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Abstract: 

Coronavirus disease 2019 (COVID-19) has a highly variable disease severity. 

Possible associations between peripheral blood signatures and disease severity 

have been investigated since the emergence of the pandemic. Although several 

signatures were identified based on exploratory analyses of single-cell omics data, 

there are no state-of-the-art validated models to predict COVID-19 severity from 

comprehensive transcriptome profiling of Peripheral Blood Mononuclear Cells 

(PBMCs). In this paper, we present a computational workflow based on a Multilayer 

perceptron network that predicts the necessity of mechanical ventilation from PBMCs 
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single-cell RNA-seq data. The study includes patient cohorts from Bonn, Berlin, 

Stanford, and three Korean medical centers. Training and model validation are 

performed using Berlin and Bonn samples, while testing is performed on completely 

unseen samples from the Stanford and Korean datasets. Our model shows a high 

area under the receiver operating characteristic (AUROC) curve (Korea: 1 (CI:1-1), 

Stanford: 0.86 (CI:0.81-0.9)), proving our model's robustness. Moreover, we explain 

our model’s performance by identifying gene loci and cell types, which are most 

critical for the classification task. In summary, we could show that the expression of 

15 genes and the cell type proportion of 29 PBMC classes distinguish between 

COVID-19 disease states. 
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INTRODUCTION 

Characterizing COVID-19 severity from genomic expression data is important to 

uncover the underlying biological mechanism of the disease and to identify the 

optimal treatment for each patient. Overall, the acuity of COVID-19 infection varies 

broadly among individuals, ranging from asymptomatic to fatal. In some cases, the 

disease can cause a life-threatening condition characterized by systemic 

inflammation accompanied by acute respiratory distress syndrome and multi-organ 

failure (Chen et al., 2020; Wu et al., 2020). Such cases need immediate intervention 

and intensive care. It is thus essential to have a diagnostic tool that will enable an 

assessment of the disease state, independent of clinical observations. 

The biological basis of severe COVID-19 symptoms is currently not fully understood. 

Identifying molecular disease signatures underlying the clinical manifestations is a 

crucial step in designing therapeutic strategies. Previous studies have highlighted 

the critical role of immune and inflammatory responses (García, 2020; Li et al., 

2022). Systemic reviews show that severe COVID-19 cases are characterized by 

several abnormal laboratory markers (Gupta et al., 2020; Samprathi and Jayashree, 

2020), including the hyperactivation of inflammatory markers in the serum such as 

cytokine, C-reactive protein, D-dimer, fibrinogen, and lactate dehydrogenase among 

others. Such observations are often accompanied by changes in cell proportions of 

hematologic and immune cell types, leading to lymphopenia, leukocytosis, 

neutrophilia, and thrombocytopenia. 

The use of single-cell sequencing technology has enhanced the understanding of the 

biological characteristics of COVID-19 infection and has uncovered potential cellular 
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and molecular signatures. To date, many studies addressing the contribution of 

peripheral blood cells to COVID-19 susceptibility and severity have been published 

(Consortia et al., 2020). Notably, the immunity landscape is different between severe 

and non-severe cases (Mukund et al., 2021; Ren et al., 2021; Stephenson et al., 

2021). Single-cell studies provide evidence of the association of poor clinical 

outcomes with reduced lymphocyte as well as increased neutrophil counts (Hasan et 

al., 2021). Severe COVID-19 is characterized by the suppression and exhaustion of 

the T cell compartment (Diao et al., 2020; He et al., 2021; Kreutmair et al., 2021),  

the extrafollicular B cell activation (Woodruff et al., 2020), the increased levels of 

plasmablasts, and platelets (Barrett et al., 2021; Bernardes et al., 2020), as well as 

the reduced function of natural killer cells (NK) (Björkström and Ponzetta, 2021) and 

dendritic cells (DC) (Kvedaraite et al., 2021). Classical monocytes (Merad and 

Martin, 2020) have been shown to display a type 1 IFN inflammatory signature (Lee 

et al., 2020) and low expression of HLA-DR (Schulte-Schrepping et al., 2020). The 

granulocyte compartment is also altered in severe COVID-19, displaying neutrophils 

with an immunosuppression signature (Schulte-Schrepping et al., 2020). All together, 

identifying those immune signatures underlying severe COVID-19 infections 

represents an important step forward to developing new and more effective ways of 

treating this debilitating disease.  

Although various insights have been revealed from single-cell data thus far, effective 

integration of these data into routine clinical diagnoses and personalized medicine 

has been challenging (Jovic et al., 2022). The latter is primarily hindered by the high 

cost of single-cell experiments. The limited sample sizes of single-cell experiments 

presents a constraint for computational models as it reduces their robustness and 

reliability. Although large-scale platforms containing single-cell data have been made 
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available to the public, computational algorithms that can effectively handle the data 

and predict clinical states are only emerging.  

In this manuscript, we present an MLP-based framework that predicts the disease 

severity of COVID-19 samples using single-cell RNA sequencing (scRNA-seq) data. 

Our classification is binary based on the necessity of mechanical ventilation (MV): 

samples are either classified as “mild” (i.e., no ventilation) or “severe”. We integrate 

information on Cell Composition (CC) and Gene Expression (GE) to exploit two 

important aspects of scRNA-seq data in this classification task. Our model was 

trained and validated on a 77-samples dataset and tested on two external datasets 

with a total of 39 samples. It is important to note that the testing data are completely 

independent from the training process, which demonstrates the model’s 

generalizability across different sites and its great potential as a tool for clinical 

applications. Finally, we use the trained model to extract discriminative features (cell 

types and marker genes) and investigate them in light of existing biological 

knowledge. 

RESULTS 

MLP model yields an accurate prediction of severity and generalizes to unseen 

Data 

To predict the severity of COVID-19 cases from scRNA-seq data, we designed an 

MLP-based framework integrating the GE and CC information per sample. A 

schematic representation of the entire workflow is shown in Figure 1. In brief, our 

framework comprises two parts: Feature extraction and model training. The first step 

aims to construct two modalities of data from scRNA seq data: the expression of the 

top genes differentially expressed between the two conditions of interest (Mild and 
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Severe) and the cell types’ proportion for each sample. This information serves as 

input to train a model, which is based on an MLP network to predict disease severity. 

The joint MLP-based model was trained and validated by 30 times holdout cross-

validation on 77 samples from the Bonn and Berlin cohorts (Schulte-Schrepping et 

al., 2020). Then, its performance was tested on two unseen cohorts, respectively, 

from the Stanford (Wilk et al., 2021) and Korean (Lee et al., 2020) studies. In 

addition, joint model performance was compared to a one-modality-based model, 

where the MLP network considers only either GE or CC as input.  
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Figure 1. Schematic representation of the prediction workflow. Dataset: scRNA-seq data of 
77 samples were collected from Bonn and Berlin cohorts and fed as input for the next step. 
Model construction: two matrices representing the expression of 15 genes and the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.21.22280983doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22280983
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

proportion of 29 cell types per sample were built from the scRNA seq input data and 
provided as input for an MLP model to predict severity. Evaluation: the MLP-based model 
was evaluated on the validation set and two scRNA-seq datasets from Stanford and Korean 
cohorts. Further details about datasets can be found in tables: S1 and S2. A detailed 
architecture of the MLP model can be found in figure S1. 

The Bonn cohort comprises gene expression data of 50 patient samples (25 mild 

and 25 severe cases), with an average of 2,260 cells per sample, whereas the Berlin 

cohort has 27 samples (13 Mild and 14 Severe), with an average of 1,788 cells per 

sample. 80% of this combined set is used to train our MLP-based severity prediction 

model. Then, the model is evaluated using samples from the Stanford (14 Mild and 

14 Severe) and Korean (5 Mild and 6 Severe) cohorts, with an average of 11,273 

and 4,172 cells per sample respectively. All samples are accompanied by 

information on MV necessity assigned at the collection time point. Based on the MV, 

we stratify the patients’ disease acuity into two classes: Mild (WHO score <=4, non-

ventilated) and Severe (WHO score >4, ventilated). Further details on data 

characteristics can be found in Table S1 and Table S2. 

We transferred cell type annotations from a large, publicly available dataset of 

human PBMCS (Hao et al., 2021), representing about 260,000 cells using the Seurat 

reference mapping (see Methods section). This allows for better comparison across 

datasets, fast annotation, and reproducibility. As a result, we annotate up to 31 cell 

types within each dataset, including T cells (33%-43%) and Monocytes (30%-37%) 

as the major cell types (Figure 2, Table S3). Based on the cell annotation, we 

computed the proportion of each cell type per sample. We excluded Doublet and 

Eryth types from subsequent analyses. In addition to the cell proportion, we compute 

the gene expression average, the so-called “pseudo bulk” profile, by aggregating 

cell-level counts into sample-level counts (Figure 1). Due to the sample size limit 

characterizing single-cell data, we opted for feature (genes) selection to reduce the 
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complexity of the model. Herein, we are interested particularly in the top genes 

differentially expressed between conditions. Based on the Area Under the Receiver 

Operating Characteristics (AUROC), area under the precision-recall curve (AUPRC) 

and Accuracy, we evaluated the prediction model using various numbers of top 

genes; accordingly, with 15 top genes, the model shows the best results on the 

validation set (Figure S1).  

In summary, we construct two input data matrices (modalities) representing the gene 

expression (77 samples x 15 genes) and the cell proportion (77 samples x 29 cell 

types) across samples. We randomly assign 80% of the samples for the training and 

20% for the validation. We design an MLP network of 4 hidden layers to estimate the 

severity probability. Model architecture is shown in Figure S1 and described in the 

Methods section. Furthermore, we employ the dropout (Srivastava et al., 2014) and 

early-stopping (Prechelt, 2012) techniques during the training process to control 

overfitting (see Methods section for further details). The resulting model allows the 

classification of samples into mild and severe conditions with a decision cut-off of 

0.5.  
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Figure 2. Cell annotation of Bonn and Berlin datasets based on Seurat reference mapping 
represented by UMAP. Doublets and Erythrocytes are excluded from further analyses. Cell 
composition for all datasets can be found in Table S3. 

We evaluated the model using several metrics. Figure 3 shows performances with a 

95% confidence interval (CI). Overall, we obtain high AUROC, AUPRC, and 

accuracy across 30 random samplings (Table 1). 

 

Figure 3: Performance of the MLP-based model on the validation set (A) Korean (B) and 
Stanford (C) datasets. Three models were evaluated: Cell composition-based mode (CC), 
Gene expression-based model (GE), and joint modal (CC&GE) using the Area Under the 
Receiver Operating Characteristics (AUROC), Area Under the Precision-Recall Curve 
(AUPRC), and Accuracy. Thirty sampling replicates were used to assess the prediction 
performance with 95% CI. Further results can be found in the supplementary material (Table 
S4). 

To demonstrate the importance of combining both modalities (CC and GE) as input 

features, we compared the prediction performance of the joint MLP-based model 

against each individual modality, separately (Figure 3 and Table S4). Indeed, 
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compared to the prediction based on one modality of features, the joint model 

achieves better AUROC, AUPRC, and accuracy, indicating that our method can 

successfully and efficiently capture information from scRNA-seq data. 

Table 1: Performance statistics of the joint MLP-based model on the validation set, Korean 
and Stanford datasets in terms of the Area Under the Receiver Operating Characteristics 
(AUROC), Area Under the Precision-Recall Curve (AUPRC), and Accuracy. Thirty sampling 
replicates were used to assess the prediction performance with 95% CI. Further results can 
be found in the supplementary material (Table S4). 

 AUROC AUPRC Accuracy 

Validation set 1.0 (0.99-1.0) 1 (0.99-1.0) 0.96 (0.94-0.99) 

Korean dataset 1.0 (1.0-1.0) 1.0 (1.0-1.0) 0.9 (0.8 -0.9) 

Stanford dataset 0.86 (0.8-0.89) 0.89 (0.84-0.92) 0.77 (0.70-0.86) 

 

Overall, our results show that the model can assess the disease state of COVID-19 

patients and is generalizable to completely unseen data collected at completely 

different sites, which suggests that the model captures the key markers (patterns) of 

severity. 

MLP-based prediction allows for interpretable classification 

We computed SHAP values (Lundberg and Lee, 2017; Lundberg et al., 2018) to 

understand better the relevance of individual features (Cell types and Genes) for 

disease severity prediction.  In Figure 4, we show bar plots representing the top 15 

features from both modalities ranked according to the average across the 30 

samplings of the absolute mean of the SHAP values. For example, the top-ranked 

RETN gene discriminates between severe and mild conditions. Resistin (RETN) is 

known to correlate positively with poor prognosis in COVID-19 patients and is an 

important predictor of mechanical ventilation necessity (Perpiñan et al., 2022). It is 

also known to play a crucial role in neutrophil activation and is associated with 
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excessive proinflammatory activation (Jiang et al., 2014). RETN has also been 

identified together with lipocalin-2 (LCN2), the second top predictor for Korean 

samples, as the most important factors in distinguishing critical illness in COVID-19 

in a previous machine learning-based finding ((Meizlish et al., 2021). In addition, the 

model highlights the importance of the platelet marker gene PPBP, which was 

reported to be a strong negative predictor of mechanical ventilation in hospitalized 

patients ((Yatim et al., 2021). Interestingly, we observed the high contribution of 

Platelet, Natural Killer (NK) cells, and T cell types, known to be involved in disease 

progression ((Barrett et al., 2021; Björkström and Ponzetta, 2021; Stephenson et al., 

2021; Yatim et al., 2021). 
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Figure 4: Feature importance based on SHapley Additive exPlanation (SHAP) values 
evaluated on the Korean dataset. Bar plots represent the average across the 30 samplings 
of the mean absolute SHAP values to illustrate global feature importance (left). The violin 
plots show the direction of the relationship between each feature and the prediction outcome 
(right). The color in the violin plot represents the average feature value at that position. 
Features with many instances in red with SHAP values greater than 0 contribute positively to 
the prediction, while those with many blue instances decrease the prediction. Further results 
can be found in the Supplementary material (Figure S2).  

DISCUSSION 

Single-cell RNA sequencing enables the transcriptomic profiling of individual cells in 

COVID-19, leading to the characterization of heterogeneous cell populations and the 

identification of specific disease signatures. While scRNA-seq has been used 

extensively to provide insights into COVID-19 infection and its severity, it has not 

been used for disease prediction or diagnostics. This is mainly due to its high cost as 

well as the complexity and sparsity of the data. In this work, we made use of PBMC 

scRNA-seq data from different hospitals and constructed a robust and reliable model 

for predicting disease severity (current mechanical ventilation) in patient samples. 

We have shown that our model achieves high AUROC, AUPRC, and accuracy on 

independent external datasets. Notably, the MLP-based model effectively captures 

biological markers that lead to a better interpretability for its decisions. Collectively, 

the results show that our model can predict COVID-19 severity and generalizes to 

independent datasets. Our model (re-)discovers many aspects of previous biological 

knowledge in terms of marker genes and sample cell type composition. We believe 

that our findings contribute to the advancement of precision medicine efforts in 

COVID-19, specifically once molecular profiling of patient samples will be 

implemented in clinical care. To successfully pursue this vision, additional well-

documented (at the molecular and clinical levels) samples will be necessary to train 

and evaluate computational models. Another future direction of our research is to 
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integrate multi-omics data. For example, proteomics data have been employed to 

predict the current mechanical ventilation status based and showed high 

performance and generalizability (Demichev et al., 2021). While such multi-

modalities data promise to provide rich insight into complex systems, integrative 

computational tools should reflect the biological complexity and learn from single-cell 

data collected across cells, experimental conditions, as well as molecular, spatial, 

and temporal modalities (Lance et al., 2022). 

METHOD DETAILS 

The R Seurat package version 4.1.0 was used for data normalization, pseudo-bulk 

differential expression analysis, label transfer, and UMAP visualizations. The MLP 

model was developed using Keras version 2.9.0 and Tensorflow version 2.9.1. 

1. Single-cell RNA Sequencing Datasets: 

We used publicly available scRNA-seq data derived from PBMCs of COVID-19 

samples. Count gene expression data of Bonn and Berlin cohorts were obtained 

from ((Schulte-Schrepping et al., 2020). Samples were retrieved from patients 

recruited at the University Hospital Bonn and the Charité Universitätsmedizin of 

Berlin, respectively. Single-cell RNA seq raw dataset of patients enrolled in the 

Stanford University COVID-19 Biobanking studies and the three Korean medical 

centers (Asan Medical Center, Severance Hospital, and Chungbuk National 

University Hospital) were retrieved from the gene expression omnibus (GEO) under 

the accession numbers GSE174072 and GSE149689, respectively. Data was 

already aligned to the reference genome. Bonn and Berlin cohorts were used to train 

and validate our prediction model, and Stanford and the Korean cohorts were used 

for evaluation. The linked metadata contains clinical information, including the World 
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Health Organization (WHO) clinical ordinal scale (8: died; 7: invasive MV + additional 

support; 6: intubation + invasive MV; 5: non-invasive MV or high-flow nasal cannula 

(HFNC); 4: hospitalized with oxygen mask or nasal prongs; 3: no oxygen therapy; 2: 

activity limitation; 1: no activity limitation) or the necessity of MV. Note that WHO 1-4 

represents samples without MV need and WHO 5-8 represents samples with MV 

need; thereby, we split samples into two classes based on the MV: Mild and Severe.  

2. Quality control of scRNA-seq data: 

Whereas Stanford and Korean original studies provide raw data, Bonn and Berlin 

cohorts contain filtered data. Thus, to enable consistency, we apply the same filter 

parameters as proposed in ((Schulte-Schrepping et al., 2020). Cells that had > 25% 

mitochondrial gene reads, > 25% HBA/HBB gene reads, < 250 UMIs or >5,000 

UMIs, and < 500 detected transcripts were considered to be of low quality and 

removed from further analysis. 

3. Automated Annotation of Datasets: 

Seurat provides a single-cell reference mapping function to map new query datasets 

to a previously annotated reference 

(https://satijalab.org/seurat/articles/integration_mapping.html). We used this strategy 

to transfer cell type labels from a public annotated dataset to our training and testing 

datasets. First, we identified anchors between the query and reference datasets 

using precomputed supervised principal components on the reference dataset 

(FindTransferAnchors). Then, we transferred cell type labels to each cell of the query 

dataset via the previously identified anchors (MapQuery).  
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The reference is a multimodal dataset of the immune system representing about 

260,000 cells represented by two modalities: scRNA-seq data and proteins with 228 

antibody panels. Based on a WNN integration, they annotated cells at three levels 

yielding: 8 categories (level 1), 30 categories (level 2), and 57 categories (level 3), 

encapsulating all major and minor immune cell types. We consider level 2 as our 

reference to label our query datasets. 

4. Differential Expression Analysis and Marker Genes 

Identification: 

Differential expression (DE) tests were performed using Seurat function 

(FindMarkers) with Wilcoxon Rank Sum test. Marker genes were identified by 

applying the DE tests for upregulated and downregulated genes between conditions 

(Mild & Severe).  

5. Prediction of severity: 

Gene selection 

Top-ranked genes sorted by log-fold changes were selected. Various numbers of top 

DE genes were tested (5,10,15,20) to evaluate the robustness of the model (figure 

S1); however, the model's performances showed no improvement in AUC, AUPRC, 

and accuracy scores when the number of top features increased to 20. Hence, the 

key features were the 15 top DE genes. Then, we average their expression across 

the single cells to generate a pseudo-bulk expression for each sample. 

MLP Network Architecture 
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We designed an MLP model to process input data from two branches (modalities) 

and estimate a score representing the probability of being severe (Figure S3). The 

input branches represent the expression of the 15 selected genes in the scale 0-to-1 

and the proportion of 29 identified cell types for each sample. We used three hidden 

layers apart from the input layer and output layer. The first two hidden layers 

comprised {10,4} nodes per branch. Then, we merge the two branches to estimate 

the third hidden layer composed of {4} nodes and finally output a probability score 

using a layer of one node. To allow the modeling of non-linear patterns, we used 

ReLU (Rectified Linear Unit) as the activation function for the hidden nodes and 

Sigmoid for the output layer. Based on the output score, we classify samples into 

Mild (<0.5) and Severe (=>0.5). 

Parameter Optimization 

The model parameters were estimated using Adam optimizer (Kingma and Ba, 2017) 

and the default learning rate 0.001. The optimization process updates the model 

parameters for each sample in the training dataset (80%) and performs validation on 

the left-out dataset (20%) chosen randomly using ‘random.sample’, providing that 

the training subset preserves the proportion of WHO score modalities within the 

whole dataset. The parameters with the lowest cross-entropy define the final model 

used to predict the severity score of samples from Berlin and Stanford datasets. We 

considered the dropout of 20% of input nodes to avoid overfitting and improve 

robustness. We also considered the early stopping of the model training when the 

loss value stops improving after 100 iterations with a minimum percent improvement 

on the validation set error of 0.001. The best-performing model on the validation set 

was saved for the prediction during the learning process. 
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6. Evaluation Metrics 

We assessed the ability of the model described in the previous section to predict the 

severity and classify samples as Mild and Severe using the Area Under the Receiver 

Operating Characteristics (AUROC) and Area Under the Precision-Recall Curve 

(AUPRC) calculated on the estimated score using roc_auc_score 

average_precision_score respectively from the scikit-learn python package. In 

addition, we evaluated the accuracy, precision, recall and F1-score on a 0.5 cut-off 

of the output score. We performed 30 samplings for all the evaluations and 

computed performances at a 95% confidence interval.  

7. Feature Contribution 

To evaluate the impact of individual features from both modalities (CC & GE) on the 

prediction score we learned for each sample, we used (Deep) SHAP values. SHAP 

values are a metric based on game theory that attempts to quantify the contribution 

of each variable to an outcome. SHAP results in a sample-specific score that may be 

positive or negative. The mean of the absolute SHAP values per feature is used to 

score the overall impact of a feature on the prediction score. 

DATA AND CODE AVAILABILITY 

All data files used in our workflow are available via this link: 

(https://doi.org/10.5281/zenodo.6811191 ) 

A snakemake pipeline of the tool is deposited on GitHub: 

https://github.com/dieterich-lab/ImmunOMICS. A docker image of all dependencies 

has been built and deposited in DockerHub 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 22, 2022. ; https://doi.org/10.1101/2022.10.21.22280983doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22280983
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

(https://hub.docker.com/repository/docker/aminale/immun2sev ). Seurat mapping 

requires high memory usage (>100 Gb) thus, we recommend using Singularity (or 

Conda) designed specifically for High-Performance Computing. 
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