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Abstract  1 

Background and Aims 2 

Cardiovascular disease (CVD) is among the leading causes of death worldwide. Discovery of 3 

new omics biomarkers could help to improve risk stratification algorithms and expand our 4 

understanding of molecular pathways contributing to the disease. Here, ASSIGN – a 5 

cardiovascular risk prediction tool recommended for use in Scotland – was examined in tandem 6 

with epigenetic and proteomic features in risk prediction models in ³12,657 participants from 7 

the Generation Scotland cohort.  8 

Methods 9 

Previously generated DNA methylation-derived epigenetic scores (EpiScores) for 109 protein 10 

levels were considered, in addition to both measured levels and an EpiScore for cardiac 11 

troponin I (cTnI). The associations between individual protein EpiScores and the CVD risk 12 

were examined using Cox regression (ncases³1,274; ncontrols³11,383) and visualised in a tailored 13 

R application. Splitting the cohort into independent training (n=6,880) and test (n=3,659) 14 

subsets, a composite CVD EpiScore was then developed. 15 

Results 16 

Sixty-five protein EpiScores were associated with incident CVD independently of ASSIGN 17 

and the measured concentration of cTnI (P<0.05), over a follow up of up to 16 years of 18 

electronic health record linkage. The most significant EpiScores were for proteins involved in 19 

metabolic, immune response and tissue development/regeneration pathways. A composite 20 

CVD EpiScore (based on 45 protein EpiScores) was a significant predictor of CVD risk 21 

independent of ASSIGN and the concentration of cTnI (Hazard Ratio HR=1.32, P=3.7x10-3, 22 

0.3% increase in C-statistic).  23 

Conclusions 24 
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EpiScores for circulating protein levels are associated with CVD risk independent of traditional 1 

risk factors and may increase our understanding of the aetiology of the disease.    2 

 3 

Keywords 4 
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 6 
Graphical abstract 7 

 8 

Structural graphical abstract. ASSIGN – a cardiovascular risk prediction tool recommended 9 

for use in Scotland – was examined in tandem with epigenetic and proteomic features in risk 10 

prediction models in ³12,657 participants from the Generation Scotland cohort. Cox regression 11 

was used to model the association between individual predictors and CVD hospitalisation 12 

events ascertained over 16 years of follow-up. Finally, a composite protein EpiScore was 13 

developed (based on the protein EpiScores) and its predictive performance was tested. CVD – 14 

Cardiovascular Disease, EpiScore – Epigenetic Score, Cox PH – Cox Proportional Hazards 15 

Regression, DNAm – DNA methylation.   16 
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Introduction 1 

For the past 20 years, cardiovascular disease (CVD) has been among the leading causes of 2 

mortality and morbidity worldwide. Given that many CVD cases are preventable, it is 3 

important to identify at-risk individuals early, when an intervention is most likely to be 4 

effective, and translate this knowledge into preventative strategies 1,2. Although there are many 5 

CVD risk prediction algorithms, currently they have a limited predictive performance. It may 6 

be possible to improve on that by discovering novel factors strongly associated with the disease, 7 

for example the type and the concentrations of proteins expressed as a response to the damage 8 

of the cardiovascular system.  9 

 10 

An established and a highly sensitive marker of myocardial damage is cardiac troponin 3. It is 11 

a complex of three proteins, namely cardiac troponin I (cTnI), cardiac troponin T (cTnT), and 12 

cardiac troponin C (cTnC) regulating the contraction of the cardiac muscle. Cardiac forms of 13 

troponin T4,5 and I are expressed almost exclusively in the heart 6. Following myocyte damage, 14 

cardiac troponin enters the circulation and can be detected in blood samples. A high-sensitivity 15 

cardiac troponin test plays a role in a rapid diagnosis of myocardial infarction3. Low-grade 16 

elevations in cardiac troponin are associated with increased risk of CVD3.  17 

 18 

Individual differences in protein concentration can be well-captured by DNA methylation 19 

(DNAm). DNAm is a type of epigenetic modification characterised by the addition of methyl 20 

groups to DNA. Typically, the methyl group is added at cytosine-phosphate-guanine (CpG) 21 

dinucleotides, which are found mostly (but not exclusively) in gene promoters 7. Blocking 22 

promoters, to which activating transcription factors should bind in order to initiate 23 

transcription, is one of the mechanisms by which DNA methylation can precisely regulate gene 24 

expression 8.  25 
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DNAm-based proxies for protein levels are referred to as protein EpiScores and are broadly 1 

analogous to polygenic risk scores. These methylation scores can be derived from penalised 2 

linear regression models of protein concentrations. Due to their temporal stability, protein 3 

EpiScores may exhibit stronger associations with disease outcomes than singular protein 4 

measurements, which are known to fluctuate between measurements 9–12. We have shown that 5 

EpiScores for 109 circulating protein levels are associated with the time-to-diagnosis for a host 6 

of leading causes of morbidity and mortality, including cardiovascular outcomes 13. Protein 7 

EpiScores are therefore useful biomarker tools for disease risk stratification. 8 

  9 

Here, we examine whether protein EpiScores, calculated for ³12,657 participants of the 10 

Generation Scotland (GS), study can augment predictions made by a CVD risk calculator 11 

developed for use in Scotland (ASSIGN14). We first run individual Cox proportional hazards 12 

(PH) models to discover relationships between individual protein EpiScores and incident CVD. 13 

We then create a CVD EpiScore (based on the protein EpiScores) and test the additional 14 

predictive performance offered by it for CVD risk stratification.  15 
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Methods  1 

 2 

Generation Scotland (GS) 3 

Generation Scotland is a population-based and family-structured cohort study of individuals 4 

from Scotland 15. Between 2006 and 2010, patients at collaborating general medical practices 5 

in Scotland aged 35-65 years were invited to join the study. Subsequently, participants were 6 

asked to identify first-degree relatives aged 18 and over who were then invited to participate. 7 

24,088 participants, aged 18-99 years, completed a health survey. Clinical and physical 8 

characteristics of 21,521 individuals who attended a clinic were measured using a standardized 9 

protocol. Fasting blood samples were obtained in clinic using a standard operating procedure. 10 

 11 

Measurement of high-sensitivity troponin 12 

The concentrations of high sensitivity cTnI (Abbott Diagnostics) were measured in 19,130 GS 13 

individuals. Before the assay, samples were spun for 5 minutes at 2000g. The measurements 14 

were taken using i1000SR and Cobas e411 devices using the manufacturers’ quality controls 15 

and calibrators. The limit of detection set by manufacturers of these devices is 1.2 ng/L. 16 

Anything below this limit is reported as a blank value. Correcting for blank values consisted 17 

of reporting results below the threshold of blank as 0.6 ng/L 3. 18 

 19 

DNA Methylation 20 

DNAm was profiled in blood samples using the Illumina EPIC array. Quality control details 21 

have been described previously 16. Filtering for poorly detected probes and samples, non-blood 22 

(e.g., saliva) samples and outliers was performed. Subsequently, non-CpG probes as well as 23 

probes on the X and Y chromosomes were removed. Missing CpG values were mean-imputed. 24 

To ensure any signatures generalise to as many cohorts as possible, the sites were subset to 25 
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those also present on the older Illumina 450k array (n=453,093 CpGs). The full quality-1 

controlled dataset contained 18,413 individuals. 2 

 3 

Methylation profiling was carried out in three sets. Set 1 contained 5,087 individuals, Set 2 4 

contained 4,450 individuals and Set 3 contained 8,876 individuals. Participants in Set 2 were 5 

genetically unrelated to each other and to those in Set 1 (genetic relationship matrix (GRM) 6 

threshold <0.05) while more complex relationship structures were present within and between 7 

Sets 1 and 3.  8 

 9 

The 109 protein EpiScores described by Gadd et al. 13 were projected into the cohort via the 10 

publicly available MethylDetectR Shiny App 17. A short tutorial on MethylDetectR is available 11 

at https://youtu.be/65Y2Rv-4tPU. Prior to calculating the scores, methylation level at each site 12 

was scaled within set to have a mean of zero and standard deviation (SD) of one.  13 

 14 

ASSIGN and SCORE2 scores 15 

ASSIGN scores were calculated for 16,366 GS individuals with complete information about 16 

the component parts (age, sex, smoking status, systolic blood pressure, total cholesterol, high 17 

density lipoprotein cholesterol, family history of premature CVD, diagnosis of rheumatoid 18 

arthritis, diagnosis of diabetes, and a deprivation score). Variables were adjusted as per official 19 

guidance (FAQs - ASSIGN Score, 2022). This included modifying the number of cigarettes 20 

smoked per day in recent quitters, adding 20mmHg to systolic blood pressure in individuals on 21 

blood pressure medications, and adding 10 to the number of cigarettes smoked per day in 22 

rheumatoid arthritis patients. The ASSIGN score was calculated in R using publicly available 23 

coefficients and formulae 19. A subset of the obtained scores was validated against the scores 24 

produced by the online tool 14. 25 
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SCORE2 values were calculated for 16,934 GS individuals using external coefficients 20. The 1 

estimates were calibrated according to region-specific scaling factors and validated against the 2 

online tool 21. The R scripts used to derive ASSIGN and SCORE2 are available at 3 

https://github.com/aleksandra-chybowska/troponin_episcores. 4 

 5 

Cardiovascular disease events 6 

CVD cases were ascertained through data linkage to NHS Scotland hospital records. 7 

Participants were followed to the end of September 2021. A composite CVD outcome was 8 

defined as per Welsh et al. 3 and included the following International Classification of 9 

Diseases, 10th Revision codes: I20–25, G45, I60–69, I00–I99, L29.5, L31.1, K40–46, K49, 10 

K75. A total of 2,265 incident CVD cases were observed over a follow up period of up to 16 11 

years (Supplementary Figure 1). 12 

 13 

Statistical analysis for risk associations 14 

Cox proportional hazards (PH) models were used to investigate the relationship between the 15 

CVD outcome and the following potential biomarkers: measured cardiac troponin, troponin 16 

EpiScores, and 109 protein EpiScores. All models were adjusted for ASSIGN. Protein 17 

EpiScore models were additionally adjusted for the corrected concentration of cTnI (see 18 

Methods - Measurement of high-sensitivity troponin). The levels of protein EpiScores as 19 

well as troponin concentrations were rank-based inverse normalised prior to the analyses. CVD 20 

cases comprised individuals diagnosed after baseline who subsequently died as well as of those 21 

who remained alive after receiving a diagnosis. Controls were censored at the end of the follow 22 

up period (September 2021) or at time of death (CVD-free survival). Models based on data 23 

from merged Sets 1, 2, and 3 were generated using coxme library (v 2.2.16) with a kinship 24 

matrix fitted as a random effect to adjust for relatedness. Cox model assumptions were checked 25 
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by running the cox.zph function from the survival library (v. 3.2.7) 22 was used to examine 1 

Schoenfeld residuals (local and global tests with significance threshold P< 0.05). These models 2 

were not adjusted for relatedness. Survival, forest, and hazard-over-time plots were generated 3 

using a custom shiny application available at 4 

https://shiny.igc.ed.ac.uk/3d2c8245001b4e67875ddf2ee3fcbad2/. 5 

 6 

Composite CVD EpiScore 7 

An epigenetics-based CVD score referred to as the CVD EpiScore was generated. It considered 8 

the 109 DNAm scores reflecting the concentrations of plasma proteins (protein EpiScores) 9 

from Gadd et al 13 as potentially informative features (ntraining=6,880, ntest=3,659, 10 

Supplementary Figure 2).The score was derived using two different modelling techniques: 11 

Cox PH Elastic Net and Random Survival Forest. While Elastic Net models were trained using 12 

glmnet (v 4.0.2) 23, Random Survival Forest models were trained using  randomForestSRC (v 13 

3.2.0). Protein EpiScores were rank-based inverse normalised prior to training.  14 

Elastic Net models were trained with the L1-L2 mixing parameter set to alpha=0.5 and with 15 

ten-fold cross-validation. The features with non-zero coefficients were used to generate 16 

composite score. Random Forest models were trained using ten-fold cross-validation. The 10-17 

year onset probabilities were calculated and used as a composite CVD EpiScore. 18 

 19 

Finally, to test whether the CVD EpiScore improved prediction of CVD over and above 20 

ASSIGN, the following Cox PH models were fit to the test set: a null model adjusted for age, 21 

sex, and ASSIGN, then full models, which included age, sex, ASSIGN score and 1) the CVD 22 

EpiScore, 2) the concentration of rank-based inverse normalised cTnI and 3) the CVD EpiScore 23 

+ the concentration of cTnI.  24 

 25 
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Evaluating Performance of the Composite Scores 1 

Cox PH analysis can be used model the risk of incident CVD for different prediction periods. 2 

As the ASSIGN score estimates the risk of developing CVD over 10 years, we used 10-year 3 

CVD incidence to evaluate the classification performance of our models. To calculate the 4 

binary CVD outcome, time-to-event was truncated at 10-years. Prediction probabilities were 5 

obtained in the test set for each model by calculating the cumulative baseline hazard using the 6 

Breslow estimator 24. Prediction metrics (Area Under the receiver operator characteristic Curve 7 

(AUC),  Precision-Recall AUC and C-index) were then generated using the pROC package 25.   8 
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Results 1 

Clinical risk prediction tools 2 

ASSIGN scores were calculated for 16,366 individuals with non-missing risk factor data. To 3 

meet the proportional hazards assumption of the Cox model, the dataset was filtered to 4 

individuals between 30 and 70 years old (results split by decade are presented in 5 

Supplementary Table 1) and trimmed of outliers (points beyond 3 SDs of the mean, n=181). 6 

This left a cohort of 12,790 individuals, which was further filtered to records with non-missing 7 

concentrations of cTnI (n = 12,657). Table 1 summarises the training, test, and full datasets.  8 

 9 

We observed that ASSIGN risk scores were strongly positively correlated with estimates 10 

produced by SCORE2 – an algorithm validated to predict 10-year CVD risk in European 11 

populations. In a sample of GS individuals within the recommended SCORE2 age range (40-12 

69 years old, n=11,348), the Spearman’s correlation coefficient of ASSIGN and SCORE2 was 13 

0.89 (Supplementary Figure 3). Given that the ASSIGN score was tailored to Scottish 14 

population, we decided to use it as the primary CVD risk measure, with SCORE2 used in 15 

sensitivity analyses.  16 

 17 

Incremental model using cardiac troponin and cardiac troponin EpiScores 18 

We tested whether concentrations of cardiac troponin were associated with CVD risk over and 19 

above ASSIGN. While measured concentration of cTnI was associated with an HR of 1.20 per 20 

SD increase (95% CI 1.13, 1.29; P=1.9x10-8), an EpiScore generated for cTnI (see 21 

Supplementary Methods for details) was weakly associated with the measured concentrations 22 

(incremental R2=0.10%, P=0.03) and did not predict CVD risk in Cox models adjusted for 23 

ASSIGN (P= 0.97). For that reason, it was not considered as a feature in the generation of the 24 

composite CVD score. 25 
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Table 1. Summary of training, test, and full datasets. For continuous variables with normal distributions, summary values are reported as mean 1 

(SD). Median [Q1, Q3] are given for continuous variables which do not follow a normal distribution. A number and a percentage of samples are 2 

reported for categorical variables. SIMD – Scottish Index of Multiple Deprivation, CHD – Coronary Heart Disease.  3 

 Training Test Full 
Cases Controls Cases Controls Cases Controls 

 

n 658 6222 337 3322 1274 11383 
Time-to-event  

(Years to Onset or Censoring) 
7.0 

[4.1, 9.9] 
11.8 

[11.1, 13.0] 
4.8 

[2.6, 7.6] 
11.8 

[11.0, 13.6] 
6.8 

[3.7, 9.8] 
11.8 

[11.1, 13.2] 

Age (Years) 58.3 
[50.8, 62.6] 

50.0 
[40.8, 58.8] 

56.6 
[51.6, 60.0] 

51.5 
[43.9, 57.6] 

57.4 
[51.0, 62.2] 

50.4 
[41.5, 58.2] 

Sex (Male) 345 
(52.4%) 

2452 
(39.4%) 

165 
(49.0%) 

1219 
(36.7%) 

655 
(51.4%) 

4399 
(38.6%) 

SIMD (score/10) 41.6 
[22.2, 53.3] 

45.3 
[26.3, 55.1] 

45.1 
[20.2, 54.9] 

44.5 
[22.6, 54.8] 

41.8 
[21.6, 54.0] 

44.9 
[25.5, 54.9] 

Family history of CHD/Stroke (Yes) 443 
(67.3%) 

3171 
(51.0%) 

224 
(66.5%) 

1781 
(53.6%) 

862 
(67.7%) 

5881 
(51.7%) 

Diabetes (Yes) 19 
(2.9%) 

63 
(1.0%) 

16 
(4.7%) 

72 
(2.2%) 

43 
(3.4%) 

165 
(1.4%) 

Rheumatoid arthritis (Yes) 29 
(4.4%) 

140 
(2.3%) 

23 
(6.8%) 

110 
(3.3%) 

71 
(5.6%) 

281 
(2.5%) 

Non-smoker (Yes) 534 
(81.2%) 

5306 
(85.3%) 

280 
(83.1%) 

2752 
(82.8%) 

1044 
(81.9%) 

9623 
(84.5%) 

Systolic blood pressure (mmHg) 142.1 
(16.7) 

130.8 
(16.9) 

140.3 
(17.6) 

130.3 
(16.5) 

141.5 
(17.2) 

130.6 
(16.8) 

Total cholesterol (mmol/l) 5.4 
(1.1) 

5.2 
(1.0) 

5.3 
(1.1) 

5.3 
(1.1) 

5.4 
(1.1) 

5.2 
(1.0) 

HDL cholesterol (mmol/l) 1.3 
[1.1, 1.6] 

1.4 
[1.2, 1.7] 

1.4 
[1.1, 1.6] 

1.5 
[1.2, 1.8] 

1.3 
[1.1, 1.6] 

1.4 
[1.2, 1.7] 

ASSIGN score 19 
[12, 29] 

9 
[4, 18] 

18 
[11, 28] 

10 
[5, 17] 

18 
[11, 28] 

9 
[4, 17] 
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Incremental model using EpiScores for plasma protein levels 1 

We then tested whether 109 protein EpiScores generated by Gadd et al. (protein description 2 

available in Supplementary Table 2)13 were associated with CVD risk over 16 years of 3 

follow-up .  4 

 5 

Firstly, we generated 109 Cox PH CVD risk models adjusted for ASSIGN. Each model was 6 

additionally adjusted for a different protein EpiScore. Eight EpiScores failed to satisfy the 7 

proportional hazards assumption (Schoenfeld residual test P>0.05). Of the remaining 101 8 

protein EpiScores, 67 were significantly associated with CVD risk (P<0.05). After applying a 9 

conservative Bonferroni threshold for multiple testing (P<0.05/101 = 5.0x10-4), 36 associations 10 

remained statistically significant. 11 

 12 

Secondly, to understand whether protein EpiScores were associated with CVD risk beyond 13 

established biomarkers such as cardiac troponin, we included the concentration of cTnI as a 14 

covariate in the model along with ASSIGN and we repeated the analysis. Of the 101 15 

aforementioned protein EpiScores, 65 associated with CVD over and above the ASSIGN score 16 

and the concentration of cTnI (P<0.05, Figure 1). 33 associations remained significant after 17 

correcting for multiple testing.  18 

 19 
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 1 

Figure 1. Associations between protein EpiScores and incident CVD. Hazard ratios are 

plotted for the 67 significant associations (P<0.05) with 95% confidence interval limits. Basic 

models were adjusted for ASSIGN (blue), whereas full models included the ASSIGN score 

and concentration of cTnI as covariates (red).  
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In models adjusted for ASSIGN and the concentration of cTnI, higher levels of 41 protein 1 

EpiScores were associated with an increased hazard of CVD (HR>1 and P<0.05). For example, 2 

elevated levels of CRP and MMP12 were associated with HR of 1.23 (95% CI 1.16, 1.30; 3 

P=9.2x10-12) and 1.13 (95% CI 1.06, 1.22, P=5.4x10-4) (Figure 2, A), respectively. In contrast, 4 

higher levels of 24 protein EpiScores were associated with a decreased hazard of CVD (HR<1 5 

and P<0.05). Examples of protein EpiScores belonging to this group include NOTCH1 (HR per 6 

SD of 0.84, 95% CI 0.79, 0.89; P=1.6x10-9) and OMD (HR per SD of 0.87, 95% CI 0.82, 0.92; 7 

P=1.0x10-6). The relationships between individual EpiScores and CVD risk have been 8 

visualised in a form of risk-over-time (Figure 2, B), forest, and Kaplan Meier plots in an online 9 

R application: https://shiny.igc.ed.ac.uk/3d2c8245001b4e67875ddf2ee3fcbad2/.10 
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A.  MMP12 1 

 2 

B. OMD 3 

 4 

Figure 2. Changes in CVD free survival (A) and CVD risk (B) plotted for two selected 

protein EpiScores. A. Individuals with higher levels of MMP12 (>75th percentile) had shorter 

CVD free survival when compared to those with higher level of this EpiScore (<25th 

percentile). B. Hazard ratios (HR) and 95% confidence intervals associated with the levels of 

OMD EpiScore plotted over time. At all examined time points the association with CVD risk 

was significant (P<0.05).   

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 24, 2023. ; https://doi.org/10.1101/2022.10.21.22281355doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281355
http://creativecommons.org/licenses/by/4.0/


                           

 

17 

Finally, to learn whether individual protein EpiScore can augment CVD prediction beyond 1 

established biomarkers and clinical risk prediction tools, we calculated C-statistics for null and 2 

full models. While the null model was adjusted for ASSIGN and the concentration of cTnI (C-3 

stat=0.728), the full model also contained the studied protein EpiScore. Table 2 lists top 10 4 

associations that result in the greatest improvement of CVD risk prediction. 5 

 6 

Table 2. C-statistics calculated for null and full protein EpiScore models. Risk was 

ascertained over 16 years of follow-up. The null model was adjusted for ASSIGN and the 

concentration of cardiac troponin I, while the full model also included a studied EpiScore.  

 7 
EpiScore Cfull-Cnull Function 

IGFBP4 0.0050 Metabolic / Growth promoter 

CRP 0.0050 Immune response 

NTRK3 0.0046 Neural development / Cell signalling 

FGF21 0.0042 Metabolic 

CSF3 0.0039 Immune response 

HGF 0.0035 Growth factor / tissue regeneration 

ACVRL1 0.0035 Vascular 

CNTN4 0.0035 Cell adhesion / maintenance 

PIGR 0.0034 Immune response 

RARRES2 0.0032 Metabolic 

  8 
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Composite Episcore for CVD- risk prediction 1 

To understand whether the above-mentioned protein EpiScores can be used as biomarkers that 2 

add additional predictive value over-and-above typically used clinical risk scores (ASSIGN 3 

and SCORE2) and the concentration of cTnI, we generated a composite CVD EpiScore – a 4 

weighted linear combination of individual protein EpiScores. The score was trained using two 5 

modelling techniques: Cox PH Elastic Net and Random Survival Forest. There were 6,880 6 

records in the training set and 3,659 records in the test set. The Elastic Net assigned non-zero 7 

coefficients to 45 of 109 protein EpiScores (Supplementary Table 3).  8 

 9 

In 10-year Elastic Net prediction analysis, the null model (containing age, sex, and ASSIGN) 10 

had an AUC of 0.719. The model with the CVD EpiScore increased the AUC to 0.723. The 11 

addition of cTnI to the null model resulted in an AUC of 0.721. The full model (null model + 12 

cTnI + CVD EpiScore) AUC was 0.724. Full output for the CVD models including C-statistics 13 

and a comparison with SCORE2 can be found in Supplementary Table 4 and Supplementary 14 

Table 5. The CVD EpiScore remained statistically significant after adjusting for the 15 

concentration of cTnI in models incorporating ASSIGN and SCORE2 (HR=1.32, P=3.7x10-3 16 

and HR=1.36, P=1.4x10-3, respectively). 17 

 18 

Random Survival Forest–based analysis (see Methods) yielded similar results. The null model 19 

(as above) had an AUC of 0.719. Adding the CVD EpiScore to the null model increased the 20 

AUC to 0.721. The full model adjusted for CVD EpiScore and the concentration of cardiac 21 

troponin had an AUC of 0.723.  22 

  23 
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Discussion 1 

In this study, we describe 65 novel epigenetic biomarkers that associate with long-term risk of 2 

CVD independently of a clinical risk prediction tool (ASSIGN) and the concentration of an 3 

established protein biomarker (cTnI). The most statistically significant EpiScores reflected 4 

concentrations of proteins involved in metabolic, immune, and developmental pathways. A 5 

weighted linear combination of protein EpiScores (the composite protein CVD EpiScore) was 6 

significantly associated with CVD risk in models adjusted for ASSIGN. Although the score 7 

may be a useful addition to other omic features in future CVD risk prediction tools, at present 8 

it is unlikely to be measured in a clinical setting 26.  9 

 10 

One previous study focused on how DNAm biomarkers improve CVD risk prediction 27. Using 11 

time-to-event data and a panel of 60 blood DNAm biomarkers measured in an Italian cohort of 12 

1803 individuals (295 cases), Cappozzo et al. trained a composite score for predicting short-13 

term risk of CVD. In comparison, we focused on a more extensive panel of DNAm protein 14 

markers in addition to measured troponin levels. We also ran univariate analyses to identify 15 

individual proteins and protein classes that associate with CVD. Furthermore, we developed 16 

10-year prediction models (the prediction window for which both ASSIGN and SCORE2 are 17 

recommended) trained on more than double the number of cases. 18 

 19 

Our findings suggest that individual protein EpiScores capture disease-specific biomarker 20 

signals relevant to CVD risk prediction. The relationships found between 65 protein EpiScores 21 

and incident CVD mirrored previously reported associations between CVD and measured 22 

protein concentrations. For example, elevated levels of CRP, a marker for systemic low-grade 23 

inflammation, have been associated with multiple age-related morbidities, including CVD 28. 24 

MMP12 and OMD, in turn, are involved in maintaining the stability of atherosclerotic plaques. 25 
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While MMP12 contributes to the growth and destabilisation of plaques 29, increased levels of 1 

OMD have been observed in macro-calcified plaques from asymptomatic patients 30. Finally, 2 

multiple studies have demonstrated that NOTCH1 signalling protects the heart from CVD-3 

induced myocardial damage. The Notch1 pathway is involved in neo-angiogenesis and 4 

revascularisation of failing heart 31. It limits the extent of ischemic injury 31, reduces fibrosis 32 5 

and improves cardiac function 33. Several of the protein EpiScores associated with CVD in our 6 

study, such as SELE and C5, have also been shown to associate with stroke and ischemic heart 7 

disease in our previous work 13. 8 

 9 

In contrast, the protein EpiScore we trained for cTnI was not associated with the incidence of 10 

CVD. Therefore, we excluded it from composite CVD score generation. This highlights an 11 

important consideration in the development of multi-omics biomarkers, as there are unlikely to 12 

be DNAm differences that associate with every blood protein. For example, the 109 protein 13 

EpiScores generated by Gadd et al that we make use of in our study were extracted as the best-14 

performing EpiScores from a total set of 953 proteins tested as potential outcomes 13. It is 15 

therefore not always possible to generate a meaningful protein EpiScore that reflects the protein 16 

biology. In the case of cardiac troponins, the elevations in circulating cTnI and cTnT are a 17 

result of a leakage of these proteins from the damaged heart muscle into the bloodstream 34. As 18 

opposed to transcription, this process is not regulated by DNA methylation. Therefore, the 19 

methylation signal underlying increased concentration of cardiac troponin in the bloodstream 20 

may too weak to enable generation of a meaningful EpiScore. 21 

 22 

Strengths of this study include the precise timing of the CVD event through the electronic 23 

health records, the ability to generate a clinical risk predictor in a population cohort, and the 24 
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very large sample size for DNAm, which also permitted the splitting of the data into train/test 1 

sets to formally examine the improvement in risk prediction from our omics biomarkers. 2 

 3 

Limitations to this work include the generalisability beyond a Scottish population. In this study, 4 

we trained and tested predictors in a Scottish cohort to augment the ASSIGN score. However, 5 

many of the protein EpiScores were trained in a German cohort (KORA) and projected to 6 

Generation Scotland 13. Although the ASSIGN score is tailored to the Scottish population, we 7 

observed similar findings across all models when replacing it with SCORE2, which is widely 8 

used across Europe.  9 

 10 

In conclusion, we identified novel epigenetic signals that were associated with the incidence of 11 

CVD independently of ASSIGN and the concentration of cardiac troponin. The exploration of 12 

associations between protein EpiScores and CVD shed light on the aetiology and molecular 13 

biology of the disease. As DNAm and proteins are assessed in increasingly large cohort 14 

samples, it will be possible to evaluate more precisely the potential gains in risk prediction, 15 

disease prevention and any associated health economic benefits.    16 
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Supplement 1 

 2 

Supplementary Figure 1. Pre-processing of the full dataset. This pipeline was used to 

prepare data for Cox PH models aimed at the identification of potential predictors of CVD. 

*Outlier threshold – an ASSIGN value that is more than 3 SD from the mean. Created with 

BioRender.com. 
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 1 

Supplementary Figure 2. Pre-processing of the training and test sets. While Set 1 was the 

test set, the training set consisted of Sets 2 and 3 combined. Pre-processing phenotypes 

(ASSIGN components, composite CVD event status and time-to-event) consisted of filtering 

out records with time-to-event£0, removing records with a missing ASSIGN score, 

thresholding age of participants to 30-70 years and removing outliers (ASSIGN value that is 

more than 3 SD from the mean). To ensure that there were no individuals with overlapping 

family ids across the training and the test set, any individuals in the training set associated with 

the same family id as individuals from the test set were excluded from further analyses. Created 

with BioRender.com. 
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 1 

 2 
 3 

Supplementary Figure 3. Strongly correlated 10-year CVD risk estimates produced by 

ASSIGN and SCORE2.   

 4 
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Supplementary Table 1. Hazard ratio (HR) of ASSIGN estimated by Cox proportional 

hazards CVD model adjusted for relatedness using kinship matrix where the ASSIGN 

score is the only predictor. 

Age 
category 

HRASSIGN 95% CI PASSIGN ncases ncontrols 

<30 2.42 [1.43, 4.10] 9.4 x 10-4 20 2560 
30 - 40 1.87 [1.48, 2.37] 2.0 x 10-7 64 2436 
40 - 50 1.97 [1.74, 2.22] <2.2 x 10-16  232 3153 
50 - 60 1.67 [1.55, 1.81] <2.2 x 10-16 526 3763 
60 - 70 1.54 [1.42, 1.67] <2.2 x 10-16 530 2267 

≥70 1.27 [1.12, 1.44] 2.3 x 10-4 252 551 
 1 

 2 
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Supplementary Table 2. Description of the 109 proteins for which Gadd et al. generated 

robust EpiScores. Table adapted from Gadd et. al 13. 

Identifier (SOMAscan 
SeqId or Olink name) 

 
Protein Panel 

 
Gene Name 

 
Target 

4407-10 SomaScan MST1 MSP 
4435-66 SomaScan ENPP7 ENPP7 
4148-49 SomaScan PAPPA PAPP-A 
3617-80 SomaScan HGFAC HGFA 
3440-7 SomaScan GZMA granzyme A 
3403-1 SomaScan TPSB2 TPSB2 

3291-30 SomaScan FCER2 CD23 
3195-50 SomaScan GNLY Granulysin 
5124-69 SomaScan ICAM5 sICAM-5 
3216-2 SomaScan PIGR PIGR 

5339-49 SomaScan S100A9 calgranulin B 
3175-51 SomaScan ADAMTS13 ATS13 
3311-27 SomaScan FCGR3B FCG3B 
4500-50 SomaScan CLEC11A SCGF-alpha 
2948-58 SomaScan GHR Growth hormone receptor 
2950-57 SomaScan IGFBP4 IGFBP-4 
2966-65 SomaScan CLEC11A SCGF-beta 
4337-49 SomaScan CRP CRP 
2579-17 SomaScan MMP9 MMP-9 
4498-62 SomaScan NCAM1 NCAM-120 
3184-25 SomaScan F7 Coagulation Factor VII 
3324-51 SomaScan LY9 LY9 
5034-79 SomaScan PRSS2 Trypsin 2 
3343-1 SomaScan ACY1 Aminoacylase-1 
5358-3 SomaScan OMD OMD 

3046-31 SomaScan RETN resistin 
4568-17 SomaScan SLITRK5 SLIK5 
3448-13 SomaScan INSR IR 
5028-59 SomaScan CD163 sCD163 
2658-27 SomaScan NTRK3 TrkC 
3292-75 SomaScan CD48 CD48 
4929-55 SomaScan SHBG SHBG 
4924-32 SomaScan MMP1 MMP-1 
2580-83 SomaScan MPO Myeloperoxidase 
4831-4 SomaScan SELL sL-Selectin 
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3152-57 SomaScan TNFRSF1B TNF sR-II 
2967-8 SomaScan VCAM1 VCAM-1 

5000-52 SomaScan LGALS3BP LG3BP 
3038-9 SomaScan CXCL11 I-TAC 

3169-70 SomaScan IDUA IDUA 
3060-43 SomaScan C9 C9 
2665-26 SomaScan TNFRSF17 BCMA 
2516-57 SomaScan CCL21 6Ckine 
2780-35 SomaScan LTF Lactoferrin 
4763-31 SomaScan AFM Afamin 
3485-28 SomaScan B2M b2-Microglobulin 
2771-35 SomaScan IGFBP1 IGFBP-1 
4481-34 SomaScan C4A|C4B C4 
3505-6 SomaScan LTA|LTB Lymphotoxin a1/b2 

3041-55 SomaScan MRC2 MRC2 
3470-1 SomaScan SELE sE-Selectin 

3554-24 SomaScan ADIPOQ Adiponectin 
4990-87 SomaScan GP1BA GP1BA 
4920-10 SomaScan LYZ Lysozyme 
2851-63 SomaScan C5 C5a 
3293-2 SomaScan CD5L CD5L 

4496-60 SomaScan MMP12 MMP-12 
2687-2 SomaScan MIA MIA 

3316-58 SomaScan SERPIND1 Heparin cofactor II 
3473-78 SomaScan MPL Thrombopoietin Receptor 
2982-82 SomaScan LGALS4 Galectin-4 
3298-52 SomaScan CNTN4 Contactin-4 
3044-3 SomaScan CCL18 PARC 
5107-7 SomaScan NOTCH1 Notch 1 

4153-11 SomaScan SERPINA3 alpha-1-antichymotrypsin 
complex 

3805-16 SomaScan ESM1 Endocan 
3339-33 SomaScan THBS2 TSP2 
4160-49 SomaScan MMP2 MMP-2 
3079-62 SomaScan RARRES2 TIG2 
3519-3 SomaScan CCL17 TARC 

3035-80 SomaScan IL19 IL-19 
5363-51 SomaScan SEMA3E Semaphorin 3E 
3235-50 SomaScan WFIKKN2 WFKN2 
2705-5 SomaScan CCL25 TECK 
3600-2 SomaScan CHIT1 Chitotriosidase-1 
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4141-79 SomaScan CXCL10 IP-10 
3348-49 SomaScan BMP1 BMP-1 
3029-52 SomaScan CD209 DC-SIGN 
3508-78 SomaScan CCL22 MDC 
2816-50 SomaScan BCAM BCAM 
2826-53 SomaScan EDA EDA 
5491-12 SomaScan SPOCK2 Testican-2 
5029-3 SomaScan FAP SEPR 

4930-21 SomaScan STC1 Stanniocalcin-1 
CRTAM Olink Neurology CRTAM N/A 

EZR Olink Neurology EZR N/A 
FcRL2 Olink Neurology FCRL2 N/A 
G.CSF Olink Neurology CSF3 N/A 
GDF.8 Olink Neurology MSTN N/A 
GZMA Olink Neurology GZMA N/A 

NEP Olink Neurology MME N/A 
N.CDase Olink Neurology ASAH2 N/A 

NMNAT1 Olink Neurology NMNAT1 N/A 
NTRK3 Olink Neurology NTRK3 N/A 

SKR3 Olink Neurology ACVRL1 N/A 
SIGLEC1 Olink Neurology SIGLEC1 N/A 

SMPD1 Olink Neurology SMPD1 N/A 
CCL11 Olink Inflammatory CCL11 N/A 

CD6 Olink Inflammatory CD6 N/A 
CXCL10 Olink Inflammatory CXCL10 N/A 
CXCL11 Olink Inflammatory CXCL11 N/A 
CXCL9 Olink Inflammatory CXCL9 N/A 

EN.RAGE Olink Inflammatory S100A12 N/A 
TGF.alpha Olink Inflammatory TGFA N/A 

FGF.21 Olink Inflammatory FGF21 N/A 
HGF Olink Inflammatory HGF N/A 
OSM Olink Inflammatory OSM N/A 

VEGFA Olink Inflammatory VEGFA N/A 
MMP.1 Olink Inflammatory MMP1 N/A 

 1 
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Supplementary Table 3. Predictor weights for the 45 protein EpiScores included in the 

composite protein EpiScore.  

 1 
Variable Coefficient 
GZMA -0.1070275 
N.CDase -0.0013707 
NTRK3 -0.0105284 
SKR3 0.02292682 
CCL11 0.01486593 
CXCL11 -0.0363625 
FGF.21 0.05884652 
HGF 0.05611636 
MMP.1 -0.0528479 
2705-5 0.0411362 
2851-63 0.07807877 
2948-58 0.03807306 
2967-8 0.08372915 
3029-52 -0.0004437 
3038-9 -0.0062101 
3044-3 0.2568256 
3060-43 -0.078839 
3079-62 0.1024936 
3152-57 0.01995523 
3175-51 0.02976706 
3291-30 0.03575731 
3292-75 -0.0045541 
3293-2 0.04389995 
3339-33 0.04065941 
3348-49 0.02393257 
3403-1 -0.0070861 
3448-13 0.02739967 
3470-1 0.10485373 
3485-28 0.05615907 
3505-6 -0.0178471 
3519-3 -0.0543479 
3600-2 0.03783531 
3617-80 0.03982561 
4160-49 -0.0499596 
4407-10 0.03860081 
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4435-66 0.01144093 
4481-34 -0.0549405 
4496-60 0.10710256 
4763-31 0.03997106 
4831-4 -0.0265954 
4920-10 -8.29E-05 
4924-32 0.0123399 
5000-52 0.00608975 
5124-69 0.00134476 
5363-51 -0.0156491 

 1 
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Supplementary Table 4. Summary of CVD risk models based on ASSIGN. N – null model (adjusted for age + sex + ASSIGN), E  – CVD 

EpiScore, T – cardiac troponin I 

 3 

Model HRage Page HRsex Psex HRASSIGN PASSIGN HRE PE HRT PT AUC PRAUC C-index 

N 1.01 0.54 1.13 0.23 2.05 <2.2x10-16 - - - - 0.719 0.198 0.712 

N+E 1.00 0.99 1.05 0.64 1.94 1.10x10-16 1.3 5.6x10-3 - - 0.723 0.201 0.715 

N+T 1.00 0.83 1.04 0.71 2.02 <2.2x10-16 - - 1.16 1.1x10-2 0.721 0.202 0.714 

N+E+T 1.00 0.65 0.96 0.71 1.91 6.70x10-16 1.32 3.7x10-3 1.17 7.1x10-3 0.724 0.205 0.717 

 4 

Supplementary Table 5. Summary of CVD risk models based on SCORE2. N – null model (adjusted for age + sex + ASSIGN), E  – CVD 

EpiScore, T – cardiac troponin I 

 5 
Model HRage Page HRsex Psex HRSCORE2 PSCORE2 HRE PE HRT PT AUC PRAUC C-index 

N 1.02 0.05 0.96 0.75 1.79 1.8x10-11 - - - - 0.699 0.174 0.696 

N+E 1.01 0.15 0.92 0.50 1.64 5.4x10-8 1.34 2.4x10-3 - - 0.704 0.179 0.699 

N+T 1.01 0.14 0.88 0.32 1.77 6.3x10-11 - - 1.18 4.8x10-3 0.701 0.175 0.698 

N+E+T 1.01 0.37 0.84 0.16 1.61 1.8x10-7 1.36 1.4 x10-3 1.19 2.7 x10-3 0.707 0.182 0.702 

6 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 24, 2023. ; https://doi.org/10.1101/2022.10.21.22281355doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281355
http://creativecommons.org/licenses/by/4.0/


                           

 

40 

Supplementary Methods 1 

 2 

EpiScores for cardiac troponin 3 

We generated an EpiScore for cTnI. The training set consisted of Sets 2 and 3 combined, 4 

whereas Set 1 was the test set. To minimise information from shared environments and 5 

relatedness leaking between the training and test sets, any individuals in the training set 6 

associated with the same family ID as individuals from the test set were excluded from further 7 

analyses. After this step, there were 9,754 individuals in the training set and 5,003 individuals 8 

in the test set.  9 

As part of data pre-processing, all variables were trimmed of outliers (points beyond 3 SDs of 10 

the mean). The measured concentrations of cTnI underwent rank-based inverse normal 11 

transformation. Using linear mixed effects models, age, age2 and sex were regressed out of the 12 

transformed variable, with a pedigree-based kinship matrix fitted as a random effect. The 13 

subsequent model residuals were saved and entered as the outcome of elastic net regression 14 

models. Methylation levels were treated as the independent variables. Elastic net models were 15 

run using biglasso (version 1.5.0) in R (version 4.0.3). The L1-L2 mixing parameter was set to 16 

alpha=0.5, and ten-fold cross-validation was applied. Non-zero coefficients/weights from the 17 

models were extracted. To calculate the EpiScore, CpG methylation values were multiplied by 18 

these coefficients and summed for each individual in the test set. The proportion of variance 19 

explained by the EpiScore was estimated by comparing R2 estimates from the null and full 20 

linear regression models. Null models were adjusted for age, sex, and cTnI whereas full models 21 

accounted for age, sex, cTnI and the EpiScore. 22 

 23 
 24 

 25 

 26 
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EpiScores for 109 circulating proteins 1 

We have previously generated 109 EpiScores for plasma protein levels 13. Briefly, elastic net 2 

penalised regression models were run with 953 possible protein levels as outcomes and up to 3 

428,489 DNAm measurements from the Illumina 450k array as input features. Protein levels 4 

were adjusted for genetic effects (protein quantitative trait loci – pQTLs) prior to training 5 

EpiScores. Protein EpiScores were trained in two cohorts: the Lothian Birth Cohort of 1936 6 

(training set contained between 725 and 875 individuals for 160 Olink inflammatory and 7 

neurology proteins) and the German cohort, KORA (944 individuals, 793 SOMAscan 8 

proteins). 109 scores (84 trained in KORA and 25 trained in the Lothian Birth Cohort 1936) 9 

explained between 1% and 58% of the variance in protein levels (with r>0.1 and P<0.05) in 10 

independent test cohorts. In this study, the 109 protein EpiScores were projected into 11 

Generation Scotland (n = 18,413) through the publicly available MethylDetectR Shiny App. 12 

Before applying weights, DNAm level at each site was scaled to have a unit SD and mean of 13 

zero. This procedure was performed separately in each set. 14 

 15 
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