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Abstract 2 

Background: Decision-makers impose COVID-19 mitigations based on public health indicators such as 3 
reported cases, which are sensitive to fluctuations in supply and demand for diagnostic testing, and 4 
hospital admissions, which lag infections by up to two weeks. Imposing mitigations too early has 5 
unnecessary economic costs, while imposing too late leads to uncontrolled epidemics with unnecessary 6 
cases and deaths. Sentinel surveillance of recently-symptomatic individuals in outpatient testing sites may 7 
overcome biases and lags in conventional indicators, but the minimal outpatient sentinel surveillance 8 
system needed for reliable trend estimation remains unknown.  9 

Methods: We used a stochastic, compartmental transmission model to evaluate the performance of 10 
various surveillance indicators at reliably triggering an alarm in response to , but not before, a step 11 
increase in transmission of SARS-CoV-2. The surveillance indicators included hospital admissions, hospital 12 
occupancy, and sentinel cases with varying levels of sampling effort capturing 5, 10, 20, 50 or 100% of 13 
incident mild cases. We tested 3 levels of transmission increase, 3 population sizes, and condition of either 14 
simultaneous transmission increase, or lagged increase in older population. We compared the indicators’ 15 
performance at triggering alarm soon after, but not prior, to the transmission increase.  16 

Results: Compared to surveillance based on hospital admissions, outpatient sentinel surveillance that 17 
captured at least 20% of incident mild cases could trigger alarm 2 to 5 days earlier for a mild increase in 18 
transmission and 6 days earlier for moderate or strong increase. Sentinel surveillance triggered fewer false 19 
alarms and averted more deaths per day spent in mitigation. When transmission increase in older 20 
populations lagged increase in younger populations by 14 days, sentinel surveillance extended its lead 21 
time over hospital admissions by an additional 2 days.  22 

Conclusions: Sentinel surveillance of mild symptomatic cases can provide more timely and reliable 23 
information on changes in transmission to inform decision-makers in an epidemic like COVID-19. 24 

 25 
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 27 

Background 28 

COVID-19 is a contagious disease with more than 6 million deaths reported within two years of the global 29 
pandemic starting in early 2020 (1,2). Prior to widespread availability of vaccines, policy makers relied on 30 
non-pharmaceutical interventions or mitigative actions, such as lockdown and business restrictions, to 31 
curb the spread of SARS-CoV-2 (3–7). These actions “flatten the curve”, allowing governments to reduce 32 
the COVID-19 burden to the healthcare system, to maintain the quality of care, and to save lives. Timely 33 
introduction of interventions is important because imposing mitigations too early has unnecessary 34 
economic costs, while imposing too late often fails to control the epidemics and leads to many 35 
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preventable cases and deaths. The decision criteria for imposing mitigations are often based on public 36 
health indicators such as reported cases and hospital admissions (8). 37 

These commonly-used indicators have limitations when used to estimate transmission trends. Cases can 38 
be biased because they are sensitive to fluctuations in supply and demand for diagnostic testing (9–11). 39 
Because the data needed to adjust for this bias is unavailable, cases often provide unreliable 40 
approximation of the transmission trend. Although hospital admission data are less sensitive to 41 
fluctuations in testing demands, hospital admissions lag infection by up to two weeks (12–16). Decisions 42 
made based on trends in hospital admissions thus may result in delayed action to mitigate an incoming 43 
epidemic wave. Furthermore, most COVID-19 patients do not require hospitalization, making admissions 44 
data prone to high variability due to small numbers and reducing its suitability for decision-making. 45 

Sentinel surveillance of recently-symptomatic people in outpatient testing sites could overcome these 46 
biases and lags (17). Under outpatient sentinel surveillance, symptom status, symptom onset, and date of 47 
testing site visit are recorded for each case. Sentinel cases here are defined as recently symptomatic 48 
people with symptom onset within 4 days of testing. By focusing on outpatient symptomatic cases, the 49 
influence of asymptomatic testing is removed, and the impact of fluctuations in test availability reduced, 50 
each of which can introduce selection bias. With known symptom onset dates, we can remove care-51 
seeking and reporting delays, and more accurately infer the infection time series and trends in 52 
transmission. 53 

Compared to hospital admissions, sentinel cases have a shorter delay between the point of infection and 54 
detection by the surveillance system. In the event of an increase in transmission, sentinel cases should 55 
thus provide a more timely alarm and enable earlier action against a new epidemic wave. The city of 56 
Chicago, USA, evaluated this surveillance scheme during the COVID-19 pandemic. Even with few 57 
participating testing sites, the Chicago Department of Public Health found that sentinel cases were indeed 58 
more timely than hospital admissions in estimating transmission trends (17). However, the estimated 59 
trends were less certain due to low sampling effort, defined as the proportion of incident symptomatic 60 
infections captured in the surveillance system.  61 

Understanding the effects of sampling effort is critical in evaluating the potential feasibility and benefits 62 
of using sentinel surveillance to guide decision-making. Moreover, because hospitalization rates are lower 63 
in younger populations, sentinel surveillance may be especially useful when transmission surges  in 64 
younger populations first, before it surges in older populations, as it had been observed in several 65 
epidemic waves in the USA and UK (18,19).  66 

Mathematical transmission models can provide insight into the potential benefits of an outpatient 67 
sentinel surveillance system by assessing the effects of sampling effort. Mechanistic models have been 68 
used to understand disease dynamics, forecast hospital needs, and evaluate intervention scenarios 69 
throughout the COVID-19 pandemic (20–25). Modeling has been used to inform decision-makers about 70 
optimal lockdown, reopening and mitigation strategies (26–29). While mathematical models have been 71 
used to compare testing strategies (26,30–32), few modeling studies have been conducted to compare 72 
surveillance designs for timely and appropriate imposition of COVID-19 mitigations (33). 73 

To characterize the minimal sampling effort for which an outpatient sentinel surveillance system needed 74 
for reliable estimation of trends in transmission, we use a stochastic compartmental model of SARS-CoV-75 
2 transmission to evaluate the performance of various surveillance indicators and sampling efforts at 76 
reliably triggering an alarm in response to, but not before, a step increase in transmission rate. 77 

 78 
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Methods 79 

SEIR model and simulation framework overview 80 

We used a published stochastic SEIR compartmental model (33) to simulate SARS-CoV-2 transmission and 81 
COVID-19 disease states (Figure 1A). The model included multiple symptom statuses (asymptomatic, 82 
presymptomatic, mild, and severe), and multiple severe disease outcomes (requiring hospitalization, 83 
critical illness requiring intensive care unit (ICU) admission, and deaths). We simplified the model by 84 
assuming that only severely ill individuals would isolate, and that isolation led to lowered infectiousness.  85 

We use the model parameters from the previous study (33) which set the hospital and ICU lengths-of-stay 86 
based on data from Chicago and from literature during the first COVID-19 wave beginning March 2020 87 
(34,35). This previous study also fitted a time-varying transmission rate to daily ICU census, hospital 88 
census, and reported deaths in Chicago. See SI for details of parameterization.  89 

The original model was simulated using Compartmental Modeling Software (36,37). To improve the 90 
computation efficiency in a high performance computing environment, we rewrote and ran the model 91 
using a custom program written in C++ (38) available at (39). 92 

 93 

Figure 1. Model framework used in this study. (A) SEIR model structure to simulate SARS-CoV-2 94 
transmission. S=Susceptible, E=Exposed, A=Asymptomatic, P=Presymptomatic, Sm=Mild symptomatic, 95 
Ss=Severe symptomatic, H=Requires hospitalization, C=Critically ill (ICU), Hp=Hospitalization post-ICU, 96 
D=Death, R=Recovered. All severely symptomatic persons were isolated (SSi) few days after entering the 97 
state and become less infectious. (B) Simulated transmission rate begins low and steady, then experiences 98 
a step increase (transmission hike) at 3 possible magnitudes to create different strengths of epidemic 99 
waves. When the surveillance indicator reaches a predetermined threshold, mitigative actions are 100 
triggered in the simulation and the transmission rate is decreased to its baseline rate.  101 

The model state in August 2020, when transmission was steady and low (33,40), was used as a starting 102 
point for all scenarios. We introduced a step increase in transmission (transmission hike) on 17 September 103 
2020 to induce a new epidemic wave (Figure 1B). We tested three strengths of the transmission hike (mild, 104 
moderate, and strong). Specifically, we hiked the transmission rate parameter from 0.116 to 0.137 (mild), 105 
0.156 (moderate) and 0.179 (strong). The fitted transmission rate in Chicago in its September 2020 wave 106 
was between the moderate and strong transmission hikes. 107 

We considered multiple surveillance scenarios for each strength of transmission hike. Each scenario 108 
tracked one surveillance indicator: sentinel cases, hospital admissions, or hospital occupancy. Sentinel 109 
cases were drawn from incident cases in the mild symptomatic compartment. For sentinel cases and 110 
hospital admissions, each indicator was used to calculate the daily instantaneous reproductive number 111 
(Rt). When Rt exceeded 1.05 for 5 consecutive simulation days, an alarm was triggered. Our preliminary 112 
work (See Figure S1 in SI) found that this threshold could trigger mitigations early enough to prevent a 113 
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transmission surge with relatively low rate of false alarm, i.e., taking mitigative action even before 114 
transmission hike, which is seen as inefficient and imprudent. For hospital occupancy, alarm was triggered 115 
based on a threshold number of patients in beds. We assume that it would take two days for mitigation 116 
to be implemented after an alarm. Once implemented, mitigation immediately reduced the transmission 117 
rate to pre-hike levels, and the transmission rate remained the same for the remainder of the simulation 118 
period. The drop in transmission to pre-hike level was based on the fitted transmission rates in Chicago 119 
after a new round of mitigation policy was imposed to curb the September 2020 wave. 120 

All simulations started 50 days before and ended 150 days after the transmission hike. 121 

Simulated surveillance and response scenarios 122 

We considered three types of surveillance indicators to guide decision-making: sentinel cases, hospital 123 
admissions, and hospital occupancy. For sentinel cases, we considered sampling efforts of 5, 10, 20, 50 124 
and 100%. Sampling effort was defined as the percentage of all mildly symptomatic cases (Sm), regardless 125 
of isolation status, that were captured by surveillance. Sentinel cases were calculated by downsampling 126 
daily new incident mild symptomatic cases by symptom onset date using a binomial random draw with 127 
corresponding probability. Hospital admissions were measured as the daily new incident admissions to 128 
the H compartment on each simulation (i.e. the daily rate of flow from compartment SSi to compartment 129 
H). Hospital occupancy was the total number of people in the H and Hp compartments.  130 

On each simulation day, the time series of sentinel surveillance indicators from the simulation start to 3 131 
days prior was used to calculate Rt and to evaluate if mitigations should be imposed. The 3-day offset 132 
accounted for delays in data collection. For any given symptom onset date, completing the data would 133 
require at least 6 days: sentinel cases counted symptomatic people who were tested within 4 days of 134 
symptom onset, and we assumed 2 days of test turnaround time. However, this delay can be shortened 135 
to 3 days with statistical nowcasting (17,41,42) assuming a 2-day turnaround and that the full numbers of 136 
symptomatic cases can be reliably estimated from symptomatic cases within 1 day of symptom onset. 137 

For hospital admissions, we assumed that the data collection delay was 5 days, based on delays associated 138 
with admission data in Chicago (17). For hospital occupancy, we assumed data collection delay was only 139 
one day. The threshold number of patients in beds for triggering alarm was met when occupancy 140 
exceeded 152 per 1 million people for the last 3 days. Occupancy thresholds were chosen based on levels 141 
observed in Chicago in October 2020 when mitigative actions were announced.  142 

We estimated Rt using the Python package epyestim (43–45). In this package, the input data series is first 143 
bootstrapped and a locally weighted scatterplot smoothing (LOWESS) filter is applied to each of the 144 
bootstrapped data series for smoothing. We used a smoothing window of 21 days for all indicators except 145 
sentinel surveillance with sampling effort of 5%, which required a 28-day smoothing window to stabilize 146 
the Rt trajectory. We approximated the generation time using the serial interval distribution estimated by 147 
(35). Time between infection and symptom onset or hospitalization was estimated using Chicago data 148 
(see SI for details).  149 

We simulated 500 realizations for each combination of the 3 transmission hike strengths (mild, moderate, 150 
and strong); 7 indicators (sentinel cases with sampling effort of 5, 10, 20, 50 and 100%, hospital admission 151 
and hospital occupancy); and 3 population sizes (1.25 million, 2.5 million, and 5 million); for a total of 152 
31,500 simulations.  153 

Timeliness, false alarm rate, deaths averted, and extra days in mitigation 154 

We compared the performance of each indicator by measuring how timely they were in triggering the 155 
alarm for taking mitigative actions. Performance was evaluated by calculating the median and 90th 156 
percentile of day of triggering alarm among the 500 realizations for each surveillance scenario, as well as 157 
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the false alarm rate. Lead time of one indicator over another was calculated from the number of days 158 
between the median dates (or 90th percentile dates) of triggering alarm. The 90th percentile metric 159 
reflected the tail-end performance of the indicators and was less perturbed by false alarms than using 160 
median. False alarm rates were the proportion of realizations (out of 500) that met criteria for triggering 161 
alarm prior to the date of the transmission hike, hence too early.  162 

To quantify the benefits and costs of using the surveillance indicators in our experiment, we calculated 163 
the number of deaths averted and the number of extra days in mitigation in each simulation run. We used 164 
hospital occupancy as the reference scenario as it was the slowest to trigger alarm. Each realization in a 165 
surveillance scenario was compared against the realization with the same random number seed in the 166 
hospital occupancy scenario. We calculated the total number of deaths that occurred throughout the 167 
simulation period (50 days before and 150 days after the transmission hike). Deaths averted was the 168 
difference between the deaths in the reference and the comparison realizations. The number of extra 169 
mitigation days was calculated by subtracting the day of triggering alarm in the comparison realization 170 
from that of the reference, which are matched by the random number generator seed. The mean deaths 171 
averted and extra mitigation days among all 500 realizations was used to characterize the performance 172 
of the surveillance indicator. 173 

We measured the efficiency of each surveillance indicator by calculating the number of deaths averted 174 
per extra day of mitigation relative to hospital occupancy. This was calculated by dividing the average 175 
deaths averted by average extra mitigation days. 176 

Age-structured SEIR model 177 

The age-structured model consisted of two SEIR submodels, representing two age groups: below and 178 
above 40 years old. The two age groups have similar size in Chicago (55% vs 45%), according to American 179 
Community Survey 2016 to 2020 5-year estimates (46). The structure of each submodel was the same as 180 
in Figure 1A. We assumed 80% of contacts were within-group and 20% were between-group. This inter- 181 
group contact rate is lower than that estimated from pre-pandemic period (47,48) and was chosen to 182 
maintain distinctive transmission trends between age groups such that we could evaluate the ability of 183 
outpatient sentinel surveillance to detect distinct trends in younger ages. As informed by (23), the 184 
probability of asymptomatic infection given exposure was 59% and 19% for the under-40 and above-40 185 
age groups, respectively. The probability a symptomatic infection was severe was 3% and 12% for the 186 
under-40 and above-40 age group, respectively, based on CDC’s risk by age group estimates (49). See SI 187 
for more details on the parameterization. We assumed that the transmission rate for the above-40 age 188 
group was 65% that of the below-40 age group due to a lower overall level of social contact. All other 189 
parameters were the same across age groups. 190 

We considered the same scenarios of transmission hikes and surveillance indicators as in the base model. 191 
We simulated transmission under two scenarios: one where both age groups experienced the 192 
transmission hike simultaneously and one where hike for the above-40 group lagged the hike in the under-193 
40 group by 14 days. We used a population of 2.5 million individuals and a moderate transmission hike. 194 
We ran 500 realizations for each surveillance scenario, 2 lags, and 6 surveillance indicators resulting in 195 
500 x 2 x 6 = 6000 simulations. Indicators and criteria for mitigative action were defined as in the base 196 
model scenarios. We exclude the hospital occupancy indicator since the purpose of this experiment is to 197 
compare the timeliness between sentinel cases and hospital admissions and that no costs and benefits 198 
analysis was conducted. 199 

 200 
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Results 201 

To compare the performance of sentinel surveillance of outpatient COVID-19 cases compared to hospital-202 
based indicators, we simulated a step increase in transmission (“transmission hike”) and evaluated how 203 
quickly and reliably each indicator could trigger an alarm for taking mitigative action while avoiding 204 
premature alarms. We compared sentinel surveillance systems that captured between 5% (low sampling 205 
effort) and 100% (high sampling effort) of all mild symptomatic cases. For sentinel surveillance and 206 
hospital admissions, each data series was used to estimate the instantaneous reproductive number Rt, 207 
and the threshold for alarm was met when Rt > 1.05 for the previous 5 days. For hospital occupancy, the 208 
thresholds were set at exceeding 152 per 1 million for the previous 3 days and were based on levels 209 
observed in Chicago in October 2020 when mitigative actions were announced. 210 

Sentinel surveillance has an operational recency advantage over hospital admissions 211 

Before the transmission hike, all indicators remained steady (Figure 2A). Simulated data series of hospital 212 
admissions and sentinel cases with low sampling effort were noisier relative to the mean than for hospital 213 
occupancy or sentinel cases with high sampling effort. After the transmission hike, all indicators increased 214 
until mitigative action was taken. Sentinel surveillance indicators, which report on newly symptomatic 215 
individuals, generally peaked the earliest, followed by hospital admissions and hospital occupancy. 216 

 217 

Figure 2. Example trajectories of COVID-19 indicators and their derived Rt, from a single, representative 218 
simulation with population 2.5 million, moderate transmission hike, and alarm triggered by hospital 219 
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occupancy. (A) Indicators are steady before and rise rapidly after the transmission hike. Arrows: peak for 220 
each indicator. Vertical dashed line: day of transmission hike. (B) Rt estimated based on each indicator, 221 
evaluated on day 60 after the transmission hike. Rt could not be estimated using hospital occupancy. 222 
Horizontal dotted line: threshold (Rt=1.05) for triggering alarm. Arrows: day alarm would have been 223 
triggered based on monitoring Rt for each indicator. (C) Real-time evaluation of Rt demonstrates the 224 
operational recency advantage of sentinel surveillance over hospital admissions. Example shown for 225 
evaluation day of 20 days after the transmission hike.  226 

Data from hospital admissions and from sentinel surveillance with 10% sampling effort produced Rt 227 
estimates that fluctuated more than Rt estimates produced from data from sentinel surveillance with 228 
100% sampling effort (Figure 2B). In Figure 2B prior to the transmission hike, Rt estimated from hospital 229 
admissions or sentinel surveillance with 10% sampling effort ranged from 0.97 to 1.03 and from 0.99 to 230 
1.04, fluctuating substantially above 1 and below 1 while Rt estimated from sentinel surveillance with 231 
100% sampling effort remained flat at close to 1 (1.0 to 1.02).  232 

On a given evaluation date, Rt cannot be estimated for the most recent 8 days for sentinel surveillance 233 
(Figure 2C). For hospital admissions, the most recent 16 days cannot be estimated because the infection-234 
to-hospitalization and the hospitalization-to-report lags are both greater . The modeled 8-day operational 235 
recency advantage of sentinel surveillance over hospital admissions is sensitive to the assumed lags and 236 
could decrease if data collection delays for hospital data  or lag between infection and admission were 237 
reduced. 238 

Sentinel surveillance raises alarms sooner and with a lower false alarm rate 239 

To reduce time spent under mitigation, a good indicator should consistently meet the threshold for 240 
triggering alarm closely after, but not before, the transmission hike. False alarms are situations where the 241 
threshold was met prior to the transmission hike. For each simulation, we extracted the day on which the 242 
criteria for triggering alarm was met.  243 

Compared to hospital admissions or hospital occupancy indicators, use of sentinel surveillance indicators 244 
could result in sooner alarms after the transmission hike and a lower rate of false alarms, depending on a 245 
few key factors (Figure 3). Sentinel surveillance most outperformed hospitalization indicators for larger 246 
changes in transmission, larger populations, or higher sampling effort. In a population of 2.5 million, 247 
sentinel surveillance with 10 to 100% sampling effort led hospital admissions in triggering alarms by a 248 
median of 2 to 5 days for a mild transmission hike and 6 days for moderate and strong transmission hikes. 249 
Although sentinel surveillance with 5% sampling effort led hospital admissions by even more days, this 250 
was mainly because of the high false alarm rate. When comparing the 90th-percentile day of triggering 251 
alarm, sentinel surveillance led hospital admissions by 4 to 7 days for a mild transmission hike and 7 to 9 252 
days for moderate and strong transmission hikes. The lead time of sentinel surveillance with 5 to 100% 253 
sampling effort over hospital admissions was similar for populations of 2.5 and 5 million. The lead time 254 
advantage in terms of median day of triggering alarm disappeared in the population of 1.25 million, due 255 
to higher rates of false alarms. Nevertheless, the lead time advantage in terms of 90th-percentile day of 256 
triggering alarm remained similar to other population sizes under moderate and strong transmission 257 
hikes.  258 
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 259 

Figure 3. The cumulative distribution of the day on which criteria to trigger alarm was met, by indicator, 260 
strengths of transmission hike (columns), and population size (rows). 261 

The false alarm rate, or percentage of realizations that raised a false alarm, was substantial for sentinel 262 
surveillance with 5% or 10% sampling effort and for hospital admissions. The false alarm rate was similar 263 
regardless of the size of the transmission hike and decreased with increasing sentinel surveillance 264 
sampling effort. Across all transmission hikes tested and in a population of 2.5 million, the false alarm rate 265 
was 27 to 28%, 8 to 9%, and 17 to 18% respectively for sentinel surveillance sampling effort of 5%, 10% , 266 
and for hospital admissions. The false alarm rate was lower in a simulated population of 5 million: sentinel 267 
surveillance with 5% sampling effort and hospital admissions each had only 1 to 2% false alarm rate and 268 
other indicators had negligible false alarm rates. In a smaller population of 1.25 million, false alarm rates 269 
were higher: even sentinel surveillance with 20% sampling effort had a false alarm rate of 7%. 270 

The hospital occupancy indicator resulted in the latest alarm of all indicators considered and did not result 271 
in any false alarms. Under the mild transmission hike, alarm was raised 80 days after the transmission hike 272 
for 63, 86, and 54% of realizations for populations of 1.25, 2.5 and 5 million respectively.  273 

These results assume that detecting mild symptomatic cases does not lead to isolating behavior and hence 274 
lowered infectiousness. We modified the model such that 30% of the mild symptomatic cases were 275 
detected and isolated, and that 2/3rd of these detected mild cases were captured by the sentinel 276 
surveillance system. We compared the performance of sentinel surveillance with 20% sampling effort and 277 
hospital admissions. We found that the outcomes were similar to that of previous results (Figure S2 in SI), 278 
suggesting the timeliness advantage of sentinel surveillance persists regardless of isolation. 279 

Sentinel surveillance of 20% or more effort averts more deaths with fewer extra days of mitigation 280 

To assess the costs and benefits of using sentinel surveillance or hospital admissions indicators to trigger 281 
alarms and hence mitigation actions, we compared the number of additional days spent under mitigation 282 
(cost) and number of deaths averted (benefit) relative to a baseline scenario with hospital occupancy as 283 
indicator. Days under mitigation and deaths were each aggregated over the period from 50 days before 284 
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to 150 days after the transmission hike. The most efficient indicator would be one that maximizes deaths 285 
averted while minimizing extra days of mitigation. 286 

As expected, there was a positive relationship between number of additional days of mitigation and 287 
deaths averted (Figure 4A). Spending more time under mitigation always had positive impact on deaths 288 
averted. Sentinel surveillance with 20, 50, and 100% sampling effort resulted in similar deaths averted 289 
and additional days of mitigation, indicating that increasing sampling effort above 20% did not 290 
substantially change system outcomes. Within the same size of transmission hike, decreasing sampling 291 
effort for sentinel surveillance, or the use of hospital admission, resulted in larger variation in both deaths 292 
averted and additional days of mitigation. The higher variability in using hospital admissions can be 293 
attributed to a higher false alarm rate, which imposes mitigation too soon, and late imposition of 294 
mitigations.  295 

As the size of the transmission hike increased, the number of deaths averted also increased, whereas 296 
additional days of mitigation decreased. The mean deaths averted per mean additional day spent in 297 
mitigation, which demonstrates the efficiency of mitigation, are shown in Figure 4B. Deaths averted per 298 
additional day of mitigation decreased with higher false alarm rates under the moderate and strong 299 
transmission hikes. For sentinel surveillance with 20% or more effort, the average deaths averted per 300 
additional day of mitigation was 10.3, 26.5 and 46.1 for mild, moderate, and strong transmission hikes 301 
respectively. For hospital admissions, the average deaths averted per additional day of mitigation was 9.7, 302 
23.1, and 36.0; for sentinel surveillance with 5% effort average deaths averted per additional day of 303 
mitigation was 9.5, 21.8, and 34.8 for mild, moderate, and strong transmission hikes respectively. 304 

 305 

Figure 4. Deaths averted and additional days spent in mitigation for using sentinel surveillance or hospital 306 
admissions indicators as the trigger for imposing mitigation measures, under 3 levels of transmission hikes 307 
in a population of 2.5 million, compared with using hospital occupancy. (A) Mean and 90% confidence 308 
interval of deaths averted and additional days of mitigation, from 500 stochastic realizations per indicator. 309 
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(B) Average deaths averted per average additional day in mitigation for each indicator and its relationship 310 
with false alarm rate. False alarm rate is the proportion of simulations in which action is taken before the 311 
transmission hike. 312 

Timeliness advantage of sentinel surveillance widens when transmission increases first in younger ages 313 

Changes in transmission may not affect all age groups simultaneously. We simulated SARS-CoV-2 314 
transmission in an age-structured model that included two age groups, one below and one above 40 years 315 
of age. We considered two scenarios: one where both age groups experienced the step increase in 316 
transmission simultaneously and one where the step increase for the above-40 group lagged by 14 days 317 
(Figure 5A). We compared the performance of sentinel surveillance with various sampling efforts to 318 
hospital admissions at responding quickly while minimizing false alarms. 319 

Alarm was triggered later in scenarios when the transmission hike occurred first in the under-40 age group 320 
(Figure 5B). When the age groups experienced the transmission hike simultaneously, sentinel surveillance 321 
with 20% or more effort triggered alarm sooner than hospital admissions by a median of 6 days, and a 322 
90th-percentile of 7 days. When the transmission hike occurred first in the under-40 group, sentinel 323 
surveillance with greater than  20% sampling led hospital admissions by a median of 7 days, with a 90th 324 
percentile lead time of 9 days. Overall, staggering the transmission hike to occur 2 weeks earlier in the 325 
younger age group increased the lead time of sentinel surveillance over hospital admissions by 1 to 2 days. 326 

 327 

Figure 5. Performance of sentinel surveillance and hospital admissions indicators under scenarios when 328 
two age groups (below and above 40 years of age) simultaneously experience a transmission hike or when 329 
a transmission hike occurs 14 days earlier in people below 40 years of age. (A) Transmission rate profile 330 
for the two scenarios modeled in the age-structured SEIR model. (B) The cumulative distribution of the 331 
day on which criteria to trigger alarm was met, using each indicator under the two transmission hike 332 
scenarios. Simulations are conducted on population of 2.5 million experiencing a moderate transmission 333 
hike with 500 realizations.  334 
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Discussion 335 

Sentinel surveillance of outpatient recently-symptomatic cases provides a useful indicator to alert 336 
decision-makers about increases in SARS-CoV-2 transmission. Compared with hospital admissions, 337 
sentinel surveillance is less variable, reduces the false alarm rate, and provides data with shorter lag times, 338 
which allows faster reactions to changes. The minimal sampling effort required for reliable sentinel 339 
surveillance indicators varies according to the population size and size of transmission increase, but 340 
generally capturing 20% of mild symptomatic cases within the surveillance system was sufficient. 341 

The 8-day operational recency of outpatient sentinel surveillance over hospital admissions—that sentinel 342 
surveillance can provide up to 8 days’ advance warning of changes in transmission compared with hospital 343 
admissions data—can be attributed to shorter delay between infection and symptom onset, as well as the 344 
use of statistical nowcasting. Nowcasting has been widely used to estimate the complete case count using 345 
incomplete time series for COVID-19 and other diseases (41,42,50–52). In Chicago, nowcasting could be 346 
applied to shorten the data collection delay for sentinel cases, but not hospital admissions due to 347 
inconsistent backfilling (17). Improvements in reporting speed of hospital admissions data would reduce 348 
the operational recency of sentinel surveillance to as little as 5 days. 349 

Our study highlights that indicators with small counts, e.g., less than 50 per day, can have limited utility in 350 
decision making due to their high variability, which leads to a high false alarm rate. These factors  can 351 
result in unnecessary restrictions, reduce decision makers’ confidence in taking action, and harm public 352 
trust in the health system. At a given population size, small counts in sentinel surveillance can be 353 
overcome by increasing sampling effort. On the other hand, hospital admissions are inherently limited by 354 
severe disease rates of COVID-19. 355 

We defined the threshold for triggering alarm as Rt > 1.05 for 5 consecutive days. Setting the threshold 356 
higher would have reduced the number of deaths averted and decreased the number of days spent in 357 
mitigation, whereas  a lower threshold would have led to more false alarms. 1.05 was selected as an 358 
acceptable middle ground. We expect that factors affecting sentinel surveillance performance would be 359 
similar if a different threshold were chosen. 360 

While false alarms may incur economic costs or reduce public confidence in the decision-making process, 361 
they resulted in the most deaths averted. However, false alarms reduced the efficiency of mitigative 362 
action, measured as deaths averted per additional day spent in mitigation. When we removed simulations 363 
with false alarms, efficiency of surveillance based on hospital admissions increased or slightly surpassed 364 
the efficiency of sentinel surveillance (Figure S3 in SI). Nevertheless, the overall deaths averted for hospital 365 
admissions was 25 to 35% lower than for high-effort sentinel surveillance under a moderate or strong 366 
increase in transmission. At similar efficiency, the operational recency of sentinel surveillance over 367 
hospital admissions led to saving more lives. 368 

Hospitalization indicators are more effective at monitoring the transmission in older age groups than in 369 
the population at-large. For example, 80% of all COVID-19 hospitalizations in Chicago were older than 40 370 
years old whereas only 50% of the general population was older than 40 years (53). Outpatient sentinel 371 
surveillance thus holds an additional timeliness advantage over hospital admissions when the younger 372 
population experiences an increase in transmission earlier than the older population. Situations like this 373 
were common throughout this pandemic, e.g., in Illinois and Florida, USA, during their winter and summer 374 
2020 wave (18), and in England UK during the Omicron wave in late 2021 (19). Sentinel surveillance for 375 
early warning could be especially useful when transmission first increases in demographic group less 376 
prevalent in hospitalization data.   377 

We chose a between-age group contact rate of 20% to ensure that cases and hospitalizations in those age 378 
below 40 were distinctively elevated before those above 40. More contacts between age groups would 379 
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disintegrate this pattern and erase the additional advantage conveyed by the sentinel surveillance over 380 
hospital admissions; fewer contacts would boost the advantage. This between-group contact rate is lower 381 
than the estimate of 30% that is inferred from pre-pandemic age contact matrices (47,48), which might 382 
have changed significantly due to the impact of public health measures and reduction of number of social 383 
contacts (54). 384 

A major challenge in implementing sentinel surveillance is to achieve the minimal sampling effort needed 385 
for decision making. In USA and other countries where tests were increasingly abundant after the early 386 
weeks of pandemic, attaining 20% sampling effort could have been feasible provided that all outpatient 387 
testing sites were reliably recording symptom status and onset dates. The ascertainment rate for 388 
symptomatic illnesses exceeded 30% in these countries (55–59). Since at-home antigen testing has 389 
become widely available in many locales, new approaches to surveillance will likely be needed. For 390 
example, population-based survey of symptom information, such as that of UK’s Office of National 391 
Statistics (60), could be implemented to aid this sentinel surveillance model. Self-reported symptom 392 
tracking programs such as ZOE health study (61), COVID Symptom (62) and COVID Control (63) may 393 
compliment the surveillance model, although maintaining their longevity and public interests remain 394 
challenging (64). 395 

If questions on patients’ symptom status and symptom onset date were embedded into patient intake 396 
forms since the inception of the testing programs, then the cost of implementing outpatient sentinel 397 
surveillance would be very low. However, changing an existing system to incorporate  new questions may 398 
incur significant technological and coordination costs, as it would require a change in frontend surveys 399 
and databases  across multiple testing vendors.  400 

Our study did not compare the utility of sentinel surveillance against reported cases and test positivity 401 
rates, despite the latter two indicators’ prominent role in the COVID-19 pandemic. Simulating the time-402 
varying biases in cases and test positivity rate is challenging due to the lack of understanding in these 403 
indicators’ biases over time, and demand for tests can fluctuate in response to population perception of 404 
transmission rates. Implementing outpatient sentinel surveillance can provide important data to correct 405 
the biases in cases and test positivity rates, increasing their utility for decision-making. 406 

 407 

Conclusions 408 

Our study shows that sentinel surveillance of recently-symptomatic cases in outpatient testing sites could 409 
be feasible, prudent, and effective for informing situational awareness in an epidemic like COVID-19. With 410 
adequate sampling effort of at least 20% of mild symptomatic cases captured by surveillance, sentinel 411 
cases provide accurate, timely warning of increases in transmission, even under heterogeneous 412 
transmission conditions. In practice, decisions should not be based on only one indicator: cross-checking 413 
with other indicators will provide more confidence that action should or should not be taken.  414 

 415 

List of abbreviations 

USA: United States of America 

UK: United Kingdom 

SEIR: Susceptible exposed infected recovered 

ICU: Intensive care unit 
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LOWESS: Locally weighted scatterplot smoothing 

CDC: Centers for Disease Control and Prevention  

 

Declarations  

Ethics approval and consent to participate 

Not applicable 

Consent for publication 

Not applicable 

Availability of data and materials 

Code used to simulate SARS-CoV-2 transmission and sentinel surveillance are available at 
https://github.com/numalariamodeling/covid-sentinel-surveil. Datasets used in this study were 
generated using the code in the repository. 

Competing interests 

The authors declare that they have no competing interests. 

Funding 

KBT and JG were supported by the Peter G. Peterson Foundation Pandemic Response Policy Research 
Fund. MR and JG were supported by the MIDAS rapid response grant (MIDASNI2020-4). RR was supported 
by a grant from NIGMS (T32 GM008449).  

Authors’ contributions 

Conceived the study: KBT, MR, JG. Developed model and code: KBT, MR, RR, TH. Wrote main manuscript 
text: KBT, JG. All authors edited and reviewed the manuscript. 

Acknowledgments 

We thank Jiayi Gu, Josephine Harter, Vikram Thanigaivelan, Laith Kassiseh and Jamie Woodworth for their 
preliminary work. This study would not have been possible without the computational resources and staff 
support from the Quest high performance computing facility at Northwestern University. 

 

Supplementary Information 

Additional file 1 — Details of SEIR model fitting and parameters, and supplemental figures 

Specific values for the model parameters, and figures showing (a) timeliness performance of sentinel 
surveillance and hospital admissions when detection of mild cases leads to isolation, and (b) efficiency of 
surveillance indicators when stochastic realizations with false alarms for hospital admissions were 
removed. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.21.22281330doi: medRxiv preprint 

https://github.com/numalariamodeling/covid-sentinel-surveil
https://doi.org/10.1101/2022.10.21.22281330
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

14 

References 

1. WHO. WHO Coronavirus (COVID-19) Dashboard [Internet]. [cited 2022 Aug 16]. Available 
from: https://covid19.who.int 

2. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real 
time. The Lancet Infectious Diseases. 2020 May;20(5):533–4.  

3. Ahlers M, Aralis H, Tang W, Sussman JB, Fonarow GC, Ziaeian B. Non-pharmaceutical 
interventions and covid-19 burden in the United States: retrospective, observational 
cohort study. BMJ Medicine. 2022 Aug 1;1:e000030.  

4. Leech G, Rogers-Smith C, Monrad JT, Sandbrink JB, Snodin B, Zinkov R, et al. Mask wearing 
in community settings reduces SARS-CoV-2 transmission. Proc Natl Acad Sci USA. 2022 Jun 
7;119(23):e2119266119.  

5. Liu X, Xu X, Li G, Xu X, Sun Y, Wang F, et al. Differential impact of non-pharmaceutical 
public health interventions on COVID-19 epidemics in the United States. BMC Public 
Health. 2021 May 21;21(1):965.  

6. Rebmann T, Loux TM, Arnold LD, Charney R, Horton D, Gomel A. SARS-CoV-2 Transmission 
to Masked and Unmasked Close Contacts of University Students with COVID-19 — St. 
Louis, Missouri, January-May 2021. MMWR Morb Mortal Wkly Rep. 2021 Sep 
10;70(36):1245–8.  

7. Van Dyke ME, Rogers TM, Pevzner E, Satterwhite CL, Shah HB, Beckman WJ, et al. Trends in 
County-Level COVID-19 Incidence in Counties With and Without a Mask Mandate — 
Kansas, June 1–August 23, 2020. MMWR Morb Mortal Wkly Rep. 2020 Nov 
27;69(47):1777–81.  

8. Yang H, Sürer Ö, Duque D, Morton DP, Singh B, Fox SJ, et al. Design of COVID-19 staged 
alert systems to ensure healthcare capacity with minimal closures. Nature Communications 
2021 12:1. 2021 Jun;12(1):1–7.  

9. Ibrahim NK. Epidemiologic surveillance for controlling Covid-19 pandemic: types, 
challenges and implications. J Infect Public Health. 2020 Nov;13(11):1630–8.  

10. Rader B, Astley CM, Sy KTL, Sewalk K, Hswen Y, Brownstein JS, et al. Geographic access to 
United States SARS-CoV-2 testing sites highlights healthcare disparities and may bias 
transmission estimates. J Travel Med. 2020 Nov 9;27(7):taaa076.  

11. Moss R, Zarebski AE, Carlson SJ, McCaw JM. Accounting for Healthcare-Seeking Behaviours 
and Testing Practices in Real-Time Influenza Forecasts. Trop Med Infect Dis. 2019 Jan 
11;4(1):E12.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.21.22281330doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281330
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

15 

12. Tian S, Chang Z, Wang Y, Wu M, Zhang W, Zhou G, et al. Clinical Characteristics and 
Reasons for Differences in Duration From Symptom Onset to Release From Quarantine 
Among Patients With COVID-19 in Liaocheng, China. Front Med. 2020;7:210.  

13. Alene M, Yismaw L, Assemie MA, Ketema DB, Gietaneh W, Birhan TY. Serial interval and 
incubation period of COVID-19: a systematic review and meta-analysis. BMC Infectious 
Diseases. 2021 Mar 11;21(1):257.  

14. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of 
Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation 
and Application. Ann Intern Med. 2020 May 5;172(9):577–82.  

15. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill 
patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, 
observational study. The Lancet Respiratory Medicine. 2020 May 1;8(5):475–81.  

16. Gostic KM, McGough L, Baskerville EB, Abbott S, Joshi K, Tedijanto C, et al. Practical 
considerations for measuring the effective reproductive number, Rt. PLOS Computational 
Biology. 2020 Dec 10;16(12):e1008409.  

17. Richardson R, Jorgensen E, Arevalo P, Holden TM, Gostic KM, Pacilli M, et al. Tracking 
changes in SARS-CoV-2 transmission with a novel outpatient sentinel surveillance system in 
Chicago, USA. Nat Commun. 2022 Sep 22;13(1):5547.  

18. Holden TM, Richardson RAK, Arevalo P, Duffus WA, Runge M, Whitney E, et al. Geographic 
and demographic heterogeneity of SARS-CoV-2 diagnostic testing in Illinois, USA, March to 
December 2020. BMC Public Health. 2021 Dec;21(1):1–13.  

19. Office for National Statistics. Coronavirus (COVID-19) Infection Survey, UK: 14 January 2022 
[Internet]. [cited 2022 Aug 16]. Available from: 
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditions
anddiseases/bulletins/coronaviruscovid19infectionsurveypilot/14january2022#age-
analysis-of-the-number-of-people-who-had-covid-19 

20. Campillo-Funollet E, Van Yperen J, Allman P, Bell M, Beresford W, Clay J, et al. Predicting 
and forecasting the impact of local outbreaks of COVID-19: use of SEIR-D quantitative 
epidemiological modelling for healthcare demand and capacity. Int J Epidemiol. 2021 Aug 
30;50(4):1103–13.  

21. Delli Compagni R, Cheng Z, Russo S, Van Boeckel TP. A hybrid Neural Network-SEIR model 
for forecasting intensive care occupancy in Switzerland during COVID-19 epidemics. PLOS 
One. 2022;17(3):e0263789.  

22. Moghadas SM, Shoukat A, Fitzpatrick MC, Wells CR, Sah P, Pandey A, et al. Projecting 
hospital utilization during the COVID-19 outbreaks in the United States. Proceedings of the 
National Academy of Sciences. 2020 Apr 21;117(16):9122–6.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.21.22281330doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281330
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

16 

23. Davies NG, Klepac P, Liu Y, Prem K, Jit M, Eggo RM. Age-dependent effects in the 
transmission and control of COVID-19 epidemics. Nat Med. 2020 Aug;26(8):1205–11.  

24. Reiner RC, Barber RM, Collins JK, Zheng P, Adolph C, Albright J, et al. Modeling COVID-19 
scenarios for the United States. Nat Med. 2021 Jan;27(1):94–105.  

25. Qiu T, Xiao H, Brusic V. Estimating the Effects of Public Health Measures by SEIR(MH) 
Model of COVID-19 Epidemic in Local Geographic Areas. Front Public Health. 
2021;9:728525.  

26. Berger D, Herkenhoff K, Huang C, Mongey S. Testing and reopening in an SEIR model. 
Review of Economic Dynamics. 2022 Jan 1;43:1–21.  

27. Chang S, Pierson E, Koh PW, Gerardin J, Redbird B, Grusky D, et al. Mobility network 
models of COVID-19 explain inequities and inform reopening. Nature. 2021 
Jan;589(7840):82–7.  

28. Rawson T, Brewer T, Veltcheva D, Huntingford C, Bonsall MB. How and When to End the 
COVID-19 Lockdown: An Optimization Approach. Frontiers in Public Health. 2020;8:262.  

29. Abernethy GM, Glass DH. Optimal COVID-19 lockdown strategies in an age-structured SEIR 
model of Northern Ireland. Journal of The Royal Society Interface. 19(188):20210896.  

30. Smith DRM, Duval A, Pouwels KB, Guillemot D, Fernandes J, Huynh BT, et al. Optimizing 
COVID-19 surveillance in long-term care facilities: a modelling study. BMC Med. 2020 Dec 
8;18(1):386.  

31. Larremore DB, Wilder B, Lester E, Shehata S, Burke JM, Hay JA, et al. Test sensitivity is 
secondary to frequency and turnaround time for COVID-19 screening. Science Advances. 
2021 Jan;7(1):eabd5393.  

32. Lokuge K, Banks E, Davis S, Roberts L, Street T, O’Donovan D, et al. Exit strategies: 
optimising feasible surveillance for detection, elimination, and ongoing prevention of 
COVID-19 community transmission. BMC Medicine. 2021 Feb 17;19(1):50.  

33. Runge M, Richardson RAK, Clay PA, Bell A, Holdenid TM, Singam M, et al. Modeling robust 
COVID-19 intensive care unit occupancy thresholds for imposing mitigation to prevent 
exceeding capacities. PLOS Global Public Health. 2022 May;2(5):e0000308.  

34. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized 
Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020 
Mar 17;323(11):1061–9.  

35. Bi Q, Wu Y, Mei S, Ye C, Zou X, Zhang Z, et al. Epidemiology and transmission of COVID-19 
in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort 
study. The Lancet Infectious Diseases. 2020 Aug;20(8):911–9.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.21.22281330doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281330
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

17 

36. The Institute for Disease Modeling. Compartmental Modeling Software (CMS) [Internet]. 
2018 [cited 2022 Aug 25]. Available from: 
https://docs.idmod.org/projects/cms/en/latest/index.html# 

37. Northwestern University Malaria Modelling Team. Modelling the COVID-19 pandemic in 
Illinois [Internet]. NU Malaria Modeling Team; 2021 [cited 2022 Aug 25]. Available from: 
https://github.com/numalariamodeling/covid-chicago 

38. Hladish T, Melamud E, Barrera LA, Galvani A, Meyers LA. EpiFire: An open source C++ 
library and application for contact network epidemiology. BMC Bioinformatics. 2012 May 
4;13(1):76.  

39. Northwestern University Malaria Modelling Team. Modeling sentinel surveillance 
[Internet]. 2021 [cited 2022 Aug 25]. Available from: 
https://github.com/numalariamodeling/covid-sentinel-surveil 

40. City of Chicago. Latest Data | COVID 19 [Internet]. [cited 2022 Aug 17]. Available from: 
https://www.chicago.gov/city/en/sites/covid-19/home/covid-dashboard.html 

41. McGough SF, Johansson MA, Lipsitch M, Menzies NA. Nowcasting by Bayesian Smoothing: 
A flexible, generalizable model for real-time epidemic tracking. PLOS Computational 
Biology. 2020 Apr;16(4):e1007735.  

42. Höhle M, an der Heiden M. Bayesian nowcasting during the STEC O104:H4 outbreak in 
Germany, 2011. Biometrics. 2014;70(4):993–1002.  

43. Hilfiker L, Josi J. epyestim [Internet]. 2020. Available from: 
https://pypi.org/project/epyestim/ 

44. Huisman JS, Scire J, Angst DC, Li J, Neher RA, Maathuis MH, et al. Estimation and worldwide 
monitoring of the effective reproductive number of SARS-CoV-2. eLife. 2022 
Aug;11:e71345.  

45. Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate 
time-varying reproduction numbers during epidemics. Am J Epidemiol. 2013 Nov 
1;178(9):1505–12.  

46. United States Census Bureau. Census Bureau Data [Internet]. [cited 2022 Aug 16]. Available 
from: https://data.census.gov/cedsci/ 

47. Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact 
surveys and demographic data. PLOS Computational Biology. 2017 Sep 12;13(9):e1005697.  

48. Mistry D, Litvinova M, Pastore y Piontti A, Chinazzi M, Fumanelli L, Gomes MFC, et al. 
Inferring high-resolution human mixing patterns for disease modeling. Nat Commun. 2021 
Jan 12;12(1):323.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.21.22281330doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281330
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

18 

49. CDC. Risk for COVID-19 Infection, Hospitalization, and Death By Age Group [Internet]. 
[cited 2022 Aug 18]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/covid-
data/investigations-discovery/hospitalization-death-by-age.html 

50. Li T, White LF. Bayesian back-calculation and nowcasting for line list data during the COVID-
19 pandemic. PLOS Computational Biology. 2021 Jul 12;17(7):e1009210.  

51. Bastos LS, Economou T, Gomes MFC, Villela DAM, Coelho FC, Cruz OG, et al. A modelling 
approach for correcting reporting delays in disease surveillance data. Statistics in Medicine. 
2019 Sep;38(22):4363–77.  

52. van de Kassteele J, Eilers PHC, Wallinga J. Nowcasting the Number of New Symptomatic 
Cases During Infectious Disease Outbreaks Using Constrained P-spline Smoothing. 
Epidemiology. 2019 Sep;30(5):737–45.  

53. City of Chicago. Daily COVID-19 Hospitalizations by Age | Chicago Data Portal [Internet]. 
[cited 2022 Aug 17]. Available from: https://data.cityofchicago.org/Health-Human-
Services/Daily-COVID-19-Hospitalizations-by-Age/g43c-xce5 

54. Drolet M, Godbout A, Mondor M, Béraud G, Drolet-Roy L, Lemieux-Mellouki P, et al. Time 
trends in social contacts before and during the COVID-19 pandemic: the CONNECT study. 
BMC Public Health. 2022 May 23;22:1032.  

55. CDC. Estimated COVID-19 Burden [Internet]. [cited 2022 Aug 16]. Available from: 
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html 

56. Reese H, Iuliano AD, Patel NN, Garg S, Kim L, Silk BJ, et al. Estimated Incidence of 
Coronavirus Disease 2019 (COVID-19) Illness and Hospitalization—United States, February–
September 2020. Clinical Infectious Diseases. 2021 Jun 15;72(12):e1010–7.  

57. Iuliano AD, Chang HH, Patel NN, Threlkel R, Kniss K, Reich J, et al. Estimating under-
recognized COVID-19 deaths, United States, march 2020-may 2021 using an excess 
mortality modelling approach. The Lancet Regional Health – Americas. 2021 Sep 
1;1:100019.  

58. Pullano G, Di Domenico L, Sabbatini CE, Valdano E, Turbelin C, Debin M, et al. 
Underdetection of cases of COVID-19 in France threatens epidemic control. Nature. 2021 
Feb;590(7844):134–9.  

59. Omori R, Mizumoto K, Nishiura H. Ascertainment rate of novel coronavirus disease (COVID-
19) in Japan. International Journal of Infectious Diseases. 2020 Jul 1;96:673–5.  

60. Pouwels KB, House T, Pritchard E, Robotham JV, Birrell PJ, Gelman A, et al. Community 
prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS 
Coronavirus Infection Survey. The Lancet Public Health. 2021 Jan 1;6(1):e30–8.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.21.22281330doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281330
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

19 

61. ZOE. ZOE Health Study [Internet]. [cited 2022 Aug 18]. Available from: https://health-
study.joinzoe.com/ 

62. COVID Symptom. COVID Symptom [Internet]. [cited 2022 Aug 18]. Available from: 
https://www.covidsymptom.org/ 

63. COVID Control. COVID Control- A Johns Hopkins University Study [Internet]. [cited 2022 
Aug 18]. Available from: https://covidcontrol.jhu.edu/ 

64. Janvrin ML, Korona-Bailey J, Koehlmoos TP. Re-examining COVID-19 Self-Reported 
Symptom Tracking Programs in the United States: Updated Framework Synthesis. JMIR 
Form Res. 2021 Dec 6;5(12):e31271.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.21.22281330doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281330
http://creativecommons.org/licenses/by-nc-nd/4.0/

