
(33). Statistical significance for the discovery analysis was set at Wald-test p-values of Cox regression (Cox 
P)<5x10-8. The genome-wide scan was performed in parallel on 22 autosomes with chunks of 500 windows for 
each fixed size. All runs were completed on our institutional high-performance computing cluster with 20 CPU 
cores per chromosome and 4Gb memory per core. 
 
In the replication analysis, haplotypes that met the statistical significance threshold of the discovery analysis 
were evaluated in the post-enrollment part of the UKBB data, excluding the 5,487 pre-enrollment BCa cases. 
This replication analysis included 3,524 post-enrollment-onset BCa cases and 172,023 women without a BCa at 
the last UKBB follow-up before our UKBB data access. Haplotypes’ BCa HRs were estimated by the same 
multivariable Cox model, taking age as the time axis starting from the study enrollment to the last follow-up and 
controlling for the first ten genotype PCs. The replication statistical significance threshold was set at Cox P<0.01: 
see below for an assessment of false discovery/replication by the statistical significance thresholds we used.  
 
Lead Haplotype among Correlated Haplotypes 
Because of our use of overlapping windows, many discovered/replicated haplotypes are highly 
correlated/redundant. To consolidate each set of these correlated haplotypes into a single risk locus (or region) 
represented by a “lead haplotype”, we merged replicated haplotypes by LD-based clumping using PLINK  (34) 
with an LD threshold of r2>0.1 and a physical distance threshold of 500 kb.  The position of the first variant on 
each replicated haplotype was used as the haplotype’s genomic position. Independent risk loci/region were 
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determined as the mutually exclusive clumps formed by the clumping procedure. We calculated the overall HR 
and Cox likelihood ratio test (LRT) p-value for each replicated haplotype, using the entire set of UKBB data 
(combining the discovery and replication data into a total of 9,011 BCa cases and 172,023 BCa-free women). 
Within each risk locus/region, the haplotype exhibiting the smallest p-value was considered the “lead 
haplotype”. 
 
Exploration of False Discovery Rate by Permutation Experiment 
Because we used highly overlapping windows and tested many correlated/redundant haplotypes, it is not clear 
whether our statistical significance thresholds, P<5x10-8 for discovery and P<0.01 for replication, adequately 
controlled the false discovery rate. To assess the extent of potential false discovery in the discovery-replication 
framework with the UKBB data, we conducted a permutation experiment. Three permuted datasets were 
generated in which the phenotype vectors (i.e., the vectors of BCa diagnosis status, age variables, and genotype 
PCs) were randomly shuffled among the 181,034 women and used with their original unshuffled genetic data 
vectors. This simulated the null hypothesis condition where there is no association between BCa and haplotypes, 
except by chance, while keeping the original associations of age and the PCs with BCa. For each permuted 
dataset, we repeated the same two-stage haplotype analysis we conducted above, except for W=500 variants 
(there was no replicated haplotype of W=500 in the original analysis). The number of haplotypes that met the 
same statistical significance thresholds (P<5x10-8 for discovery and P<0.01 for replication) and the number of 
independent risk loci/region after the LD-based clumping were used as approximate estimates of the numbers 
of false discoveries we might expect under the null hypothesis of no association.  
 
Individual Variant Association with BCa risk 
In addition to the haplotype analysis, we performed a standard GWAS analysis to assess individual variants’ 
associations with BCa risk using the UKBB data. For each variant, the BCa-genotype association was assessed 
under the additive model using multivariable Cox regression, in the UKBB data of 9,011 BCa cases and 172,023 
BCa-free women. Age was taken as the time axis and the model controlled for the first ten genotype PCs. The 
GWAS was completed parallelly on 22 autosomes in chunks of 200 variants using 10 CPU cores and 4Gb memory 
per core. 
 
Generalizability Analysis 
In assessing the generalizability of the replicated findings, a large, independent BCa dataset with phased 
genotype data that contained the UKBB genotyped variants would have been ideal. In the absence of such a 
dataset, we used the cleaned DRIVE BCa case-control data for generalizability evaluation with statistical phasing 
and imputation performed as described above. Specifically, we assessed the lead haplotype of each risk 
locus/region identified by our UKBB two-stage discovery/replication analysis in the QCed DRIVE imputed data 
including 30,064 BCa cases and 25,282 BCa-free controls.  
 
Because statistical phasing and imputation of the DRIVE data is subject to errors, the following strategy was 
used. First, we utilized pairs of “HDS” values (“estimated phased haploid alternative allele dosages”) available 
for each variant of each woman in the final phased/imputed DRIVE data. The two HDS values for a variant of a 
woman denote the two probabilities of the alternative allele on her two phased haplotypes. The alternative 
allele was called when the HDS value was above 0.5; otherwise, the reference allele was called. Second, we 
reduced the number of variants required to define each lead haplotype to avoid the impact of potential 
imputation errors in unnecessary variants. Specifically, for the i-th replicated lead haplotype defined by Wi 
consecutive UKBB variants, we included the subset of Wi variants that passed the imputation-accuracy filter 
(Rsq³0.80) and applied tree-based recursive partitioning, implemented by R package “rpart”,  to reduce the 
number of variants necessary to define the lead haplotype to mi£Wi variants, with the complexity parameter 
(CP) 10-10 and the minsplit parameter 40 (and the other parameters at their default values). At one locus/region 
(Locus #19) where the reduced variant set did not approximate the lead haplotype well, we relaxed the Minimac 
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filter to Rsq³0.3 for common variants with a MAF ³ 1% and reran the variant reduction for the new lead 
haplotypes.  
 
The evaluation scheme above (hereafter referred to as “original haplotype calls”) was our primary scheme for 
defining each DRIVE woman’s diplotypes of lead haplotype i. which can be expressed as: 
 

𝐷𝑖𝑝𝑙𝑜𝑡𝑦𝑝𝑒! = 𝐼
" #$%
!"#,…,&'

&'()#!*+,,-,-!&./0
+ 𝐼

" #$%
!"#,…,&'

&'()(!*+,,-,-!&./0
	with	𝑐 = 0.5, 

  
where “Allele” is the code (0 or 1) for the allele of the lead haplotype, and the first index “1” or “2” of HDS 
denotes the woman’s first or second chromosomes.  Note that ;𝐻𝐷𝑆12 − 𝐴𝑙𝑙𝑒𝑙𝑒2; and ;𝐻𝐷𝑆32 − 𝐴𝑙𝑙𝑒𝑙𝑒2; 
indicate imputation uncertainty of the j-th variant of the reduced variant set of the i-th lead haplotype, with 
possible values between 0 and 1. Values close to 0 and 1 indicate high confidence in the agreement or 
disagreement, respectively, of the imputed allele with the allele in the lead haplotype, with the boundary 0.5 
corresponding to an ambiguous imputation result.  
 
To account for the imputation uncertainty in the generalizability analysis more conservatively, we supplement 
our primary scheme with the following sub-schemes for defining diplotypes in DRIVE. The secondary scheme, 
“high-confidence haplotype calls,” considered only variants imputed with high confidence by using a smaller 
value of 𝑐 (considering 𝑐 in the range 0–0.01 with an increment of 0.001 and 0.01–0.50 with an increment of 
0.01) and reporting the most statistically significant association. The tertiary scheme, “high-confidence 
haplotype calls with one exception,” removed one variant from the reduced variant set of the lead haplotype 
and applied the secondary scheme to the remaining variants in the set (with the excluded variant still satisfying 
|𝐻𝐷𝑆 − 𝐴𝑙𝑙𝑒𝑙𝑒| < 1).  
 
The primary, secondary, and tertiary schemes were applied sequentially. The association between each imputed 
lead haplotype and BCa case/control status in DRIVE was assessed by logistic regression, adjusting for age and 
the first ten genotype PCs, where likelihood-ratio test (LRT) P<0.05 served as the statistical significance measure 
of the association. Fisher’s Exact Test was also conducted to supplement the LRT as the frequencies of lead 
haplotypes were low. 
 
Functional Annotation 
To explore the biological functions of each BCa-risk haplotype, we annotated variants on the rare lead 
haplotypes that met all three statistical significance thresholds of the discovery, replication, and generalizability 
evaluation, using a variety of functional datasets (see Data Availability below for URLs). UCSC LiftOver chain files 
were used to convert genomic coordinates between hg19 (i.e., DRIVE OncoArray data) and hg38 (i.e., DRIVE 
TOPMed-imputed data). Gene-based annotations, such as nearest genes and functional consequences, were 
extracted using WGSA v0.85 (39) with GENECODE v37. Regulatory variants were annotated by searching the 
following resources: 1) cis-eQTLs reported in GTEx v8 database, passing 5% false discovery rate in the breast 
mammary tissue (16); 2) Human active enhancers in the HACER (18) and enhanceratlas2 (17), limiting to five 
BCa-related cell/tissues (i.e., MCF-7, MCF10A, HCC1806, HMEC, and T47D); 3) Enhancers experientially 
characterized by a STARR-seq in the MCF-7 cell line (ENCODE accession: ENCSR547SBZ), where significant 
enhancer peaks were defined by P<0.05; 4) Topologically Associating Domains (TADs) and chromatin loops 
predicted by the 3D Genome browser, where variants with putative regulatory roles were considered within 
20Kb of a TAD boundary (20) or a chromatin-loop anchor regions where DNA segments physically interact (21); 
and 5) DNA-binding motifs from HaploReg v4 (19), where we considered variants to be regulatory if the absolute 
change of the reported LOD score between reference and alternative alleles (|LODalt-LODref|) was above 3, with 
a positive value of LOD change indicating that the alternate allele likely resulted in stronger motif binding and a 
negative change indicating that the alternative allele likely caused weaker motif binding. We combined the 
above annotations to summarize potential functional features at the haplotype level. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.21.22281360doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281360


   
 
   
Data availability statement 
The data generated in this study are available within the article and its supplemental data files. Individual-level 
genotype and phenotype data are publicly available by submitting request to the UK Biobank and dbGaP (study 
accession: phs001265.v1.p1). Analytic scripts and codes are available at https://github.com/fwplace/HapProj. 
 
Public databases and software used in this study include:   

• LDlink: https://ldlink.nci.nih.gov/?tab=home  
• GWAS catalog: https://www.ebi.ac.uk/gwas/  
• TOPMed Imputation server: https://imputation.biodatacatalyst.nhlbi.nih.gov  
• UCSC chain files: https://hgdownload.cse.ucsc.edu/goldenpath/hg19/liftOver/  
• GTEx eQTL v8: https://gtexportal.org/home/  
• Recombination rate:  https://github.com/cbherer/Bherer_etal_SexualDimorphismRecombination  
• GENECODE v37: https://www.gencodegenes.org/human/release_37lift37.html  
• STAR-seq in the MCF-7 cell line: https://www.encodeproject.org/  
• HACER: http://bioinfo.vanderbilt.edu/AE/HACER/index.html  
• Enhanceratlas2: http://www.enhanceratlas.org  
• 3D Genome Browser: http://3dgenome.fsm.northwestern.edu/publications.html  
• HaploReg v4.1: https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php  
• R survival package: https://CRAN.R-project.org/package=survival  
• R SeqArray package: https://bioconductor.org/packages/release/bioc/html/SeqArray.html  

 
 
Results 

Genome-wide Haplotype Analysis Using the UKBB Phased Data 
The overall design of our genome-wide haplotype analysis is shown in Fig. 1A. The discovery analysis included 
181,034 female participants who were classified as ‘white British’ by the UKBB (see Methods for 
inclusion/exclusion criteria). All women were biologically unrelated and had a homogeneous genetic background 
consistent as a specific subgroup of European genetic ancestry in comparison to the 1000 Genomes Phase 3 
European population samples (Suppl. Figure S1). The set of phased haplotypes from UKBB for the 181,034 
women contained 646,446 genotyped variants, enabling the construction of haplotypes genome-wide through 
sliding windows of 5, 10, 20, 30, 50, 100, 250, and 500 consecutive genotyped variants. For each window size, 
4.8–88.4 million haplotypes that had frequency ³ 0.1% (i.e., 10 per 10,000 chromosomes) in 5,487 pre-
enrollment BCa cases were identified and individually tested for BCa-risk associations by Cox regression with age 
as the time axis and right censoring at study enrollment, adjusting for the first ten genotype PCs. The genome-
wide scans detected 5,858 haplotypes across the eight fixed-size sliding windows at P<5´10-8 (Table 1).   
 
The 5,858 haplotypes from the discovery analysis of the retrospective component of the UKBB data were 
evaluated in the following replication analysis among the BCa-free women at their UKBB enrollment (i.e., the 
non-cases in the discovery analysis), following them prospectively for BCa incidence starting from the 
enrollment. Note that, while the replication analysis used the same UKBB cohort, it is independent of the 
discovery analysis because all women in the replication analysis were non-cases in the discovery analysis, were 
BCa free at the start of the prospective replication analysis, and the replication analysis utilized case/non-case 
data that emerged after the UKBB study enrollment, i.e., after the completion of case/non-case data utilized in 
the retrospective discovery analysis. Using the same Cox regression with 3,524 post-enrollment BCa cases 
among 175,547 women BCa-free at the enrollment, 436 haplotypes replicated at P<0.01 (Table 1). These 
replicated haplotypes were split into two mutually exclusive groups: one containing 243 common short 
haplotypes with a window size of 5-30 variants, and the other containing 193 rare long haplotypes with a 
window size of 50-250 variants (Fig. 1B). For windows of 500 variants, no haplotype replicated. 
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To explore the false discovery rate of our discovery-replication analyses of haplotypes with the UKBB phased 
data, we ran three permutation experiments by randomly permuting the BCa status of 181,034 women together 
with age and genotype PCs, while keeping the original genetic data, to create the null hypothesis condition of no 
BCa-haplotype association. Then we performed the identical genome-wide discovery and subsequent replication 
analyses of the permuted dataset with the same statistical analysis and significance thresholds. While the 
permuted discovery analysis yielded similar numbers of genome-wide significant haplotypes as the original 
discovery analysis, indicating that many of the “original-analysis discoveries” are likely false positives (Suppl. 
Table S1), the subsequent replication analysis showed very few replications, indicating the replicated haplotypes 
of the original analysis are mostly valid (Suppl. Table S1). 
 
Prioritization of 13 Rare Haplotype Loci for BCa Risk 
To remove redundancies in the replicated haplotypes, we applied LD clumping to the 436 replicated haplotypes 
to consolidate each set of correlated/overlapping haplotypes into a single risk locus/region. After LD clumping, 
the replicated haplotypes were grouped into 20 distinct genetic loci/regions, each being represented by a “lead 
haplotype” whose BCa-association p-value, computed by the combined Cox-regression analysis of 9,011 (pre-
enrollment + post-enrollment) BCa cases and 172,023 BCa-free controls, was the smallest among the replicated 
haplotypes of the same locus/region (Suppl. Table S2). Of the 20 risk loci/regions, seven (Locus IDs: # 1-4, 7, 8, 
and 10) were mapped by common haplotypes with a window size of 5 variants and genomic length of 5.2-42.2 
kb. The seven common lead haplotypes (i.e., those of FGFR2 on 10q26.3, CASC16 on 16q12.1, DIRC3-AS1 on 
2q35, LINC01488/CCND1 on 11q13.3, C5orf67/MAP3K1 on 5q11.2, NEK10 on 3p24.1, and CASC8/CASC21 on 
8q24.21) conferred a modest BCa risk among 181,034 women (hazard ratio (HR)=1.11-1.30, P=2.3´10-67-4.3´10-

12, Suppl. Table S3). These common haplotypes appeared to be tagged by their respective lead variants of 
standard GWAS analyses (HR=1.11-1.30, P=4.1´10-66-2.6´10-5) or be in tight LD with known GWAS hits (Suppl. 
Table S3). 
  
In contrast, the remaining 13 loci (Locus IDs: # 5, 6, 9, and 11-20) were mapped by rare haplotypes with larger 
window sizes covering longer genomic regions. As shown in Table 2, the 13 rare lead haplotypes exhibited 
relatively large BCa risk with HRs of 2.84-6.10 in the discovery analysis and HRs of 2.08-5.61 in the replication 
analysis. From the standard GWAS analysis, no variants within ± 400 kb of the 13 rare haplotypes were found to 
pass the genome-wide significance threshold (i.e., P<5´10-8) for association with BCa risk, with the lowest p-
values ranging between 4.1´10-4 and 0.040. The rare haplotype on 22q12.1 (Locus #5), formed by 250 
consecutive genotyped variants spanning in a region of 1.4 Mb, demonstrated the most statistically significant 
association with BCa risk (frequency=0.13%, HR=3.49, P=1.5´10-15, Fig. 2A). The region contained multiple, 
known GWAS hits linked to the MN1/PITPNB/TTC28/CHEK2/KREMEN1 gene cluster (3). However, only weak 
BCa-risk associations were observed with individual variants among the 181,034 UKBB women: the strongest 
association was rs35313550 in the intron 2 of TTC28 (minor allele frequency (MAF)=2.5%, HR=0.85, P=4.1´10-4). 
Similarly, four additional rare haplotypes (Locus IDs: #14-16, and 18) spanned a region with known GWAS-
hits/genes (3,10,11): GRIN2A/ATF7IP2 on 16p13.2 (50 variants, length=106 kb, HR=2.93, P=2.2´10-10), 
FRY/BRCA2 on 13q13.1 (100 variants, length=361 kb, HR=4.11, P=2.8´10-10), AC107463.1/LINC02485 on 4q28.3 
(100 variants, length=656 kb, HR=4.42, P=9.4´10-10), and KIAA1217 on 10p12.2 (100 variants, length=523 kb, 
HR=4.44, P=2.6´10-10) (Fig. 2 G-I, K). To the best of our knowledge, the remaining seven rare haplotype loci 
(Locus IDs: #6, #9, #11-13,  #17, #19, and #20) have not been identified for BCa risk: they are C1QTNF3-
AMACR/RAI14 on 5p13.2 (100 variants, length=658 kb, HR=5.91, P=5.0´10-14); LSAMP on 3q13.31 (100 variants, 
length=428 kb, HR=4.54, P=4.4´10-11); FANC1/POLG on 15q26.1 (250 variants, length=772 kb, HR=5.18, 
P=4.9´10-11); GOT2/SLC38A7 on 16q21 (100 variants, length=519 kb, HR=4.75, P=1.5´10-10); 
LINC02141/AC00981.2 on 16q21 (100 variants, length=487Kb. HR=4.70, P=2.0´10-10); AC073062.1/AC016730.1 
on 2p24.3 (50 variants, length=211 kb, HR=2.53, P=2.1´10-9); MYB/AHI1 on 6q23.3 (100 variants, length=493Kb, 
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HR=3.68, P=7.5´10-11); and PARD3 on 10p11.21 (250 variants, length=1.1 Mb, HR=3.62, P=3.1´10-11) (Fig. 2B-F, J, 
L-M).  
 
To characterize the 13 rare loci, we analyzed the underlying LD-block patterns using a graphical-model-based LD 
partition method Big-LD (12). The Big-LD detected LD blocks (formed by a subset of highly correlated variants) 
and orphan variants (those not correlated with the other variants in the region) for each of the 13 rare loci (Fig. 
3). The frequencies of haplotype segments formed by variants in single LD blocks are often higher than those of 
the original rare haplotypes, indicating that the rare lead haplotype may have arisen from multiple LD blocks via 
recombination, except for Locus #13 which might have arisen from a single small LD block (Fig. 3F). We tried to 
identify critical regions of each rare lead haplotype by excluding 20% of the consecutive variants and evaluating 
BCa-risk associations with truncated haplotypes that were formed by the remaining variants. We found that 
exclusion of variants on 5' and 3' ends led to a reduction of statistical significance of the identified rare 
haplotypes’ associations with BCa risk (Suppl. Fig. S3 and Table S4). Moreover, functional annotation with public 
databases revealed that a large proportion of variants on the rare lead haplotypes exhibited putative roles in 
regulating gene expression, enhancer activity, or 3D chromatin interactions (Suppl. Table S5). Of note, many 
annotated variants resided in the anchor regions of human chromatin loops and were predicted to alter bindings 
of DNA motifs (Fig. 2N).  
  
Generalizability Evaluation of 13 Rare Lead Haplotypes for BCa Risk Using the DRIVE OncoArray Data 
We sought to assess the generalizability of the associations of 13 rare lead haplotypes with BCa risk in an 
independent sample of 30,064 BCa cases and 25,282 BCa-free controls from the DRIVE study. All 55,346 women 
included in this analysis were of European genetic ancestry (i.e., those had PC1 ≤0.0025 and PC2 ≥-0.007 and 
were separated by dotted lines in Suppl. Fig. S3B), for which the “white British” of the UKBB cohort is a 
homogeneous subgroup (Suppl. Fig. S1) and thus we refer this analysis “generalizability evaluation” to a broader 
group.  DRIVE samples were genotyped using the Illumina OncoArray. Because only 12% of genotyped variants 
in the UKBB phased data were included in the OncoArray, we performed a genome-wide imputation of the 
DRIVE OncoArray genotypes to improve coverage using the TOPMed Imputation Server (see Methods for more 
details). After post-imputation QC, we obtained high-quality phased, imputed genotypes on 1,304 (i.e., Minimac 
Rsq ³0.80) of the 1,650 UKBB variants that formed the 13 rare lead haplotypes (Suppl. Fig. S4A). While MAFs of 
these individual variants were highly consistent between UKBB and DRIVE (Suppl. Fig. S4B), our analysis of 
haplotypes was subject to potential phasing/imputing errors. To alleviate this problem, we took the following 
strategy.  
 
First, using the UKBB data, we reduced the set of variants within the window of each rare lead haplotype to a 
minimum subset required to define the lead haplotype by limiting to well-imputed variants (i.e., Minimac Rsq 
³0.80 in DRIVE) only and applying recursive partitioning, implemented in the R package “rpart”, so that 
phasing/imputation errors of unnecessary variants would not affect the analysis. As shown in Fig. 2, 13 rare lead 
haplotypes were well approximated by their minimum subsets consisting of 3-17 variants, much smaller 
numbers of variants than what their original haplotype windows contained. We re-evaluated the associations of 
the reduced rare lead haplotypes with BCa risk in the UKBB data and confirmed little change in their associations 
from the original lead haplotype (i.e., p-values became slightly less significant due to the approximation) (Fig. 
2A-M). The exception was locus #19 where the lead haplotype could not be approximated. For this locus, we 
relaxed the Rsq filter to ³0.30 for common variants (i.e., MAF ³1%): this resulted in a reduced rare lead 
haplotype of 4 variants which yielded a similar association as the original lead haplotype (Fig. 2L). With LD 
analysis, we found consistently small r2 but relatively large D’ values among variants in the minimum subsets 
(Suppl. Fig. S5).  
 
Next, we evaluated the associations of the reduced rare lead haplotypes with BCa risk using the DRIVE data. 
Using the “Original haplotype calls" scheme (see Methods), two reduced rare lead haplotypes (Locus ID #5: 8 
variants, length = 1.40 Mb, odds ratio (OR) = 1.50, Likelihood Ratio Test (LRT) P = 0.012; Locus ID #13: 3 variants, 
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length = 98 kb, OR = 2.93, LRT P = 0.020) showed associations with BCa risk, adjusting for age and the first ten 
genotype PCs (Table 3). For the remaining 11 reduced rare lead haplotypes with LRT P>0.05, we explored two 
modified haplotype calls where risk-haplotype carriers were called using a subset of variants in the minimal set 
with the fewest imputation errors. Using the “High-confidence haplotype calls” scheme (see Methods), two 
additional reduced rare lead haplotypes of Locus ID #17 (7 variants, length = 201 kb, OR = 2.19, LRT P = 0.036) 
and Locus ID #18 (5 variants, length = 458 kb, OR = 7.35, LRT P = 0.019) showed BCa-risk associations. 
Furthermore, allowing one variant to have possibly been imputed poorly, the “High-confidence haplotype calls 
with one exception” scheme (see Methods), two additional reduced rare lead haplotypes on Locus ID #15 (4 
variants, length = 318 kb, OR = 1.48, LRT P = 0.007) and Locus ID #16 (5 variants, length = 232 kb, OR = 1.54, LRT 
P = 0.030) showed associations with BCa risk (Table 2). By allowing a one-variant exception, the frequencies of 
these two lead haplotypes increased, resulting in attenuated but statistically significant effect sizes on BCa risk.  
Taken together, six of the 13 reduced rare lead haplotypes showed successful generalizability in the DRIVE 
imputed data.  
 
Discussion 

Through systematically assessing BCa-haplotype associations genome-wide in one of the largest publicly 
available cohorts with GWAS SNP-array data, the UKBB, our analysis identified and replicated 13 rare haplotype 
associations with BCa risk, of which six BCa-haplotype associations were found generalizable in DRIVE case-
control data. Note that the study is far from a comprehensive assessment of BCa-haplotype associations, 
especially because it used only ~670,000 autosomal variants genotyped on the UKBB Axiom Array (see below for 
a more comprehensive discussion of the limitations of our study). Nevertheless, our results have critical 
implications on the germline autosomal genetic contributions to BCa risk. 
 
The 13 replicated, rare risk haplotypes span multiple LD blocks (Fig. 3) and contain variants whose minor alleles 
are relatively common. But the combination of alleles across the LD blocks, i.e., the haplotype, is rare. LD 
analysis showed consistently low r2 but relatively high D' values among the alleles of these haplotypes in both 
UKBB and DRIVE datasets (Suppl. Fig. S5). These observations indicate that it is not the individual common 
alleles (or their chromosomal segments) in regions with occasional recombination (high D’ values), but their 
specific combinations occurring infrequently (low frequency and r2), that are associated with the large elevation 
of BCa risk. Consistent with this finding, the BCa-risk-associated haplotypes identified using smaller windows 
were common, located in a single LD block, and often tagged by well-known, common, single risk variants. Our 
analysis demonstrates the association of this specific configuration of common germline variants with BCa risk, 
as well as the feasibility of utilizing existing GWAS SNP-array datasets in assessing haplotype-disease 
associations for identifying such rare risk haplotypes. 
 
To support the notion that specific combinations of common alleles (or their segments) are risk elevating, the 
functional annotations showed many of the variants on the 13 replicated haplotypes have indications for 
regulatory roles for gene expression, enhancer activity, DNA-motif change, and 3D chromatin interactions. The 
specific rare combinations of alleles may represent “unfortunate” recombination results with regulatory 
consequences influencing BCa risk. For example, the haplotype on 22q12.1 (Locus #5, Fig. 2A), one of the two 
rare risk haplotypes that were found generalizable in DRIVE and mapped to known BCa-risk genes (the other 
was Locus # 15 discussed below), spans a 1.4 Mb region with dozens of genes, the majority of which have 
variants reported by GWAS for their associations with BCa risk or BCa-specific mortality (3,13), including MN1 
encoding a transcription regulator and an oncogene (14) and CHEK2 involving in the DNA damage repair and cell 
cycle by interacting with BRCA1/2 and other proteins (15). However, it remains elusive whether these GWAS risk 
variants influence BCa risk through common or independent mechanisms. Our exploration of potential 
regulatory roles for the 250 variants on the haplotype found (Suppl. Table S6): 1) 12 are cis-eQTLs of four genes 
(TTC28, TTC28-AS1, KREMEN1, and CTA-292E10.6/lnc-CCDC117-2) in the GTEx breast mammary tissue (16); 2) 34 
are enhancer variants and possibly regulate ten genes (MN1, TTC28, CHEK2, ZNRF3, XBP1, HSCB, CCDC117, 
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EWSR1, RHBDD3, and KREMEN1) via enhancer-promoter interactions in BCa-related cells (17,18); 3) 15 are 
predicted to affect the binding of 17 unique DNA motifs (19); 4) 69 reside in the anchor regions of chromatin 
loops or TADs boundaries, reflecting their role in regulating local chromatin structures (20,21). The rare 
haplotype on 13q13.1 (Locus #15) mapped to a 361 kb region with multiple genes such as FRY, ZAR1L, and 
BRCA2 (Fig. 2H). Besides, five genes (N4BP2L1/2, PDS5B, RP11-37E23.5, and RP1-257C22.2) downstream of 
BRCA2 were also predicted to be targets of eQTLs or enhancer variants on the haplotype in Locus #15. FRY 
encodes a microtubule-binding protein that is essential to mammary gland development and affects BCa cell 
functions (22). ZAR1L encodes an RNA regulator that can inhibit BRCA2 transcription in a cell cycle-dependent 
manner (23). APRIN (PDS5 cohesin-associated factor B) encoded by PDS5B is a regulator of the cohesin complex 
and can interact with BRCA2 in the DNA damage repair and carcinogenesis (24). In summary, the functional 
annotations showed the following shared features across the 13 replicated, rare risk haplotypes: 1) most regions 
overlap TAD boundaries and are enriched in chromatin loops; 2) most of their variants are predicted to alter 
motif binding (17-83 unique DNA motifs with stronger binding and 8-73 unique motifs with weaker binding); and 
3) variants located near their 5' or 3' ends are more critical to the observed risk effects (Suppl. Fig. S2). These 
features support our speculation that the rare risk haplotypes we identified represent long-range interactions 
with regulatory consequences influencing BCa risk.  
 
Alternatively, the rare combination of common alleles may constitute a haplotype on which a risk-altering 
mutation arose, and the haplotypes we identified may be approximate tags of such mutations. For example,  
upon searching the TOPMed-imputed data generated on 181,034 UKBB women, we found that all 108 (100%) 
carriers of the Locus #15 rare haplotype carry a BRCA2 truncating mutation p.K3326X, which, in contrast, is 
carried by only 3,201 (1.7%) of 180,926 non-carriers of the haplotype (Fisher’s exact P=3.4´10-189): the 
corresponding frequencies in the DRIVE TOPMed-imputed data were 63.0% of the haplotype carriers vs. 1.7% of 
the non-carriers of the haplotype (Fisher’s exact P=1.3´10-45).  Thus, both UKBB and DRIVE data show strong 
correlation between the Locus #15 haplotype and the p.K3326X mutation. Note that this specific BRCA2 
mutation has been indicated as a mutation associated with increased BCa risk (25), but its role in BCa has not 
been functionally characterized (26). We hypothesize that the rare risk haplotype of Locus #15 captures the risk-
increasing effect of BRCA2 p.K3326X itself, which might be only seen in the presence of other mutations in the 
region. Further investigation with deep sequencing of mutational changes in rare haplotypes carriers would be 
able to distinguish the two possible causal factors the risk haplotypes represent. 
 
The number of risk haplotypes we found was small despite our genome-wide analysis. To interpret this result, 
we estimated statistical power of the entire three-stage analysis (discovery/replication with the UKBB data and 
generalizability evaluation with the DRIVE data). The approximate power for each of the six generalizable, rare 
risk haplotypes was in the range of 1.3-30.6% (Suppl. Table S7). These power estimates suggest that there are 
additional 2-78 generalizable, rare risk haplotypes we did not detect with similar frequencies and risk effects as 
those that passed all three stages of our analysis. In addition, the UKBB Axiom Array contained a relatively small 
number of variants. Thus, the haplotypes we examined are a small subset of all haplotypes that can be 
considered by WGS. Extrapolation of our results suggests that WGS data on sufficiently large size cohorts and  
case-control studies should lead to the discovery of additional rare risk haplotypes as well as rare risk variants. 
 
Aside from the two risk haplotypes (Loci #5 and #15) above, two other generalizable, rare risk haplotypes have 
evidence for relevance to BCa risk. The haplotype on 4q28.3 contained a few long noncoding RNAs but no 
protein-coding gene (Locus #16, Fig. 2I). Its lead variant rs116648919 was in LD with downstream variant 
rs6837069 (r2<0.01 and D’=1.0, Table 2) which was associated with BCa-specific mortality (OR=1.92, P=1x10-6) in 
a 2019 GWAS (11). The haplotype on 10p12 falls into the region of KIAA1217 (Locus #18, Fig. 2K). Its lead 
variantrs10764446, located in intron 2 of KIAA1217, is in modest LD with another KIAA1217 intronic variant 
rs11013833 (r2=0.53 and D’=0.85) which was reported to increase the risk of the breast-colorectal cancer 
phenotype (OR=1.37, P=6x10-6) in a 2018 GWAS (10). KIAA1217 belongs to the human large KIAA gene family 
and its expression is highest in female breast mammary tissue among many cell types stratified by sex, according 
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to the GTEx RNA-seq data (16). RNA-seq analysis conducted by Asmman et al. (27) detected a translocation 
t(10;14)(p12;q32) in estrogen receptor (ER)-positive BCa tumor, causing the full coding sequence and 3’TUR of 
SERPINA1 were fused into the 5’-end of KIAA1217. As such, the fusion gene would not produce KIAA1217 
protein and might alter the transcription stability of SERPINA1. A 2015 study by Chan et al. identified an ER 
binding site in SERPINA1 promoter and SERPINA1 transcription was estradiol dependent. These data imply that 
the rare haplotype of Locus #18 may contribute to BCa risk by affecting the transcription outcomes of KIAA1217. 
Although these two loci were implicated for BCa risk previously, the frequency and effect sizes we observed here 
for their risk haplotypes (HR estimates exceeding 3.4 in our replication analysis with Locus #18’s OR estimate 
exceeding 7.3 in DRIVE) support the rare-variant/haplotype model over the common-variant counterpart. We 
could not find any previous reports linking BCa and the remaining two generalizable, rare risk haplotypes, one 
on 16q21 (Locus #13, Fig. 2F) and the other on 2p24.3 (Locus #17, Fig. 2J). 
 
Our haplotype analysis relied on phasing accuracy. While both UKBB and DRIVE are large studies, 
phasing/imputation uncertainty in calling haplotypes, especially rare haplotypes, is a major concern. However, 
phasing/imputation errors should affect both BCa cases and BCa-free women indiscriminately, lowering the 
power of all three stages of our analysis. While this issue might explain why seven (Locus IDs: # 6, 9, 11, 12, 14, 
19, and 20) of the 13 replicated, rare haplotypes were not found generalizable in DRIVE, it should not negate the 
validity of the six found to be generalizable. The above problem can be partially addressed by incorporating 
phase information from WGS reads into haplotype estimation or by using advanced sequencing technologies 
such as long-read or single-cell sequencing (28,29).  Our crude approach to this problem was to use well-
imputed variants only, possibly combining with exempting one variant from a haplotype membership in the 
DRIVE analysis, to account for potential errors in its phase or dosage. By exempting one variant, rare haplotypes 
were called more liberally with increased frequencies that did not precisely match the original haplotypes’, 
contributing to attenuated OR estimates.  
 
Our analysis was restricted to women of “white British” in the discovery and replication, and women of broader 
European genetic ancestry in the generalizability evaluation. These were a methodological necessity because 
populations of different ancestries differ in allele frequencies and LD structures, which could confound the BCa-
haplotype associations. No population of non-European ancestries has a large BCa GWAS dataset of the size that 
is comparable to UKBB and DRIVE. This disparity is an important challenge our field must tackle. Also, we did not 
consider BCa subtypes (e.g., hormone receptor subtypes): risk haplotypes specific to a particular BCa subtype (2) 
may exist. 
 
In conclusion, we have leveraged a large “white British” GWAS cohort data to discover and replicate 13 long, 
rare haplotypes associated with BCa risk through a genome-wide two-stage haplotype analysis, of which six 
were found generalizable in an independent case-control study of women with European genetic ancestry. Our 
findings highlight the contribution of rare haplotypes to BCa risk and suggest that the rare risk effects are 
possibly of a regulatory nature characterized by long-range interactions.  We expect that the ability to assess 
rare variant or haplotype associations will be greatly improved when large-scale sequencing data become 
available. Further efforts are required to characterize the exact causal mechanisms of the rare risk haplotypes. 
Finally, the existence of rare BCa-risk haplotypes is consistent with the patterns of BCa incidence observed in 
large-scale epidemiological twin and family studies (Yasui et al. submitted as a separate manuscript) and 
supports the genetic-heterogeneity/rare-variant hypothesis of BCa (6), which attributes an individual’s disease 
risk elevation to one of many rare, risk variants/haplotypes.  
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Figure 1. The Overall Design of Genome-wide Haplotype Analysis for BCa 
(A) Flowchart of the two-stage haplotype analysis using the UK Biobank dataset and generalizability evaluation 
using the DRIVE dataset. (B) Counts of common (frequency ³ 1%) and rare (frequency < 1%) that met the 
discovery (P<5´10-8) and replication (P<0.01) statistical significance threshold in the UK Biobank phased data 
under various window sizes of W=5–500 consecutive genotyped variants.  
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Figure 2. Genetic Association Plots of 13 BCa Rare Haplotypes Identified in the UK Biobank data  
(A-M) Plots of the 13 loci with rare haplotypes that met the discovery (P<5´10-8) and replication (P<0.01) 
statistical significance thresholds in the UK Biobank phased data (also listed in Table 1).  Each panel is labeled by 
its lead haplotype (“Chromosome number_index of the 1st Variant_index of the last Variant”) and cytogenetic 
location. The left y-axis indicates association p-values for the original haplotype (orange segment) the reduced 
haplotype (purple segment), and individual variants from the standard GWAS analysis (black dots), calculated by 
Cox regression using all “white British” UK Biobank women. The genomic coordinates shown on the x-axis are 
based on GRCh37. The brown line shows the recombination rate computed by Bhérer et al. 2017 among 
European females, as indicated on the right y-axis. The bottom annotation tracks show locations of TADs (green 
segments), chromatin loops (magenta curves), and genes collected from 3D Genomes Browser and GENECODE 
v37. (N) the fraction of functionally annotated variants on rare haplotypes (see the Method Section for details). 
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Figure 3. LD Heatmap Plots of 13 Rare Haplotypes Identified in the UK Biobank Data 
Panels A-M correspond to the 13 lead risk haplotypes in Table 2. In each panel, the upper heatmap plot displays 
pair-wise D’ (upper triangle) and r2 (lower triangle) values computed using phased genotypes of 181,034 women. 
The heatmap color key is shown in the last row. The lower plot depicts the estimated LD structure calculated by 
the Big-LD algorithm (Kim et al. 2018) with |𝑟| ≥ 0.50	and a maximal distance of 1 Mb between any two 
correlated variants. The y-axis shows the frequencies of truncated rare haplotypes (whose alleles match those of 
the original haplotype; cyan segments) and orphan variants (which were not in LD with other variants; blue 
dots). The x-axis represents the SNP index, and the vertical gray lines indicate the reduced variant sets used in 
the generalizability evaluation.  
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Table 1. Summary of the Two-stage Haplotype Analysis Results Using the UK Biobank Phased Data 

Window 
Size a 

Effective 
Windows 

Genomic 
Length 

Discovery Analysis Replication Analysis 
Coverage, % b Total Tests c P<5×10-8 P<0.01 No. of Loci d 

W=5 646,328 17.2 Kb 41.272 4,802,633 90 81 7 
W=10 646,248 38.8 Kb 20.420 12,237,248 117 80 6 
W=20 646,028 81.8 Kb 8.350 34,466,021 215 61 5 
W=30 645,808 124.9 Kb 4.338 58,110,973 473 21 3 
W=50 645,368 211.0 Kb 1.611 88,427,869 995 15 5 

W=100 644,263 426.4 Kb 0.338 85,988,703 1,769 117 9 
W=250 618,760 1.08 Mb 0.034 25,950,002 1,673 61 3 
W=500 283,807 2.52 Mb 0.007 3,426,133 526 0 0 

a W, the number of consecutive genotyped variants that define the haplotypes. Each haplotype window is 
shifted by one variant. 
b Coverage indicates the faction of total haplotypes constructed in sliding windows that were tested in this study 
c The number of haplotypes meeting the criterion of frequency ³0.1% among 5,487 pre-enrollment BCa cases.  
d Independent loci/regions were determined by PLINK LD clumping with r2>0.10 and a maximum distance of 500 
kb between the lead haplotype and the other correlated haplotypes. 
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Table 2. Identification of Thirteen Rare Haplotype Loci for Breast Cancer Risk in the UK Biobank Phased Data 

Haplotype Window  Discovery Analysis Replication Analysis Lead Variant from GWAS g 
Using All UKBB Women 3 

Nearest Genes 
Locus Cytoband Lead Haplotype a Wb Length c Frq0 d Frq1 d HR e Pcox 

f Frq0 d Frq1 d HR e Pcox 
f Variant EAF HR e Pcox 

f  

5 22q12.11 22_3362_3611 250 1418 6.352 23.69
2 

3.53 1.5´10-10 6.046 21.28
3 

3.43 1.9´10-6 rs35313550 0.975 0.85 0.0004 MN1, PITPNB, TTC28, 
CHEK2 6 5p13.22 5_8153_8252 100 658 1.623 10.93

5 
6.10 3.9´10-10 1.482 8.513 5.61 2.5´10-5 rs11747675 0.375 0.95 0.0006 C1QTNF3, AMACR, RAI14 

9 3q13.313
1 

3_25137_25236 100 428 2.222 11.84
6 

4.81 1.6´10-8 2.093 8.513 4.05 6.2´10-4 rs11720648 0.012 1.17 0.0118 GAP43, LSAMP 
11 15q26.11 15_16033_16282 250 772 1.623 10.02

4 
5.74 7.3´10-9 1.511 7.094 4.36 1.0´10-3 rs12901741 0.023 1.16 0.0016 FANC1, POLG 

12 16q2116q
21 

16_13220_13319 100 519 1.823 10.93
5 

5.10 1.9´10-8 1.715 7.094 4.12 0.0016 rs4238807 0.254 0.97 0.0402 GOT2, SLC38A7 
13 16q2116q

21 
16_13434_13533 100 487 2.022 10.93

5 
5.24 1.1´10-8 1.918 7.094 3.77 0.0030 rs117181258 0.026 0.88 0.0116 LINC02141, AC009081.2 

14 16p13.22 16_4321_4370 50 106 6.636 21.87
0 

3.22 1.1´10-8 6.453 15.60
7 

2.45 0.0031 rs12919689 0.212 1.05 0.0079 GRIN2A, ATF7IP2 
15 13q13.11 13_4032_4131 100 361 2.649 12.75

7 
4.57 1.4´10-8 2.529 8.513 3.34 0.0032 rs73169113 0.192 1.05 0.0069 FRY, ZAR1L, BRCA2 

16 4q28.3 4_27513_276120 100 656 1.994 10.93
5 

5.05 2.1´10-8 1.889 7.094 3.55 0.0047 rs116648919 0.009 1.17 0.0268 AC107463.1, LINC02485 
17 2p24.33 2_4129_4178 50 211 9.712 25.51

5 
2.84 3.5´10-8 9.505 19.86

4 
2.08 0.0061 rs72773637 0.025 1.13 0.0058 AC073062.1, AC016730.1 

18 10p12.22 10_7217_7316 100 523 2.136 11.84
6 

5.09 4.7´10-9 2.035 7.094 3.41 0.0062 rs10764446 0.293 0.96 0.0089 KIAA1217 
19 6q23.3 6_35802_35901 100 493 3.703 16.40

2 
4.17 1.5´10-9 3.575 9.932 2.77 0.0071 rs4896144 0.917 0.93 0.0032 MYB, AHI1, LINC00271 

20 10p11.21
21 

10_9609_9858 250 1062 3.703 15.49
1 

4.14 4.9´10-9 3.575 9.932 2.76 0.0074 rs4405256 0.277 1.05 0.0046 PARD3, PARD3-AS1 
a The lead haplotype is labeled as “Chromosome number_index of the 1st variant_index of the last variant” and defined as the haplotype showing the 
minimal breast cancer (BCa) Cox-regression p-value in the UK Biobank combined analysis (Table S2). 
b W denotes the number of consecutive genotyped variants, and thus the number of variants on the haplotype.  
c Length, genomic length of rare haplotype in the unit of Kb. 
d Frq 0 and Frq1, haplotype frequencies (per 10,000 chromosomes) in BCa-free controls and BCa cases, respectively.  
e HR, the hazard ratio of BCa comparing women with vs. without the haplotype.   
f Pcox, p-value from Cox regression for testing the null hypothesis no BCa-haplotype association (HR=1.0), with age taken as the time axis and adjusting for 
ten genotype PCs. 
g For each haplotype locus, we searched for known GWAS variants reported in the GWAS catalog within ± 500 kb of the lead variant. EAF, effect allele 
frequency. Note that rare loci highlighted in gray are in LD with or close to previously reported GWAS variants:   

• 5 r2=0.97 and D'=1.000 with rs149936356 (BCa, OR=0.84, P=1x10-18); PubMed: 29059683 
• 14 r2<0.01 and D'=0.016 with rs12918713 (BCa, OR=1.07, P=1x10-7); PubMed: 29059683 
• 15 r2=0.02 and D'=0.664 with rs11571833 (BCa, OR=1.35, P=3x10-15); PubMed: 29059683  
• 16 r2<0.01 and D'=1.000 with rs6837069 (BCa-specific mortality, OR=1.92, P=1x10-6); PubMed: 30787463 
• 18 r2=0.53 and D'=0.853 with rs11013837 (BCa and colorectal cancer, OR=1.37, P=6x10-6); PubMed: 29698419 
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 Table 3.  Generalizability Evaluation Results of 6 Reduced Lead Rare Haplotypes in the DRIVE Data with TOPMed Imputation 

Locus Lead Haplotype a # Variants b 
UK Biobank Combined Analysis Generalizability Analysis Using the DRIVE Imputed Data 

Frq0 c Frq1 c HR d P Cox 
e Exemption f C g Frq0 c Frq1 c OR d P Fisher e P LRT e 

Analysis of the original haplotype calls in the Minimac4 output 
5 22_3362_3611 8 12.208 31.073 2.48 1.3´10-11 / / 11.273 17.130 1.505

0 
0.013 0.0120

12 13 16_13434_13533 3 2.471 9.988 3.76 2.1´10-8 / / 0.989 3.160 2.939
3 

0.014 0.0200 
Extended analysis I with high-confidence haplotype calls 

17 2_4129_4178 7 15.986 32.183 2.10 1.8´10-8 / 0.020 1.780 3.991 2.191
9 

0.036 0.0363
6 18 10_7217_7316 5 2.587 10.543 3.78 7.3´10-9 / 0.002 0.198 1.330 7.353

5 
0.045 0.0199 

Extended analysis II with high-confidence haplotype calls and 1-variant exemption 
15 13_4032_4131 4 2.994 11.098 3.57 1.3´10-8 1 0.050 14.833 21.288 1.48 0.016 0.0077 
16 4_27513_27612 5 2.645 9.433 3.26 1.2´10-6 5 0.410 7.515 11.642 1.54 0.033 0.0300

30 a The lead haplotype is labeled as "Chromosome number_index of the 1st variant_index of the last variant".  
b The number of imputed variants (Rsq>0.80 in the TOPMed imputation) among the variants in the haplotype window of size W after reduction using 
recursive partitioning (minsplit size=40; CP=1´10-10). 
c Frq 0 and Frq1, haplotype frequencies (per 10,000) in breast cancer (BCa) controls and BCa cases of the respective dataset, respectively  
d HR/OR, hazard ratio/odds ratio of BCa comparing women with vs. without the haplotype.  
e Pcox/P Fisher/P LRT, p-value from Cox regression (with age taken as the time axis)/Fisher's exact test/likelihood-ratio test from logistic regression for testing 
the null hypothesis of no BCa-haplotype association (HR or OR=1.0), adjusting for ten PCs in the Cox and logistic regression.   
f The index of the exempted variant on the reduced haplotype. /: not applicable or data not available 
g c, HDS error threshold used to define high-confidence haplotypes, subject to the constraint ∑𝐻𝐷𝑆𝐸 < 𝑐 and 0 ≤ 𝑐 ≤ 0.50. 
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