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Abstract 

Large cohort studies showing health impacts of vegetarianism have not considered differences in 
genetics. We designed a rigorous definition of vegetarianism using data from two surveys in the 
UK Biobank to identify a reliable cohort of vegetarians. Vegetarians were matched 1:4 with non-
vegetarians, revealing significant effects of vegetarianism in 15 of 30 serum biomarkers. 
Notably, all cholesterol measures plus Vitamin D (P = 2.1e-49) were significantly lower in 
vegetarians, while triglycerides were higher (P = 4.0e-26). We performed a genome-wide 
association study and found no significant associations with vegetarianism as a trait. Finally, we 
performed the first ever genome-wide gene-vegetarianism interaction analyses for 30 biomarker 
traits (N = 147,253). We detected evidence of gene-vegetarianism interaction with one genome-
wide significant variant at rs72952628 (P = 4.47e-08), where the heterozygous genotype was 
associated with higher calcium in vegetarians. rs72952628 is located in MMAA, which is part of 
the B12 metabolism pathway; B12 has a high deficiency potential in vegetarians. Gene-based 
aggregation of interaction P-values revealed two additional significant genes, RNF168 in 
testosterone (P = 1.45e-06), and DOCK4 in eGFR (P = 6.76e-07), which have previously been 
associated with testicular and renal traits, respectively. These nutrigenetic findings suggest 
differences in genotype may play a role in moderating the benefits a vegetarian diet. 
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Introduction 

Vegetarianism is a superordinate term for a variety of animal-restricted dietary practices, 

typically referring to lacto-ovo vegetarianism, which permits plant-based food plus dairy and 

eggs, and excludes meat, fish and seafood [1]. Estimates indicate that in Western countries, 

interest in and adherence to plant-based diets have increased over the past decade [2-5]. This has 

occurred for several reasons, including health benefits, taste preferences, ethical concerns with 

slaughtering animals and factory farming, environmental concerns related to pollution and 

greenhouse gas emissions, and perceived moral accreditation [5-7]. It is now typical for 

nutritionists to recommend vegetarianism to the general public en masse [5, 8-10].  

Recent large meta-analyses have found health benefits associated with vegetarianism, 

such as improved blood lipids, and reductions in body mass index (BMI), heart disease, type 2 

diabetes, and certain cancers, though no significant differences have been found in all-cause 

mortality [1, 11-13] . As the authors of these meta-analyses have pointed out, many vegetarian 

observational studies are confounded by information and selection biases [1, 11, 12]. We have 

attempted to find ways to address the most commonly occurring biases from these studies. 

Heterogenous and imprecise questionnaire design in defining vegetarianism is an 

important source of information bias. Self-reported vegetarians vary widely in their strictness of 

following a diet that contains no meat or fish [14]. There are issues of trustworthiness in dietary 

questionnaire response, particularly in the direction of over-reporting “healthy” behaviors [15, 

16]. Using multiple dietary assessment surveys to define variables is one way to significantly 

improve the quality of measurement as compared to using a single question [17-19].  
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Vegetarians may also be more health conscious in general than omnivores, which 

introduces a selection bias that has been called the “healthy user effect” [20]. When lifestyle 

factors adjacent to vegetarianism are not properly controlled for, it can lead to overestimating the 

effect of vegetarianism. One outstanding example of this bias in vegetarianism studies, 

specifically those conducted in the US, has been an over-generalization of results from Seventh 

Day Adventists (SDAs) [1, 11, 12, 21, 22], who in addition to vegetarianism, observe many 

healthy lifestyle practices, such as increased emphasis on exercise, and avoidance of all tobacco, 

drugs, and alcohol. Meta-analyses revealed that non-SDA vegetarians consistently show less 

health benefits than SDAs [1, 11, 12]. Matching participants on relevant characteristics can help 

alleviate this issue [23]. Large-scale databases like the UK Biobank (UKB) offer an opportunity 

to match vegetarians to omnivores while still maintaining sufficient analysis power.  

In addition to the aforementioned biases, there has been no consideration of genetics in 

large epidemiological studies of vegetarianism. Genetics and ancestry are known to play an 

important role in metabolic processes, i.e., nutrigenetics [24, 25]. There are two aspects of 

genetics we consider in this analysis. First, we asked whether there is a genetic component to 

vegetarianism status. Heritable components have been associated with plant-eating dietary 

preferences [26, 27]. Significant variants have been associated with quantitative measures of 

plant-eating [28, 29], though a recent GWAS of vegetarianism as a trait found none [30].  

Perhaps more meaningful than finding a genetic predisposition towards certain dietary 

habits, is identifying how a diet relates to our personal genetics. This question is at the heart of 

the “nature plus nurture” approach of nutrigenetics. Gene-diet interactions (GDI) are a type of 

gene by environment interaction (GEI) where diet is the environmental exposure. GDIs are 

defined as a departure of the effect of a genetic polymorphism from the typical additive 
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association model, based on differences in diet. GDIs have been identified using exposures of 

overall dietary patterns for some serum biomarkers [31], but gene-vegetarianism interactions 

have not yet been reported. 

This study consists of four parts. First, by utilizing both dietary surveys administered to 

UKB participants, we defined a high-quality cohort of vegetarians that were most likely to be 

vegetarian at the time of the serum biomarker collection. Participants’ vegetarianism status was 

based on four criteria: self-identified as vegetarian on first 24-hour recall survey (24HR), did not 

eat meat or fish on first 24HR, did not eat meat or fish on initial assessment, and had no major 

dietary changes over the past 5 years. Second, we estimated exposure effects of vegetarianism in 

a matched sample of vegetarian and nonvegetarian Europeans across 30 serum biomarkers. 

Third, we performed a genome-wide association study (GWAS) to search for variants that may 

explain vegetarianism preference on a genetic level. Finally, we performed the first genome-wide 

gene-diet interaction study (GWIS) of vegetarianism across 30 biomarkers, and identified 

genome-wide significant gene-vegetarianism interactions on calcium, testosterone, and estimated 

glomerular filtration rate (eGFR). This study provides evidence that genetic factors play a role in 

differential phenotypic outcomes across vegetarians, and suggests that the current trend of 

universal vegetarianism recommendations may be premature. 
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Methods 

Ethics 

UK Biobank (UKB) approved use of medical and genetic data under Project ID 48818. 

Data analysis was performed on a University of Georgia high performance computing server 

with strict data protection protocols and two-factor authentication. Institutional Review Board 

(IRB) approval was obtained for human data use in this study. Participants that withdrew their 

consent as of Feb. 22nd, 2022 were removed (N=114). 

Vegetarianism designation 

UKB is a prospective cohort study containing > 500,000 participants between ages 40 

and 70, who were recruited in England, Scotland, and Wales between 2006 and 2010. All UKB 

Field and Category references can be located in their publicly available data dictionary 

(https://biobank.ndph.ox.ac.uk/ukb/). Dietary data was collected in two separate surveys. All 

participants answered the touchscreen questionnaire on “Diet” during their initial visit to the 

Assessment Centre (Category ID 100052). Additionally, the “Diet by 24-hour recall” section of 

the “Online follow-up questionnaire” (24HR; Category ID 100090) was administered to a subset 

of participants on a voluntary basis, during the last phase of the initial assessment (Instance 0; 

N=70,689) and subsequently via email, for a total of up to five rounds between April 2009 and 

June 2012 (N=210,966 unique participants) [32, 33].  

Our goal was to identify a subset of participants most likely to have been consistently 

following a strict vegetarian or vegan diet at the time of the blood draw for biomarker 

measurement at the Initial Assessment. Vegetarians and vegans were grouped together in all 

analyses because of the limited number of vegans. In this study vegetarians/vegans were defined 

as meeting all four of the following criteria. First, in a participant’s first instance taking the 
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24HR, in response to the question “Do you routinely follow a special diet?” (Field 20086), they 

must have indicated “Vegetarian diet (no meat, no poultry and no fish)” and/or “Vegan diet.” 

Next, on that same first instance taken of the 24HR, a participant must have also answered “No” 

to "Did you eat any meat or poultry yesterday? Think about curry, stir-fry, sandwiches, pie 

fillings, sausages/burgers, liver, pate or mince," (Field 103000) as well as to "Did you eat any 

fish or seafood yesterday? e.g. at breakfast, takeaway with chips, smoked fish, fish pate, tuna in 

sandwiches." (Field 103140). Third, on the initial dietary assessment survey, participants must 

have answered “Never” to all of the questions asking how often meat or fish was eaten (Fields 

1329, 1339, 1349, 1359, 1369, 1379, and 1389). Finally, on the Initial Assessment, participants 

must have answered “No” to the question “Have you made any major changes to your diet in the 

last 5 years?” (Field 1538). 

Participants 

Only participants designated as having European (EUR) ancestry by the Pan UKBB 

project [34] were used in analyses to avoid population stratification. Participants were removed 

on the following quality control parameters: mismatches between self-reported and genetic sex, 

poor quality genotyping as flagged by UKB, sex chromosome aneuploidy, and/or having a high 

degree of genetic kinship (ten or more third-degree relatives identified). Additionally, we 

removed the minimum number of participants to eliminate all related pairs. 

Phenotype data 

Continuous serum biochemistry markers were obtained from Category 17518. Oestradiol 

and rheumatoid factor (Fields 30800, 30820) were excluded due to limited participant data 

(<20% of participants). Glucose (Field 30740) was excluded due to inconsistencies in fasting 

times among participants, and a limited number of participants with fasting times larger than 7h. 
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Total cholesterol, LDL-C, and apolipoprotein B were divided by an adjustment factor (0.749, 

0.684, and 0.719, respectively) for those who self-reported use of statins [35]. Three derived 

traits were also included. Free testosterone was calculated with the Vermeulen equation 

bioavailable testosterone was calculated with the Morris equation [36-38]. The CKD-EPI 

Creatinine-Cystatin Equation (2021) was used to calculate estimated glomerular filtration rate 

(eGFR) [39]. All traits were transformed using direct rank-based inverse normal transformation 

with random separation of ties. 

Genotype data 

Genotype data was provided with initial QC and imputation with Haplotype Reference 

Consortium (HRC) and 1000 Genomes variants by UKB (v3) as previously described [40]. 

Additionally, we removed variants with imputation quality score (INFO) < 0.5, minor allele 

frequency (MAF) < 1%, missing genotype per individual > 5%, missing genotype per variant > 

2%, or Hardy-Weinberg equilibrium (HWE) P < 1×10-6. Variant filtering and genotype file 

format conversions were performed using PLINK2 alpha-v2.3 [41, 42]. After quality control, 

7,918,739 variants remained. All genomic positions in this study refer to the Genome Reference 

Consortium Human Build 37 (GRCh37), also known as hg19. 

Sample matching and estimating vegetarianism effects 

To select controls for the analysis of vegetarianism exposure effects, cases were pre-

processed to match four controls with nearest-neighbor (greedy) matching without replacement, 

using MatchIt v4.4.0.9004 [43]. Matching distance between participants was calculated by 

general linearized model, and was performed on the basis of age, sex, body mass index (BMI; 

kg/m2), alcohol use frequency (<3 drinks/week or ≥ 3 drinks/week), previous smoker (yes/no), 

current smoker (yes/no), standardized Townsend deprivation index, and the first five genetic 
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principal components. Sixteen vegetarians with incomplete covariate information were excluded, 

leaving a total of 2,312 European vegetarians (Supplementary Table 2). 

Matching was followed by regression using the same vector of covariates; using the same 

covariates is recommended to reduce the dependence of regression estimates on modeling 

decisions, increase precision, reduce bias, and increase robustness of the effect estimate [23, 44]. 

Vegetarianism marginal effects estimates were computed by linear model in R (v4.2.1) with 

cluster-robust standard errors implemented by Sandwich v3.0-2 [45]. Sex-stratified models of the 

same matched participants were also run. Forestplot (v3.0.0) was used to make forest plots.  

Genome-wide association 

Genome-wide association study (GWAS) was performed using regenie (v3.1.2) [46]. 

Vegetarianism status as defined above was used as a binary trait. A whole genome regression 

model was fit at a subset of genetic markers from non-imputed UKB genotype calls. Variants 

used in model fitting were filtered in PLINK2 alpha-v2.3 [41, 42] by these criteria: minor allele 

frequency < 0.01, minor allele count < 100, genotype missingness < 0.1, Hardy-Weinberg 

equilibrium exact test P-value < 1e-15. Covariates used for both model fitting and GWAS 

(standard model) were: age, sex, genotyping batch, alcohol use frequency, previous smoker 

(yes/no), current smoker (yes/no), standardized Townsend deprivation index, and the first ten 

genetic principal components as provided by UKB. A BMI-adjusted model was separately run to 

compare sensitivity models for confounding effects of BMI. Firth correction was applied for P < 

0.01 to reduce the bias in the maximum-likelihood estimates using a penalty term from Jeffrey’s 

Prior as described previously [47]. Genomic control (λ) was calculated for P-values using the 

median of the chi-squared test statistics divided by the expected median of the chi-squared 

distribution. 
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Genome-wide interactions with vegetarianism 

GEM (Gene–Environment interaction analysis in Millions of samples) v1.4.3 [48] was 

used to perform genome-wide interaction study (GWIS) of 30 continuous biomarker traits, using 

vegetarianism status as a binary exposure variable. Covariates used in GWIS were age, sex, 

genotyping batch, alcohol use frequency, previous smoker (yes/no), current smoker (yes/no), 

standardized Townsend deprivation index, and the first ten genetic principal components. Robust 

SE correction as implemented by GEM was performed in all models to correct for initially 

observed heteroskedasticity. Interaction effects and P-values refer to 1 degree of freedom test of 

variant effect in the gene-environment interaction model with robust standard errors. Marginal 

effects refer to the association between a genetic effect and phenotype when the environment has 

been mean-centered. A BMI-adjusted model was separately run for all traits. Correlation 

between standard and BMI-adjusted models was assessed using a two-sided Spearman’s rank 

correlation coefficient.  

Variants were queried for associations with gene expression levels in tissues using 

Genotype-Tissue Expression (GTEx) Project (GTEx) Analysis Release V8 (dbGaP Accession 

phs000424.v8.p2). Fastman v0.1.0 was used to generate Manhattan plots [49]. Hudson (v1.0.0) 

was used to create interactive Manhattan plots [50]. 

Gene-based analyses 

MAGMA v.1.10 [51] was used to aggregate P-values from individual variant 

associations (for vegetarianism) and 1 df interactions (for 30 biomarkers) to genic regions. 

Variants were mapped to a total of 18,208 genes using a window of +2 kb upstream and -1 kb 

downstream of the transcription start and stop sites to allow for the inclusion of proximal 

regulatory variants. Linkage disequilibrium was estimated using reference data from the 1000 
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Genomes British population of European ancestry. The “multi model” method of aggregation 

was used to apply both “mean” and “top” models and select the one with the best fit [52]. 
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Results 

Identifying a reliable sample of vegetarians  

We searched the UK Biobank (UKB) to find a reliable subset of participants that were 

most likely to be vegetarian at the initial assessment (IA), when blood samples were collected for 

biomarker measurement. Two separate dietary surveys were part of UKB data collection, one at 

the IA which was taken by all UKB participants (N=502,413), and one in the 24-hour recall 

survey (24HR), which was administered after the IA in five waves or “instances”, between April 

2009 and June 2012 (N=210,967 unique participants; Figure 1A). Participants were invited to 

take the 24HR between one and five times on a voluntary basis (Figure 1B). 

We used four criteria to designate participants as vegetarian. Our first criterion was 

whether a participant indicated they routinely followed a vegetarian or vegan diet; this question 

was only asked on the 24HR. A total of 9,115 participants self-identified in at least one 24HR 

that they were either vegetarian or vegan (hereafter collectively referred to as “vegetarian”). We 

found an inverse relationship between the percentage of participants who consistently self-

identified as vegetarian in every 24HR they took, and the number of times participants took the 

24HR (Figure 1C). For example, of the participants who identified as vegetarian at least once 

and participated in two instances of the 24HR, only 64.8% self-identified as vegetarian both 

times (1,380 of 2,130); for participants that took the 24HR in all five instances, only 45.4% 

consistently identified as vegetarian or vegan every time (168 of 370). Because we were 

interested in biomarker levels at the IA time point, we considered identification as 

vegetarian/vegan the earliest instance taken of the 24HR as sufficient for passing this criterion. 

Next, the 24HR asked whether a participant ate meat or fish yesterday. To find intra-

survey discrepancies of vegetarianism status, we identified those who identified as vegetarian 
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and also self-reported eating meat or fish on the same instance of the 24HR. The percentage of 

these participants ranged from 10.02-14.01% per survey instance (Figure 1D). Participants who 

reported eating meat on their first 24HR were disqualified from our “reliable” vegetarianism 

status. Similarly, as our third criterion, we disqualified vegetarians who did not answer “Never” 

to questions asking their frequency of eating meat or fish on the IA.  

Finally, because of the high amount of dietary fluctuation we found in self-identified 

vegetarians, we also required vegetarians to have answered “No” to the question on the IA which 

asked whether they had any major dietary changes over the past five years. Overall, out of 9,115 

UKB participants who self-identified as vegetarian or vegan on at least one 24HR, we found 

3,205 met our criteria of not reporting eating meat on IA, nor on the nearest 24HR to the blood 

draw time point, plus had not reported major dietary changes (Table 1).  

Sample matching and estimating vegetarianism effects on serum biomarkers 

After quality controlling participants and keeping only those who were part of the largest 

ancestry group, European, using Pan UKBB designations [34], 2,328 vegetarians and 153,047 

non-vegetarians remained (Supplementary Table 1). Raw (untransformed) values for 30 traits 

were plotted, and some exhibited apparent differences between vegetarians and non-vegetarians 

(Supplementary Figure 1). However, the covariates selected for our effects estimation model 

(age, sex, BMI, alcohol use frequency, previous smoker, current smoker, Townsend index, and 

the first five genetic principal components) were highly imbalanced between the two groups 

(Supplementary Table 2). For example, the average ages of non-vegetarians and vegetarians 

were 56.5 (7.9) and 52.7 (7.8), respectively. Similarly, non-vegetarians were 54.1% female, 

compared to 66.2% in vegetarians. The covariates with highest standardized mean differences 

(SMD) between the two groups were age (-0.482) and BMI (-0.501). Therefore, prior to 
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estimating the effects of vegetarianism across the 30 traits, we matched each vegetarian to four 

non-vegetarians along these covariates. After matching, the absolute SMD (ASMD) in all model 

covariates were < 0.05 S.D. (Supplementary Figure 2). The variance ratio of the distance of 

propensity scores between unmatched and matched vegetarians was improved from 2.1203 to 

1.0216. Similarly, the maximum empirical cumulative density function (eCDF) difference (also 

known as the Kolmogorov-Smirnov statistic, Dn) was improved from 0.3038 to 0.0013 

(Supplementary Table 2). These measures indicate that good balance was achieved between 

matched vegetarians and non-vegetarians. The untransformed trait values for matched 

participants was included in the initial plot (Supplementary Figure 1). 

Participants were filtered for those who had complete covariate data. The standardized 

effect of vegetarianism was estimated across 30 serum biomarker traits with rank-based inverse 

normal transformation in 2,312 vegetarians and 9,248 matched non-vegetarians. Fifteen of these 

traits had significant effects at the Bonferroni corrected P-value threshold of 0.05/30 = 0.0017, 

while five additional trait effects were nominally significant (P < 0.05). (Figure 2; 

Supplementary Table 3). Effects of vegetarianism were significant and negative across all 

cholesterol measures, including total cholesterol, low-density lipoprotein cholesterol (LDL), 

high-density lipoprotein cholesterol (HDL), plus Apolipoproteins A and B (ApoA, ApoB); while 

lipoprotein (a) (Lp (a)) was nominally significant. A significant positive effect of vegetarianism 

was associated with triglycerides (β = 0.223; P = 4.0e-26).  

Vegetarianism had a significant negative effect on the steroid hormone Vitamin D (β = -

0.388; P = 2.1e-49), and with the growth hormone-regulating Insulin-like growth factor 1 (IGF-

1). Sex-related hormone measures of testosterone (total, bioavailable-T, and free-T) and sex 
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hormone binding globulin (SHBG) were not significant in the combined nor sex-stratified effects 

estimation (Supplementary Figure 3). 

Alanine aminotransferase (ALT) and gamma-glutamyl transferase (GGT) were associated 

with significant negative effects of vegetarianism, while a positive effect was observed with 

alkaline phosphatase (ALP). Effects for other liver-associated markers such as albumin, aspartate 

aminotransferase, C-reactive protein, direct bilirubin, total bilirubin and total serum protein, were 

not significant. 

Kidney markers associated with protein metabolism and breakdown, such as creatinine, 

urate and urea, displayed negative effects from vegetarianism, while cystatin C was associated 

with a strong positive effect, and eGFR did not have significant effects. HbA1c (glycated 

haemoglobin) was not significantly associated. Vegetarianism had a negative effect on serum 

calcium that nearly reached the Bonferroni significance threshold (P = 0.002), while phosphate 

was not significantly associated.  

Sex-stratification revealed effects signals were driven by only one sex in three traits. 

ApoA was significant only in males, ALP and Lp (a) were significant only in females; C-reactive 

protein was nearly significant in females (Supplementary Figure 3; Supplementary Table 3). 

Genome-wide association study 

A total of 7,918,739 variants were tested in a GWAS of 152,764 European UK Biobank 

participants, using vegetarianism as a binary trait as defined in Table 1 in a standard model and 

BMI-adjusted model. P-values were highly correlated between the two models (R = 0.97; 

Supplementary Figure 4). No variants were significantly associated with vegetarianism at the 

genome-wide significance threshold (P < 5e-08; Supplementary Figure 5). Potential inflation 
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from imbalanced case:control (2,312 vegetarians, 152,764 non-vegetarians) was properly 

adjusted for by regenie (λ = 1.032 in both models). The two most significant variants in both 

models were indels, at 4:183448129_AT_A (Pstandard = 1.645e-07; Padj-BMI = 1.358e-07) and 

11:870094_CG_C (Pstandard = 1.612e-07; Padj-BMI = 2.101e-07).  

 Variant P-values were aggregated into genic regions using MAGMA. No genes achieved 

significance. The most significant genes in each model were Major Histocompatibility Complex, 

Class II, DP Beta 1 (HLA-DPB1; Pstandard = 1.12e-05; Padj-BMI = 5.73e-05) and Tyrosine 3-

Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Zeta (YWHAZ; Pstandard = 

1.44e-04; Padj-BMI = 4.66e-05). 

Genome-wide gene-vegetarianism interactions 

Variant level 

Gene-environment interactions using vegetarianism status (Table 1) as the environmental 

exposure was performed across 30 serum biomarker traits (N = 117,356-147,253) using standard 

and BMI-adjusted models (Supplementary Table 4). For each GWIS, 7,934,157 variants were 

tested for marginal effects, interaction effects (1 degree of freedom), and joint main and 

interaction effects (2 degrees of freedom). We were specifically interested in interaction effects 

and their corresponding P-values, as these would most directly demonstrate the interaction of 

vegetarianism with genetic variants. Genomic control (λ) using non-robust standard errors 

ranged from 0.895- 1.255, likely due to heteroskedasticity, therefore robust standard errors as 

implemented by GEM were used for all models; λ for robust P-values ranged from 0.985-1.024 

(Supplementary Table 4). 

Across the 30 traits analyzed for gene-vegetarianism interactions, only one variant was 

significant at the genome-wide significance threshold, and no variants reached significance at a 
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stricter threshold Bonferroni corrected for the number of traits (5e-08 / 30 = 1.67e-09) 

(Supplementary Figure 6; Supplementary Table 4). For calcium, rs72952628 (chr4:146,637,234) 

passed the genome-wide significance threshold in the standard model and nearly in the BMI-

adjusted model (P-intstandard = 4.47e-08; P-int adj-BMI = 6.29e-08; Figure 3A), while the marginal 

P-value was high (P-marginalstandard = 0.0269; P-marginaladj-BMI = 0.0233), indicating 

predominately interaction effects at this locus. This variant is located in the intron of 

Chromosome 4 Open Reading Frame 51 (C4orf51), and is also in moderate linkage 

disequilibrium (r2: 0.605-0.719) with variants in exon 7 of Metabolism of Cobalamin Associated 

A (MMAA) (Figure 3B). In a genotype-stratified model using the standard analysis covariates, 

vegetarianism effect was associated with a 0.135-unit decrease (standard deviation of calcium 

level) in those homozygous for the major allele CC, while the heterozygote was associated with a 

0.298 increase (Figure 3C). 

The gene product MMAA is a GTPase involved in one-carbon metabolism of vitamin B12 

(B12; also known as cobalamin). Specifically, MMAA helps mediate the transport of cobalamin 

(Cbl) into mitochondria for the final steps of adenosylcobalamin (AdoCbl) synthesis. The most 

prominent cause of B12 deficiency is inadequate dietary intake, and this is especially common 

among vegetarians and vegans since the majority of dietary B12 is derived from animal sources 

[53]. GTEx single-tissue eQTL data for rs72952628 showed an exclusive and significant 

association with MMAA gene expression in four tissue types, and nearly reaching the GTEx 

multiple testing significance threshold in liver tissue (P = 4.77e-04), where the heterozygote CT 

is consistently associated with higher expression of this gene (Supplementary Figure 7). GTEx 

bulk tissue gene expression of MMAA is highest in the liver (median TPM = 5.195; 

Supplementary Figure 8A). 
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There are fifteen or more gene products involved in B12 transport and processing [53]; of 

these, two have calcium-binding domains, cubilin, and CD320. In the distal ileum, binding of the 

IF-B12 complex to the cubilin receptor is calcium-dependent [54]. However, a closer candidate in 

the B12 pathway for calcium involvement is CD320. In the liver, CD320 receptor mediates 

transcobalamin-bound B12 cellular uptake, a process which is Ca2+ dependent [55]. This would 

occur in the same cells where MMAA is active in the mitochondria, including but not exclusive 

to liver cells.  

Gene level 

Interaction P-values of GWIS variants were aggregated into genic regions using 

MAGMA for each of the 30 biomarkers. Variants were mapped to 18,208 genes, making the 

significant P-value threshold corrected for the number of genes as (0.05 / 18,208 = 2.75e-06), 

and that threshold additionally corrected for the number of traits as (2.75e-06 / 30 = 9.15e-08). 

Genomic control (λ) for these aggregated models ranged from 0.898-1.098 (Supplementary 

Figure 9; Supplementary  

Table 4). 

Two genes in two traits were significant at the threshold corrected for the number of 

genes: Ring finger protein 168 (RNF168) in total testosterone (Pstandard = 1.45e-06, Padj-BMI = 

1.03e-06; Figure 4A), and Zinc finger protein 277 (ZNF277) in eGFR (Pstandard = 6.76e-07, Padj-

BMI = 9.28e-06; Figure 4B). No genes in the analysis were significant at the more conservative 

significance level correcting for the number of traits (Supplementary Table 4). 

RNF168 had the highest expression levels in the testis in GTEx (median TPM = 45.10; 

Supplementary Figure 8B). RNF168 has previously been associated with testosterone levels at 

the top variant rs5855544 in multiple UKB GWAS (main effects) [35, 36]; but, rs5855544 
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exceeded our genotype missingness threshold and therefore was not included in this analysis. 

Our top interaction variant at this gene locus was rs73219637 (P-intstandard = 1.46e-07; P-int adj-BMI 

= 2.31e-07; P-marginalstandard = 0.435; P-marginaladj-BMI = 0.338; Figure 4C). The rs73219637 

heterozygote (TC) was associated with an increased expression of RNF168 in the testis (P = 

4.81e-3), though this did not pass the GTEx multiple testing significance cutoff. The RNF168 

protein is involved in the repair of DNA double-strand breaks. Mutation of this gene is 

associated with Riddle syndrome, symptoms of which include increased radiosensitivity, 

immunodeficiency, motor control and learning difficulties, facial dysmorphism, and short 

stature. A mouse model of Riddle syndrome found RNF168 deficiency caused decreased 

spermatogenesis, and RNF168 was identified as a candidate gene as a tumor suppressor in 

testicular embryonal carcinomas [56].  

While ZNF277 contains a number of variants with suggestive interaction P-values, the 

lead variant in this region is rs17159341 (P-intstandard = 2.58e-07; P-int adj-BMI = 8.61e-07; P-

marginalstandard = 0.089; P-marginaladj-BMI = 0.102; Figure 4D), found in the first intron of 

Dedicator of Cytokinesis 4 (DOCK4). DOCK4 appears to be a more relevant candidate gene than 

ZNF277. Though DOCK4 has not been directly associated with eGFR in GWAS studies, it has 

been associated with several traits related to kidney health, such as diastolic blood pressure, type 

2 diabetes, dehydroepiandrosterone sulphate measurement (a marker for adrenal disorders) and 

“Water consumption (glasses per day).” A recent study demonstrated that in vivo and in vitro 

DOCK4 expression was found to increase with high-glucose, and that DOCK4 could reverse 

USP36-induced epithelial-to-mesenchymal transition effect, which is involved in diabetic renal 

fibrosis and nephropathy [57]. 
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Discussion 

In this study we developed a multi-step approach of evaluating the health impacts of the 

vegetarian dietary pattern, using both traditional and genetic epidemiological methods, the latter 

of which has rarely been applied to vegetarianism. First, we applied a quality control procedure 

to identify “reliable” vegetarians (N = 2,328 European vegetarians), based on four criteria from 

two dietary questionnaires (Table 1; Figure 1). Next, we matched vegetarians to non-vegetarians, 

and estimated the effects of vegetarianism on thirty serum biomarkers in a traditional model that 

did not consider genetic effects. We found vegetarianism had significant effects on fifteen of 

these biomarker traits after multiple testing correction (Figure 2). Third, we conducted a GWAS, 

and found no genetic variants that had statistically significant effects on whether a participant 

was vegetarian or not (Supplementary Figure 5). Finally, we performed GWIS across thirty 

biomarkers, and identified significant gene-vegetarianism interactions in three traits: a variant-

level interaction in calcium (Figure 3), and gene-level interactions in testosterone and eGFR 

(Figure 4). These represent the first gene-vegetarianism interactions identified to-date. 

Because of the heterogeneity in the way vegetarianism is defined, plus evidence showing 

that single-survey self-reported dietary data is often inaccurate [15-19], we assessed the quality 

of the 9,115 participants who self-reported as vegetarian in one or more 24HR instances. We 

found several patterns in the UKB participant data that indicated rigorous quality control was 

necessary. For example, at each instance of the 24HR, we found that about 10-14% of self-

identified vegetarians indicated eating fish, or less often meat, or both, on that same instance of 

the dietary survey (Figure 1D). Additionally, of 1,229 participants who indicated they “have 

never eaten meat in [their] lifetime,” (IA, Field 3680), 132 (10.7%) also indicated on the same 

dietary questionnaire that they occasionally eat oily fish, with 83 participants (6.8%) indicating 
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they eat oily fish once a week or more (Supplementary Figure 10). The simplest explanation for 

this discrepancy is that many people consider fish eating to be compatible with vegetarianism, 

despite this contradicting the common usage of that term. We also observed that in the three-year 

period of 24HR administration between April 2009 and June 2012, many participants either 

stopped identifying as vegetarian, or began identifying as one (Figure 1C). Duration of 

vegetarianism adherence is an important consideration that has been shown to impact effects on 

traits in multiple studies (i.e., vegetarianism is a “time-dependent exposure”) [11, 22, 58-60]. 

Overall, these results show that self-identification of vegetarianism should be treated with 

caution in dietary surveys, and single-criterion designations of vegetarianism can increase noise 

and potentially result in spurious associations [59]. 

The majority of results from our effects estimation (Figure 2) can be understood within 

the context of the restricted dietary cholesterol, increased dietary fiber, and differences in amino 

acid profiles found in the plant-based components of vegetarian diets. Vegetarianism had 

significant negative effects on serum levels of total cholesterol, all lipoproteins (LDL, HDL, Lp 

(a), ApoA, ApoB), and Vitamin D, which is synthesized from cholesterol. Although serum 

cholesterol is mainly derived from de novo synthesis in the liver, our results suggest that intake 

of animal protein can make a significant difference in serum levels of cholesterol and related 

molecules. These differences could also be explained by higher levels of fiber in plant-based 

diets, which has been shown to reduce cholesterol as well as overall inflammation [61]. 

Interestingly, vegetarianism had a significant and moderate positive effect on triglycerides. This 

finding adds further evidence that a vegetarian diet may actually raise triglycerides [62, 63], 

though recent large meta-analyses had opposite findings [1, 11]. This positive effect on 

triglycerides may be explained by low Vitamin D [64], or a higher dietary intake of simple 
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carbohydrates [61]. Conversely, without considering genetic differences, vegetarianism did not 

have significant effects on the cholesterol-derived sterol hormone testosterone, nor on the two 

calculated testosterone traits (bioavailable-T, and free-T), nor on the testosterone inhibitor 

SHBG; this was observed in the full and sex-stratified effects estimations, and is consistent with 

previous findings [65]. 

Our results did not clearly indicate benefit nor harm of vegetarianism on biomarkers 

commonly associated with liver function. For example, we found that vegetarianism had a 

significant negative effect on ALT and GGT, lower levels of which are associated with healthier 

liver function. Conversely, we observed a significant positive effect on ALP. Increased levels of 

ALP have been observed in the context of chronic kidney disease (CKD) and Vitamin D 

deficiency. Several studies have shown a decrease in ALP can be achieved by administering 

activated Vitamin D compounds [66].  

Improved kidney biomarkers have been associated with increased plant protein intake 

[61]. Creatinine and urea, byproducts of protein metabolism, had a significant negative effect of 

vegetarianism. This can be explained by lower overall protein intake, amino acid composition, or 

increased fiber intake in vegetarian diets [61]. Vegetarianism also had a significant negative 

effect on urate (AKA “uric acid”), which can cause gout, kidney stones, and kidney injury in 

high amounts, but is also a serum antioxidant. Urate infusion has been shown to reduce 

neurological injury after stroke [67]. Higher consumption of fiber in plant-based diets has been 

associated with higher eGFR and a lower risk of developing CKD [61]. The effect of 

vegetarianism on serum calcium was small, negative, and marginally significant (β = -0.078; P = 

0.002). Serum calcium is regulated by calcitriol (1,25-dihydroxycholecalciferol), the active form 

of Vitamin D made in the kidneys. Calcitriol increases serum calcium by increasing the uptake of 
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calcium from the intestines, and may also increase calcium excretion via decreased parathyroid 

synthesis [68]. Calcium deficiency is a risk in vegetarian diets, though it can be mediated by 

increased dairy consumption [69]. Serum calcium is also indirectly dependent on intake of 

sodium, caffeine, and total protein [69]. 

It is noteworthy that two of three traits with significant gene-vegetarianism interactions, 

eGFR and calcium, are closely related to kidney function. This is likely due to the major 

differences in levels, composition, and bioavailability of proteins and minerals, plus the higher 

overall alkalinity, found in vegetarian diets which directly impact kidney function [61]. 

Meanwhile, testosterone, the third trait with significant interactions, and Vitamin D, whose 

activated form regulates serum calcium, are steroids synthesized from cholesterol. None of the 

three traits found to have gene-vegetarianism interactions showed significant effects of 

vegetarianism (at P < 0.0017) in the traditional, non-genetic epidemiological analysis. This 

emphasizes the importance of genetic interaction models in understanding the phenotypic effects 

of an exposure. 

We did not find a so-called “vegetarianism gene,” nor any single variant that was 

significantly associated with one group being vegetarian. This null finding is similar to a recent 

GWAS in a Japanese cohort [30]. Variants in HLA-DPB1, the most significant hit in the gene-

based test, have been previously associated with cognitive empathy [70], which could potentially 

be involved with one’s decision to become vegetarian. This connection, while interesting, is 

highly speculative, and more evidence is necessary. We also found that for all three significant 

interaction loci, at rs72952628, RNF168 and DOCK4, there were no vegetarianism GWAS main 

effects, nor marginal effects in the trait interaction analyses, that reached the suggestive genome-
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wide threshold of P < 1e-05. This strengthens the likelihood that gene-vegetarianism interaction 

effects are responsible for the signals at these loci.  

Only one single nucleotide polymorphism (SNP) (rs72952628) had a variant-level 

interaction with vegetarianism at the genome-wide significance level (P-int = 4.47e-08). This 

SNP was found to be significantly associated with expression changes in MMAA, a protein in the 

B12 metabolism pathway. B12 deficiency is the highest nutritional concern in vegetarians, and 

dietary intake plays a primary role in B12 availability [1, 53]. And, though we did not directly 

query B12 levels, its metabolism pathway was implicated in our results. We have suggested 

CD320 as a calcium-dependent candidate gene; CD320 serves as the cellular gateway for 

transcobalamin-bound B12 to the cell [55]. Similarly, we have proposed RNF168 and DOCK4 as 

the most likely candidate genes based on gene expression and experimental evidence related to 

testosterone and eGFR, respectively. More experimental evidence is needed to validate these 

proposals, and there may be less direct mechanisms involved in these interaction. 

We made several decisions when designing our GWIS models. First, we consider 1 

degree of freedom (df) interaction results more compelling and indicative of true interaction than 

2df joint effects, so we did not interpret these joint effects, though they are reported in our 

summary statistics. We also did not perform a pre-screening filter for variants with significant 

main effects; this two-step approach has been used to reduce multiple testing burdens in GWIS 

[52]. Because the marginal effects at our significant interaction loci were weak, and in some 

cases not significant, it is possible some of our significant interactions may have been lost by this 

pre-screening. Third, in our preliminary models, we observed a high degree of inflation (some 

traits with λ > 1.2) presumably caused by heteroskedasticity. By correcting for this inflation 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.21.22281358doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281358
http://creativecommons.org/licenses/by-nc/4.0/


 25

using robust standard errors, the genomic control values we reported for these GWIS do not 

exceed 1.024, indicating type I error was properly controlled [71]. 

Our study was not without limitations. First, we performed a one-stage analysis 

(discovery only) without replication. The UKB is among the first datasets which contain dietary 

data and are sufficiently powered for a GWIS. The benefit in our study of being able to utilize 

the multiple dietary surveys and criteria in defining vegetarians from UKB, also caused us to be 

unable to produce an equally rigorous set of vegetarians for replication. This characterization of 

reliable vegetarians was also important in the context of performing GWIS [59]. Nonetheless, we 

consider these one-stage results valuable, for several reasons. We have clearly demonstrated the 

noise in a single-criterion definition of vegetarianism in UKB; this may also be broadly 

applicable to interpreting other studies. Next, our use of algorithmic matching in our traditional 

epidemiological analysis, which simulates the experimental design of a large-scale randomized 

control trial, achieved a greater balance between vegetarians and non-vegetarians than has been 

achieved in previous effects analyses in observational studies [1, 11, 12]. Finally, despite being 

unreplicated, our GWIS results are valuable in the exploratory context of our analysis. We have 

found the first evidence of a gene-vegetarianism interaction, a new phenomenon which, once 

further validated, represents a highly relevant nutrigenetic finding. We hope that future 

researchers can use our results, analysis protocol, and open computational pipeline in future 

studies to conduct replications and meta-analyses, and to inform clinical trials.  

The next limitation of this study is that although we found significant interactions that 

passed the genome-wide multiple testing correction thresholds (P < 5e-08 for variant-level 

analysis and P < 2.75e-06 for gene-level analysis), none of these met a threshold further 

corrected for thirty traits (P < 1.67e-09 and P < 9.15e-08, respectively). In this multi-trait GWIS, 
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the multiple testing burden was high, on top of the already strict genome-wide significance 

threshold. GWIS have sample size requirements which require approximately four times more 

participants to achieve the same power as in a GWAS with comparable effect sizes [72, 73]. We 

suspect that future studies with larger sample sizes would produce a higher number of significant 

loci. This is supported by several interactions, for example, BRINP3 in Vitamin D (P = 3.88e-

06), and INTU in SHBG (P = 3.93e-06) which nearly reached the gene-level significance 

threshold of P < 2.75e-06. 

In contrast with increasingly common recommendations that vegetarianism is universally 

beneficial for all people [5, 8-10], we found several significant biomarker signals of potentially 

worse health in vegetarians. On its face, vegetarianism is a broad category which is not specific 

enough to determine whether a given diet is “healthy” either overall or in specific mediative 

contexts. For example, vegetarian diets which are too high in carbohydrates and added sugars 

have been associated with higher cardiometabolic disease risk [61]. Our traditional 

epidemiological analysis showed a triglyceride-raising effect of vegetarianism; raised 

triglycerides are a symptom of metabolic syndrome and commonly understood as a risk factor 

for heart disease and stroke. Lower Vitamin D and higher ALP were also observed, both of 

which have been associated with negative health outcomes as described above. Two traits, urate, 

which was significantly lower in vegetarians, as well as testosterone which had gene-

vegetarianism interaction effects, have been associated with depression [67, 74]. Depression has 

been repeatedly associated with vegetarianism in observational studies [75]. It should also be 

reiterated that these results are most relevant for those who are in the same age range as our 

study cohort, i.e. 40 to 70 years old. Vegetarian and vegan diets for children [76] and pregnant 
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women [77] come with serious risks of malnutrition, and should be meticulously structured if no 

alternative is possible.  

The emerging paradigms of precision medicine and precision nutrition (also called 

nutrigenetics) suggest that genetic makeup should help inform optimal disease treatment 

strategies [78]. Gene-environment interactions are able to indicate potential differences in 

molecular mechanisms and pathways utilized among individuals in different exposure groups; 

these pathways may be different even in cases where small phenotypic variance is observed [73]. 

These gene-vegetarianism interactions can also help explain inconsistencies observed in previous 

observational studies, especially across ancestral groups [73]. We proposed three novel gene-

vegetarianism interactions in this study and used available functional analyses to put these 

interactions into plausible biological context. But as in any genome-wide study, these statistically 

significant interactions must be externally replicated and verified experimentally. 

 

 

Data availability 

Full and annotated code used in this analysis, gene-level summary statistics, and interactive 

Manhattan plots are publicly available at https://michaelofrancis.github.io/VegetarianGDI/.  

Summary statistics for GWAS and GWIS at GWAS Catalog (https://www.ebi.ac.uk/gwas/). The 

corresponding accession numbers can be found in Supplementary Table S5. 
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Figure captions 

Main tables 

Table 1. Selecting high quality vegetarians for analysis. Vegetarians were selected on four 
criteria: self-identifying as vegetarian on first 24-hour recall survey (24HR) that they participated 
in, no eating meat or fish on first 24HR, no eating meat or fish on initial assessment, and no 
major dietary changes over the past 5 years. A total of 3,205 UK Biobank participants met these 
criteria (top row; green highlight). This table shows counts of participants from all UK Biobank 
participants who took the 24HR (N = 210,967). After filtering by ancestry, the total of 3,205 
became 2,312 European vegetarians, the number used in the analyses that follow. 

Main figures 

Figure 1. Identifying vegetarians. (A) Participants were invited to take the 24-hour recall 
survey (24HR) between one and five times on a voluntary basis. (B) The 24HR we considered 
were restricted to the first time participants took that survey, because this was the closest time 
point to the blood draw of biomarkers at the initial assessment. (C) For participants who self-
identified as vegetarian in at least one 24HR and took multiple 24HRs, they were less likely to 
self-identify as vegetarian in all surveys. (D) The percentage of vegetarians who indicated eating 
meat or fish on the same 24HR as identifying as vegetarian ranged between 10.02-14.01%. 

Figure 2. Forest plot of estimated vegetarianism effects. Vegetarians were matched 1:4 with 
non-vegetarians and effects of vegetarianism were estimated across thirty biomarkers. Error bars 
show 95% confidence intervals. Light green dots indicate Bonferroni-corrected significance P < 
0.0017), dark green show nominally significant P < 0.05, and black dots are not significant. 

Figure 3. Calcium gene-vegetarianism interaction at rs72952628 (chr4:146,637,234). (A) 
Manhattan plot of P-values for gene-vegetarianism interaction on calcium. One variant, 
rs72952628 (chr4:146,637,234), passed the genome-wide significance threshold of P < 5e-08. 
(B) The regional Manhattan plot of rs72952628 shows rs72952628 is in linkage disequilibrium 
with variants in C4orf51 and MMAA. (C) The effect of vegetarianism on calcium, stratified by 
genotype. The homozygous minor genotype, TT, has large error because of its infrequency in our 
sample (n = 207). Error bars show 95% confidence interval. Units of calcium are s.d. 

Figure 4. Significant gene-level gene-vegetarianism interactions. Gene-level Manhattan plots 
for two traits, (A) testosterone and (B) eGFR, which had gene-vegetarianism interactions that 
reached significance at a level corrected for the number of genes tested (red line at P = 2.75e-
06). Local Manhattan plots show the top variant-level interactions at (C) RNF168 in testosterone 
and (D) ZNF277 / DOCK4 in eGFR. Red genes indicate these genes were positionally mapped to 
the locus of significant interaction variants. Variants in linkage disequilibrium with the top lead 
variant are color-coded according to their r2 values. 
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Supplementary figures 

S1. Boxplots of unadjusted trait values. Comparing raw values of vegetarians (as defined by 
Table 1) and non-vegetarians across 30 biomarker traits. Boxplots show first decile, first quartile, 
median, third quartile, and last decile. Dot and label refer to mean. Units of each biomarker 
(“value”) can be found in table S1. Matched cohort details are found in table S2 and S3. (A) Full 
cohort. (B) Stratified by sex. 

S2. Love plot of covariates before and after matching. Plot shows the absolute standardized 
mean difference of model covariates in non-vegetarians before and after matching with 
vegetarians for effects estimation. After matching, the ASMD in all model covariates were < 
0.05 standardized units. BMI=body mass index; AlcoholFreq = frequency of alcohol usage (<3 
drinks/week or ≥ 3 drinks/week); zTownsend = standardized Townsend deprivation index; PCA 
= genetic principal component; distance = matching distance between participants was calculated 
by general linearized model. 

S3. Sex-stratified forest plot. Effects estimation for vegetarianism in (BMI adjusted) model. 
Participants stratified by male or female. Error bars indicate 95% confidence interval. 
Bonferroni-corrected significance threshold at P = 0.0017. Full data is shown in S3 table.  

S4. Correlation plot comparing P-values of BMI-adjusted model. Vegetarianism GWAS 
−log10(P) between BMI-adjusted versus standard (without BMI) models were compared. Each 
point represents one variant. Spearman’s Rho (R) and correlation P-value shown. Correlation 
coefficients for interaction analysis are found in S4 table. 

S5. Vegetarianism genome-wide association Manhattan plots. Manhattan plots and QQ plots 
showing the −log10(P) of genetic main effects with vegetarianism as a binary trait outcome. 
Genomic control (λ) for each model is shown in the QQ plots. Plots correspond to (A) Variant-
level GWAS, (B) variant-level (BMI adjusted) GWAS, (C) gene-level GWAS where P-values 
were aggregated by MAGMA and (D) gene-level GWAS (BMI-adjusted). Top variants in a 60 
Mb window that exceeded the genome-wide suggestive threshold (P = 1e-05; blue line) were 
annotated. Top genes (P < 1e-04) in a 5 Mb window were annotated. No variants or genes for 
vegetarianism as a trait were significant. 

S6. Variant-level gene-vegetarianism interaction Manhattan plots. Manhattan plots and QQ 
plots showing the variant-level −log10(P) of genome-wide gene-vegetarianism interaction effects 
in thirty serum biomarker traits. The blue line corresponds to the genome-wide suggestive 
threshold (P < 1e-05). In the standard interaction model (A), one trait, calcium, had a significant 
variant above the genome-wide significance threshold (P < 5e-08; red line). No variants were 
significant in the BMI-adjusted model (B). 

S7. eQTLs for MMAA and rs72952628. Violin plots showing expression quantitative trait loci 
(eQTLs) in four tissues which were significant at the GTEx multiple testing threshold (adipose: 
subcutaneous, colon: sigmoid, muscle: skeletal, and cells: cultured fibroblasts) plus liver tissue, 
which nearly reached significance. In all five of these tissues, the heterozygote (CT) shows 
higher median normalized expression. 
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S8. Bulk tissue gene expression for interaction genes. Candidate genes for significant 
interactions with vegetarianism in either the variant-level or gene-level analyses. Transcripts per 
million (TPM) shown in tissues ranked from low to high for the genes (A) MMAA, (B) RNF168, 
and (C) DOCK5. 

S9. Gene-level gene-vegetarianism interaction Manhattan plots. Manhattan plots and QQ 
plots showing the gene-level −log10(P) of genome-wide gene-vegetarianism interaction effects in 
thirty serum biomarker traits. The red line corresponds to the genome-wide significance 
threshold (). In the standard interaction model (A) two traits, estimated glomerular filtration rate 
(eGFR) and testosterone, had a significant gene above the genome-wide significance threshold 
(P < 2.75e-06; red line). Testosterone had one significant gene in the BMI-adjusted model (B). 

S10. Fish eating frequency of those who have “never eaten meat” in their lifetime. Bar plot 
shows non-oily fish and oily fish eating frequency, reported at Initial Assessment, for those who 
reported on that same dietary survey that they had “never eaten meat in [their] lifetime” 
(N=1,230). 

Supplementary tables 

S1. Participant characteristics. Categorical covariate (top), continuous covariate (middle) and 
phenotype data for 155,375 European UK Biobank participants used in analyses. Continuous 
variables are represented as: mean (standard deviation). Values are shown as full cohort and 
stratified by vegetarianism as defined in Table 1. 

S2. Matching summary. Top: matchit function call used for 1:4 matching of vegetarian and 
non-vegetarian participants for use in effects estimation analysis. Middle: Summary of balance 
for all data and for matched data shows the results of matching on relevant lifestyle factors and 
genetic principal components one through five. Bottom: Sample sizes in control (non-vegetarian) 
and treated (vegetarian) samples before and after matching. Std. Mean Diff. = standardized mean 
difference; Var. Ratio = variance ratio; eCDF Mean = empirical cumulative density functions to 
assess imbalance across entire covariate distribution; eCDF Max = maximum eCDF difference, 
also known as the Kolmogorov-Smirnov statistic. 

S3. Estimate effects. Effects of vegetarianism across 30 traits in full and sex-stratified matched 
groups. Left = BMI-adjusted models, right = models without BMI. BetaVeg = the effect of 
vegetarianism; SE = standard error; BMI = body mass index; M = male only; F = female only. 

S4. Summarize GWAS/GWIS. Top: Most significant hits for GWAS of vegetarianism as a trait 
in variant-level and gene-level analysis. Most significant interaction hits across 30 traits in 
variant-level and gene-level analysis. All traits analyzed in standard and BMI-adjusted models. 
Start and stop coordinates of genes represent the +2 Kbp upstream and -1 Kbp downstream 
window of variant P-value aggregation. GC λ = genomic control; A0 = non effect allele; A1 = 
effect allele; A1Freq = frequency of effect allele; P interaction = P-value of 1df interaction test 
for variant calculated with robust standard errors; NSNPS = number of SNPs annotated to the top 
gene; NPARAM = number of relevant parameters used in model; P interaction (MULTI) = gene 
P-value for best fit of “mean” and “top” models. 

S5. GWAS catalog accessions. GWAS Catalog accession codes for all variant-level GWAS and 
GWIS summary statistics generated in this study. 
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