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Abstract 

Background: Despite the report of an imbalance between CD4
+
 T helper (Th) cell subsets in 

rheumatoid arthritis (RA), patient stratification for precision medicine has been hindered by the 

discovery of ever more Th cell subsets, as well as contradictory association results. 

Objectives: To capture previously reported Th imbalance in RA with deep immunophenotyping 

techniques; to compare hypothesis-free unsupervised automated clustering with hypothesis-

driven conventional biaxial gating and explore if Th cell heterogeneity accounts for conflicting 

association results. 

Methods: Unstimulated and stimulated peripheral blood mononuclear cells from RA patients 

and controls were immunophenotyped with a 37-marker panel by mass cytometry (chemokine 

receptors, intra-cellular cytokines, intra-nuclear transcription factors). First, conventional biaxial 

gating and standard definitions of Th cell subsets were applied to compare subset frequencies 

between cases and controls. Second, unsupervised clustering was performed with FlowSOM 

and analysed using mixed-effects modelling of Associations of Single Cells (MASC). 

Results: Conventional analytical techniques fail to identify classical Th subset imbalance, while 

unsupervised automated clustering, by allowing for unusual marker combinations, identified an 

imbalance between pro- and anti-inflammatory subsets. For example, a pro-inflammatory Th1-

like (IL-2
+
 T-bet

+
) subset and an unconventional but pro-inflammatory IL-17

+
 T-bet

+
 subset were 

significantly enriched in RA (odds ratio=5.7, p=2.2 x 10
-3

; odds ratio=9.7, p=1.5x10
-3

, 

respectively). In contrast, a FoxP3
+
 IL-2

+
 HLA-DR

+
 Treg subset was reduced in RA (odds ratio=0.1, 

p=7.7x10
-7

). 

Conclusions: Innovative approaches capture known CD4
+
 T cell subset imbalances in RA blood. 

 

Keywords: precision medicine, rheumatoid arthritis, CD4
+
 T cells, mass cytometry, 

heterogeneity   
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Introduction 

Current treatment strategies for rheumatoid arthritis (RA) standardise treatments across 

patient groups, but as a heterogeneous disease, differences will exist in the underlying immune 

mechanisms. As a consequence, not all patients will respond similarly to the same drug with 

only 60-70% having a response to any biologic drug [1]. Given that an increase of pro-

inflammatory and/or a decrease of anti-inflammatory CD4
+
 T cell subsets has been reported in 

some patients, these cell types could represent therapeutic targets and aid patient stratification 

for precision medicine. However, which CD4
+
 T cell subset is associated with the disease, and in 

what proportion of patients, remains unclear. 

The study of T cells in RA was revolutionised after the Th1/Th2 paradigm was proposed by 

Mossman et al. in 1986 [2]. This paradigm was described as a dichotomy between type 1 T 

helper cells (Th1), characterised by interferon-γ (IFN-γ) and tumour necrosis factor (TNF), and 

type 2 T helper cells (Th2). RA pathogenesis predominantly involves Th1 cytokines, and the Th1 

immune response is antagonised by Th2 cytokines (reviewed in [3]). The Th1/Th2 paradigm was 

modified further when pathogenic IL-17-producing T helper cells (Th17) and regulatory T cells 

(Tregs) were discovered to play critical roles in initiating and regulating autoimmunity, 

respectively (reviewed in [4]). Increases in Th1 and Th17 cells which antagonise, and are 

antagonised by, Th2 and Treg cells has been the focus of much research in autoimmune 

diseases including RA [5,6]. More recently, interferon-producing Th1 memory cells were found 

to be associated with RA using novel techniques of analysing high-dimensional single-cell data 

[7]. A meta-analysis found that circulating Treg cells, as defined by both FOXP3 and CD25, were 

decreased in RA patients in 9 combined studies [8]. However, other studies found no decrease 

in Treg frequency or function in RA [9]. To add to the complexity of the paradigm, there are an 

ever-growing list of T helper cells (Th9 cells [10]; Th22 cells [11]; T follicular helper cells (Tfh) 

[12]; peripheral helper T cells (Tph) [13]). Critically, it has now been shown that many of these T 

cell types exhibit plasticity. It was previously thought that the mutually exclusive expression of a 

master transcription factor determined the fate of T cells, with T-bet, GATA3, RORγt and FoxP3 

determining the fate of Th1, Th2, Th17 and Treg cells respectively. However, co-expression of 

these transcription factors may temporarily alter the effector function of T cell subsets 
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(reviewed in [14]) and many of these T cells might also be transitional and therefore appear 

only in very low frequencies.  

The plasticity of T cell subsets and heterogeneity of RA may also explain why clinical trials 

targeting specific cytokines, for instance IL-17, have not reached their primary endpoint [15]. 

Stratified medicine may allow clinicians to identify RA patients who have predominantly IL-17-

driven disease to improve the design of such trials, as researchers have successfully shown in 

psoriatic arthritis [16]. Exploring peripheral blood immunophenotypes by flow cytometry in RA 

has been shown to mirror findings in the synovial compartment [17] and still represents the 

most widely used and cost effective technique to enumerate immune cell populations. The 

advent of mass cytometry (CyTOF) has vastly increased the number of cellular markers which 

can be detected simultaneously [18] and together with the development of high-throughput 

automated methods of data analysis [19–23], rare and novel cell types involved in the aetiology 

of RA have been recently identified [7,13,24,25]. Automated cell clustering algorithms allow for 

unbiased marker combinations and therefore the hypothesis-free discovery of unanticipated 

cell subsets, relevant to disease and precision medicine [7,22,26,27]. We postulate that Th cell 

plasticity and overlap between subsets and definitions explain conflicting associations and lack 

of reproducibility in small sample sizes. Therefore, we developed a 37 marker T cell mass 

cytometry panel to encompass most definitions for the most studied CD4
+
 T cell subsets to date 

(Th1, Th2, Th17 and Treg).  

The aims of this study are first, to confirm the T helper cell subset imbalance previously 

described in RA; second, to explore whether this imbalance is detectable in a small sample size, 

if the standard definition of Th subsets is relaxed in favour of Th cell plasticity (unbiased marker 

combinations) and third, to test whether innovative techniques (mass cytometry and 

unsupervised clustering algorithm) facilitate the identification of pro- and anti-inflammatory 

CD4
+
 T cell subsets over standard techniques (flow cytometry and manual bi-axial gating) in a 

small sample size.  
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Methods 

Patient and public involvement 

The Versus Arthritis Centre for Genetics and Genomics in Manchester has a Research User 

Group (RUG) of patients with various rheumatologic conditions, which includes RA. Members of 

the RUG meet regularly to review the research carried out in the Centre. They highlighted the 

importance of understanding basic mechanisms of disease from a patient’s perspective. The 

RUG supports research of basic disease mechanisms to identify biomarkers for stratification 

into treatment response categories. Some of the following comments were made: “the sooner 

anyone with RA can get on the correct treatment, the better”; “Personalising from onset would 

be perfect”; “If only a blood test is needed, then even better”. 

Patient selection and sample collection 

A cohort of 10 RA patients stabilised on therapy and 10 healthy volunteers were recruited from 

the National Repository (North West Ethics committee approval MREC 99/8/84) at the 

Manchester Royal Infirmary (NIHR portfolio ID 7881). Peripheral Blood Mononuclear Cells 

(PBMC) were isolated from 18 ml of blood by density gradient centrifugation using Ficoll-Paque 

plus (GE Healthcare Life Sciences) and cryopreserved at -150°C. 

Mass cytometry antibody panel 

We adapted a previously published mass cytometry T cell panel [13] to encompass surface 

(chemokine receptors), intra-cytoplasmic (cytokines) and intra-nuclear markers (transcription 

factors) used to define Th and Treg subsets (Table 1). 

Target Epitope location Marker significance Label Clone 

CD8a Extracellular Cytotoxic T cell 141Pr RPA-T8 

HLA-DR Extracellular Activation marker 143Nd L243 

IL-2 Intracellular T cell cytokine 144Nd MQ1-17H12 
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CD4 Extracellular T helper cell 145Nd RPA-T4 

CD127 (IL-7Ra) Extracellular Cytokine receptor 147Sm A019D5 

CD278/ICOS Extracellular Checkpoint protein 148Nd C398.4A 

CD200 Extracellular Myeloid cell regulator 149Sm OX-104 

IL-22 Intracellular Th2 cytokine 150Nd 22URTI 

IL-5 Intracellular Th2 cytokine 151Eu TRFK5 

TNF Extracellular Inflammatory cytokine 152Sm Mab11 

CD62L (L-selectin) Extracellular Adhesion molecule 153Eu DREG-56 

CD38 Extracellular Lymphocyte activator 154Sm HIT2 

CD279 (PD-1) Extracellular T cell suppressor 155Gd EH12.2H7 

CD134 (OX40) Extracellular Co-stimulatory molecule 156Gd ACT35 

IFNγ Intracellular Th1 cytokine 158Gd B27 

FoxP3 Intracellular Treg marker 159Tb 259D/C7 

Tbet Intracellular Th1 transcription factor 160Gd 4B10 

CD197 (CCR7) 

Extracellular Chemokine receptor 

involved in lymph node 

homing 161Dy G043H7 

CD152 (CTLA-4) Extracellular Checkpoint protein 162Dy 14D3 

CD183 (CXCR3) Extracellular Th1 chemokine receptor 163Dy G025H7 

IL-17A Intracellular Th17 cytokine 164Dy N49-653 

CD45RO Extracellular Memory T cell marker 165Ho UCHL1 

IL-10 Intracellular Regulatory cytokine 166Er JES3-9D7 

Gata3 Intracellular Th2 transcription factor 167Er TWAJ 

ROR gamma  Intracellular Th17 transcription factor 168Er 600214 

CD25 (IL-2R) Extracellular IL-2 receptor 169Tm 2A3 

CD28 Extracellular Costimulatory molecule 170Er CD28.2 

CD185 (CXCR5) Extracellular T follicular helper cell 171Yb RF8B2 
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chemokine receptor 

IL-21 Intracellular Regulatory cytokine 172Yb 3A3-N2 

IL-4 Intracellular Th2 cytokine 173Yb MP4-25D2 

CD154 (CD40L) Extracellular Activated T cell marker 174Yb 24-31 

Perforin 

Intracellular Cytotoxic T cell effector 

protein 175Lu B-D48 

CD196 (CCR6) 

Extracellular Th17 chemokine 

receptor 176Yb 11A9 

Iridium – CellID 

 DNA binder to identify 

cell events 191Ir  

Iridium – CellID 

 DNA binder to identify 

cell events 193Ir  

Cisplatin 

 DNA binder to assess cell 

viability 194Pt  

CD3 Extracellular Pan-T cell marker 209Bi UCHT1 

Table 1. The antigen target, heavy metal and clone of each conjugated antibody used in the CyTOF T cell 

panel. Target location indicates if the antibody was used in the extracellular or intracellular antibody 

cocktail. All antibodies were purchased from Fluidigm. 

 

T cell enrichment and stimulation 

Thawed PBMCs were rested at 37°C for one hour prior to enrichment of CD3
+
 T cells by positive 

selection using magnetic cell separation (MACS) with CD3 MicroBeads (Miltenyi Biotec). T cell 

receptor stimulation was achieved with Dynabeads Human T-Activator CD3/CD28 beads (Fisher 

Scientific UK Ltd) at a concentration of 1 bead per 2 cells, in the presence of brefeldin A and 

monensin (both Fisher Scientific UK Ltd) and incubated for 4.5 hours at 37 °C. 

Mass cytometry staining protocol 

CD3
+
 T cells were incubated with cisplatin prior to incubation with an extracellular antibody 

cocktail (detailed protocol in Supplementary Methods). Subsequently, cells were fixed, 
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permeabilised and stained for intracellular antigens for 30 minutes on ice. A solution of 

Intercalator-Ir was added to each well. Samples were run on Helios mass cytometers by the 

Longwood Medical Area CyTOF Core Facility at the Dana-Farber Cancer Institute, Boston, USA. 

Data pre-processing 

The Nolan Normalizer MATLAB plugin [28] was used to normalise the signal in each channel to 

the signals from the Maxpar Calibration beads. 

Traditional gating analysis 

Traditional biaxial gating was carried out using FlowJo V.10.8 (BD Biosciences) to identify well-

described CD4
+
 Th and Treg subsets using standard definitions [29] (example gating strategy in 

supplementary Fig. 1). The percentages of positive cells are represented as a proportion of the 

total T cell population (CD3
+
). Geometric mean intensity is used to quantify cytokine expression 

on an individual cell level. The Mann-Whitney U test was used to compare RA and Healthy 

Controls (HC). All p-values are unadjusted (tests are not independent). 

Automated clustering workflow 

The CyTOF clustering workflow from Nowicka et al. [20] was modified to include an extended 

quality control approach and a different statistical framework for association testing (see 

below). All plots were produced with ggplot2 (v3.3.5) [30], unless stated otherwise. 

Quality control steps 

Normalised cytometric data was manually inspected using FlowJo V.10.8 (BD Biosciences) to 

ensure that at least 10 cell events were identified in a cluster in at least 3 samples. IL-5 was 

excluded due to the absence of any positive cell clusters (supplementary figure 2). 

Furthermore, only samples with at least 1000 live single T cells were included in subsequent 

analyses. Cell events with extreme expression were excluded per individual marker. After the 

removal of unsuccessful markers and extreme events, analysis was performed in R (v4.1.0) on 

data transformed with the inverse hyperbolic sine (arcsinh) function (cofactor = 5). Finally, to 
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identify outlying samples and potential batch effects, multidimensional scaling (MDS) and 

principal component analysis (PCA) plots were produced from median expression of panel 

markers in each sample. 

Clustering with FlowSOM/ConsensusClusterPlus 

The dataset was downsampled to an equal number of randomly selected cells (n) from each 

sample, where n was equal to the number of cells in the smallest sample. The automated 

clustering steps were performed with FlowSOM (v2.0.0) [19] and ConsensusClusterPlus 

(v1.56.0) [23] using agglomerative hierarchical consensus clustering. Cells were clustered into 

20 populations using Euclidean distance and average linkage metrics (supplementary figure 3). 

Heatmaps of median marker expression for each cluster were generated with pheatmap 

(v1.0.12) [31]. For visualisation, these values were scaled between 0 and 1, with the 0.01 and 

0.99 quantiles for each marker as the lower and upper boundary, respectively.  

Cluster visualisation with t-SNE 

The similarity of single cells in two-dimensional space was visualised with the dimensionality 

reduction technique t-stochastic neighbour embedding (t-SNE), implemented with Rtsne (v0.15) 

[32]. Clusters were annotated manually by their surface phenotype. 

Statistical analysis 

To identify clusters with differential representation in RA samples compared to healthy 

controls, we used mixed-effects modelling of associations of single cells (MASC) [7] for each 

cluster, including age and sex of donors as fixed-effects covariates, sample ID as a random-

effect covariate and the case-control status as the contrast term. Clusters that are significantly 

enriched or depleted in RA are defined as those with a P value ≤ 0.05 after Bonferroni 

correction (n = number of clusters tested). 
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Data sharing 

All mass cytometry data is freely available at https://flowrepository.org/ (repository ID FR-FCM-

Z5RM) [46].  
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Results 

Study design and subject characteristics 

PBMCs from 10 RA patients and 10 healthy controls (Table 2) were left unstimulated or 

stimulated with anti-CD3/CD28 beads (n = 40 samples) prior to deep immunophenotyping by 

mass cytometry.  

 
Cases (n = 10) Controls (n = 10) P value 

Age (mean ± SD) 61 ± 14 46 ± 8  0.02 

Female 7 6  1 

RF-positive 7 — — 

ACPA-positive 6 — — 

DAS28 (mean ± SD) 3.4 ± 2.2 — — 

Glucocorticoids 2 0 — 

Methotrexate 5 0 — 

Other DMARD* 3 0 — 

Biologics 1 0 — 

*Sulfasalazine or hydroxychloroquine 

Table 2. Subject characteristics of cases (RA) and healthy controls. P values calculated 

for age and gender by Mann-Whitney U and Fisher’s exact test, respectively. RF: 

rheumatoid factor. ACPA: anti-citrullinated protein antibody. DAS: disease activity score. 

DMARD: disease-modifying anti-rheumatic drug. 

 

Manual gating with traditional statistical analysis fails to identify large differences 

between blood from patients with RA and healthy controls. 

Sequential biaxial gating of CyTOF data was used to identify commonly described CD4
+
 and 

CD8
+
 T cell subsets as defined by expression of surface markers, transcription factors and/or 

intracellular cytokines. Conventional statistical analysis with Mann-Whitney U found no 

significant differences in the proportions of Th CD4
+
 subsets between RA and HC (figure 1); only 
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Treg (defined as CD4
+
 FoxP3

+
) were markedly decreased in RA. No CD8

+
 T cell subsets were 

found to be differentially abundant in RA (figure 2).  

CyTOF automated clustering pipeline quality control steps 

Low quality cells with extreme expression values were excluded after individual appraisal of 

expression distributions for each marker. This step removed 0.34% (4,146/1,230,364) of cells 

from the full dataset, with between 0.09% and 1.4% of cells removed from each sample. 

Diagnostic MDS and PCA plots highlight notable separation of RA and HC in the second 

dimension, indicating preliminary differences in marker expression between the two groups 

(figure 3A). On the same PCA (figure 3B), samples largely cluster by age group (figure 3C) 

similarly to previous reports [49], suggesting that the structure in the data is attributable to 

participant age rather than technical batch effects. Therefore, we included age as a co-variate 

for statistical association testing. 

Automated clustering identifies well-described T cell subsets 

Automated clustering was performed on downsampled quality-controlled CyTOF data; analyses 

of unstimulated and stimulated T cell datasets were performed separately. Within the 

unstimulated dataset, we identified 20 distinct T cell subsets, including 11 CD4
+
 and nine CD8

+
 

(figure 4A). Amongst the CD4
+
 populations are a FoxP3

+
 subset (subset 11; a Treg subset), two 

IL-17
+
 subsets (subsets 16 and 20; Th17 subsets), a Th1-like subset (subset 19) and a CD38

+
 

subset (subset 18). 

Although analysis was performed independently, clusters identified in the stimulated dataset 

were broadly similar to those of the unstimulated dataset (figure 4B). As expected, t-SNE plots 

coloured by expression level of several markers highlight an increase in the number of cells 

expressing TNF upon stimulation (figures 4B and 4C). 

MASC identifies multiple T cell clusters with differential expression between RA 

and healthy samples 
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MASC was used to identify clusters with differential abundance between RA samples and HC, 

adjusting for the effects of age, gender, and donor. Six unstimulated cell subsets and 8 

stimulated subsets were found to be differentially abundant with MASC (figure 5). The majority 

were CD4
+ 

and, of these, three populations were present in both unstimulated and stimulated 

states, including enrichment of Th1 and Th17 subsets (CD4
+
 T-bet

+
 IL-17

+
 and CD4

+
 T-bet

+
 IL-2

+
 

cell clusters) and depletion of a Treg subset (CD4
+
 FoxP3

+
 IL-2

+
) in RA (figure 6). Of note, 

stimulation further enriched the CD4
+
 T-bet

+
 IL-2

+
 cluster in RA samples relative to healthy 

controls (P = 2.2 x 10
-3

, OR = 5.7, figure 7). Interestingly, a Th2 subset (CD4
+
 TCM GATA3

+
) was 

decreased in RA (although it did not reach statistical significance). 

Notably, figures 6 and 7 highlight the heterogeneity in subset proportions between individual 

patients. For example, the abundance of the CD4
+
 TNF

+
 cells range from < 1% to > 8% of cells in 

stimulated RA samples (figure 7, subset 14). Naïve T cells were increased in frequency in 

controls compared to cases, but this difference disappeared after statistical adjustment for age 

implemented in MASC, demonstrating that the correction for the age-driven stratification 

observed in the PCA plots was important in terms of statistical outcome.  

Cell cluster phenotype, abundances, odds ratios, and P values for all cell clusters generated by 

the pipeline are presented in table 3. 
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Subset Number % total 
RA cells 

% total 
HC cells OR (RA vs HC) P value 

A: Shared (Unstimulated, stimulated) 

CD4+ TCM T-bet+ IL-17+ 
(combined Th1 and Th17 

phenotype) 

20 2.6 0.4 12.2 (5.3 – 28.1) 1.5 x 10-4 

16 1.4 0.2 9.7 (3.8 – 24.5) 1.5 x 10-3 

CD4+ TCM FoxP3+ IL-2+
 

(Treg) 

11 0.5 1.8 0.3 (0.2 – 0.5) 4.6 x 10-3 

15 + 17 0.4 / 0.09 2.0 / 0.7 0.1 (0.1 – 0.2) / 
0.03 (0.01 – 0.09) 

7.7 x 10-7 / 
1.9 x 10-7 

CD4+ TEM CCR6+ 

(Th17) 

7 1.6 0.6 4.4 (2.2 – 8.7) 5.1 x 10-3 

7 4.8 1.1 9.4 (4.6 – 19.5) 7.9 x 10-5 

CD4+ TCM T-bet+ IL-2+ 

(Th1) 

19 0.8 0.4 3.5 (1.6 – 7.4) 6.8 x 10-2 

13 0.8 0.2 5.7 (2.6 – 12.3) 2.2 x 10-3 

CD8+ TEM 
3 15.9 10.5 1.7 (1.1 – 2.7) 3.4 x 10-1 

1 6.8 9.8 0.6 (0.4 – 0.9) 5.4 x 10-1 

CD4+ TCM 
2 22.8 14.0 1.5 (0.9 – 2.7) 1 

12 22.5 20.6 0.9 (0.5 – 1.5) 1 

CD8+ TEM T-bet+ Perforin+ 
8 + 9 12.2 / 3.7 9.0 / 4.8 1.0 (0.5 – 1.9) / 

0.8 (0.4 – 1.5) 1 

2 12.7 9.9 0.9 (0.5 – 1.9) 1 

CD4+ TEM TNFα+ 

(Th1) 

13 1.0 0.9 1.1 (0.6 – 1.9) 1 

14 3.8 1.9 1.9 (0.8 – 4.7) 1 

CD4+ Naïve 
15 7.0 15.4 0.6 (0.3 – 1.1) 1 

10 11.8 17.4 0.8 (0.4 – 1.4) 1 

B: Unstimulated 

CD4+ TCM IL-17+ 
(Th17) 16 0.9 0.2 5.7 (3.1 – 10.3) 4.0 x 10-4 

CD8+ TEM TNFα+ 14 1.5 0.6 3.7 (2.0 – 7.1) 1.4 x 10-2 
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Table 3. MASC results for clusters present in both unstimulated and stimulated samples (A), 

unstimulated samples alone (B) and stimulated samples alone (C). For shared cell subsets, the 

first row indicates statistics for unstimulated subsets and the second for stimulated subsets. 

Elements separated by “/” indicates statistics for two identical subsets found in the 

unstimulated and stimulated datasets. The odds ratio is shown with a 95% confidence interval. 

Differentially abundant subsets are highlighted by a bold P value (α = 0.05). TCM: T central 

memory. TEM: T effector memory. 

CD8+ TCM FoxP3+ IL-2+ 12 0.5 0.5 0.2 (0.1 – 0.5) 2.5 x 10-2 

CD8+ TCM PD-1+ 4 2.4 6.2 0.4 (0.2 – 0.7) 6.5 x 10-2 

CD8+ TEM CCR6+ Perforin+ 17 0.8 0.3 3.5 (1.6 – 7.6) 7.3 x 10-2 

CD8+ TCM Perforin+ 6 0.9 0.2 3.8 (1.6 – 8.7) 9.4 x 10-2 

CD4+ TCM GATA3+ 1 15.0 20.3 0.6 (0.3 – 1.2) 1 

CD4+ TCM Perforin+ 5 6.9 7.9 0.7 (0.4 – 1.2) 1 

CD8+ Naïve 10 2.2 5.3 0.8 (0.4 – 1.5) 1 

CD4+ TCM CD38+ 18 0.8 0.7 1.6 (1.0 – 2.7) 1 

C: Stimulated 

CD8+ TEM CD38+ T-bet+ 4 1.0 0.4 6.3 (2.3 – 17.0) 1.8 x 10-2 

CD8+ TEM CCR6+ T-bet+ 5 0.9 0.4 3.8 (1.8 – 7.9) 3.8 x 10-2 

CD4+ TCM TNFα+ 19 2.2 0.8 4.0 (1.9 – 8.5) 4.1 x 10-2 

CD4+ TCM CD38+ TNFα+ 18 3.9 9.0 0.3 (0.1 – 0.8) 4.1 x 10-1 

CD4+ TCM T-bet+ Perforin+ 8 0.2 0.6 0.3 (0.1 – 0.8) 4.1 x 10-1 

CD8+ TCM 3 11.7 10.2 1.4 (0.9 – 2.0) 1 

CD8+ TEM T-bet+ Perforin+ 6 3.3 4.5 0.9 (0.4 – 2.0) 1 

CD4+ TEM 9 9.1 7.6 1.1 (0.5 – 2.4) 1 

CD8+ TEM IFNγ+ TNFα+ 11 2.3 2.0 0.9 (0.4 – 2.3) 1 

CD4+ TCM CCR6+ 20 0.5 0.8 0.7 (0.4 – 1.5) 1 
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Agnostically defined cell clusters can be identified using conventional techniques 

To provide internal validation of the automated pipeline’s significant clusters, manual gating 

and standard statistical analysis of agnostically defined clusters was performed. Based on the 

phenotypes presented in figure 4 and the level of expression of each marker, gates were drawn 

by eye around all positive cells if the cluster had low expression of a marker on the heatmap, 

but only around high positive cells if the marker had high expression. 

Using these definitions of Th and Treg subsets and a standard statistical approach, manual 

gating was able to identify a clear imbalance between pro-inflammatory Th subsets and anti-

inflammatory subsets in RA. For example, out of the unstimulated dataset, manual gating was 

able to identify that subset 11 (CD4
+
 Tcm FoxP3

+
 IL-2

+
), a Treg subset, is decreased in RA (P = 

0.0004). The same population could also be identified in the stimulated dataset (subset 17, 

CD4
+
 Tcm FoxP3

+
 IL-2

+
, P = 0.0002). Pro-inflammatory Th cells were also clearly identified and 

statistically significantly increased in RA (CD4
+
 Tcm Tbet

+ 
IL-17

+
, subset 20, P = 0.0172; and 

subset 16, P = 0.0022; figure 8). Therefore, innovative approaches easily capture known CD4
+
 T 

cell subset imbalances in RA blood, even in a small sample size, by allowing for unconventional 

marker combinations.  
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Discussion 

We show the superiority of innovative immunophenotyping and automated analytical 

techniques over hypothesis-driven conventional biaxial gating (based on canonical biomarkers) 

to identify a Th1, Th17/Th2, Treg imbalance in RA peripheral blood in small sample sizes. Our 

strategy allows for unusual combinations of T cell markers, for instance T-bet and IL-17, 

capturing the plasticity of T helper cell populations, a more difficult task to achieve with 

standard gating strategies.  

Th17 cells are known to be phenotypically unstable ([33]). In our study, T-bet
+
 IL-17

+
 T cells are 

increased in RA blood. These cells have been termed Th1-like Th17 cells in the literature, co-

produce IL-17 and IFNγ, and are known to contribute to inflammation in the context of 

autoimmunity [33–35]. Interestingly, IFNγ production in Th1-like Th17 cells has been shown to 

be repressed by miR-146a [35] and loss of function polymorphisms in the microRNA-146a (miR-

146a) gene have been associated with an increased risk of developing RA and lupus in both 

European and Asian genetic association studies [36,37]; taken together, these data provide 

some mechanistic evidence that Th1-like Th17 cells are involved in the pathogenesis of RA. The 

methods outlined in this paper easily detect an increase of this subset in RA. 

We also found a significant decrease in the number of IL-2
+
 FoxP3 T cells (Tregs) in RA samples 

compared to controls. It is well-established that IL-2 is critical in maintaining Treg function [38] 

and that some Treg produce IL-2 [39]. However, the relative role of paracrine versus autocrine 

IL-2 secretion from nearby effector T cells [40] versus IL-2
+
 FoxP3 T cells [39] is unclear. Our 

data suggests that IL-2-producing Tregs rather than all Treg are playing an important role in RA. 

Again, our methods of automated analysis were able to easily identify this non-canonical cell 

type, without any previous hypothesis on its association.  

Due to our small sample size, our association results could theoretically represent false positive 

due to a sampling bias or caused by multiple testing. However, this is very unlikely, as first we 

confirm a plausible and previously reported imbalance of Th/Treg subsets in RA; second the 

mechanistic evidence supports our findings, and finally all statistical tests have been stringently 

corrected for multiple testing. These elements reinforce the credibility of our main conclusion: 
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the superiority of hypothesis-free clustering of many markers in small sample sizes over 

standard hypothesis-driven bi-axial gating.  

The hallmark of precision medicine and the primary aim of stratified medicine initiatives in RA 

[41] consists of stratifying patients into treatment response categories. Our study shows large 

heterogeneity across patients with some with a predominantly Th1 profile, others a Th17 

profile, or a Th1-like Th17 profile, while others are mainly characterised by a low IL-2
+
 Treg 

profile. As an example, stratifying patients by their IL-2
+
 Treg titres may dictate response to low-

dose IL-2 therapy, as has now been successfully trialled in lupus [42] and RA [43]. Furthermore, 

a Japanese group found that stratified medicine for psoriatic arthritis patients increased 

response rates significantly [16]. Immunophenotyped patients received ustekinumab if Th1-

dominant and secukinumab if either Th17-dominant or with a Th1/Th17-hybrid phenotype 

resulting in clinically significant improvement in response rates [16]. The same group have good 

one year follow-up data [44], suggesting that the immunophenotype could be the main 

predictor of drug response in precision medicine. Stratifying RA patients by their Th1/Th17 

phenotype, or by the Th1-like Th17 phenotype highlighted in this study, may suggest that 

despite the fact that previous trials of secukinumab in RA failed to reach their primary 

endpoint, it could be a viable treatment option in RA patient subgroups; further work is 

required to confirm this hypothesis. [45]. 

We have shown that non-biased automated analysis of large immune datasets is successful in 

identifying Th cell imbalance in RA with implications for precision medicine. We now plan to 

expand on these findings by testing their role in patient stratification for treatment response 

studies.  
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Key messages 

What is already known about this subject? 

• Large cytometric datasets are difficult to analyse manually due to the multidimensional 

nature of the data. 

• Manual data analysis may introduce significant bias and be underpowered to 

interrogate multidimensional data. 

What does this study add? 

• This study has shown that an unbiased automated clustering algorithm can successfully 

interrogate large cytometric datasets, finding differential expression of 2 rare T cell 

populations in RA patients (decreased IL-2
+
 Treg cells; increased Th1-like Th17 cells). 

How might this impact on clinical practice? 

• Understanding the underlying immunopathology of autoimmune disease is a 

prerequisite to finding new drug targets for treatment. 

• As our knowledge of T cell heterogeneity expands, discovering rare T cell populations 

will directly feed into the concept of precision medicine, to: ‘treat arthritis, right first 

time’. 
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Figure legends 

Figure 1. Abundances of Th and Treg CD4
+
 T cell subsets identified by manual gating of CyTOF 

data shown with mean, 95% confidence interval and p-value (shown above the pairwise 

comparisons). Points represent RA and HC samples. Mann Whitney U P values are shown above 

the pairwise comparisons. Graphs with cytokine expression are taken from the stimulated T cell 

dataset and those with surface markers and transcription factors are taken from the 

unstimulated dataset. Box A represents markers associated with Th1 cells, box B Treg cells, box 

C represents Th17-related markers, and box D Th2-related markers. 

Figure 2. Abundances of CD8
+
 T cell subsets identified by manual gating of CyTOF data shown 

with mean and 95% confidence interval. Points represent RA and HC samples. Mann Whitney U 

P values are shown above the pairwise comparisons. Graphs with cytokine expression are taken 

from the stimulated T cell dataset and those with surface markers and transcription factors are 

taken from the unstimulated dataset. 

Figure 3. A) Multidimensional scaling (MDS) plot based on median, arcsinh-transformed marker 

expression in unstimulated (U) and stimulated (S) T cell samples from rheumatoid arthritis (RA) 

patients and healthy controls (HC). B) PCA plot of the same data coloured by case-control 

status. C) PCA plot of the same data coloured by age group of participants.  

Figure 4. A) Heatmap of median marker expression (arcsinh, 0-1 transformed) for 20 T cell 

clusters identified in unstimulated cell samples by automated clustering. Each sample was 

downsampled to 2746 cells (n = 10 RA, 10 HC). The dendrogram represents hierarchical 

clustering using Euclidean distance and average linkage. B) As A), for stimulated samples (n = 10 

RA, 10 HC). Each sample was downsampled to 2224 cells. C) t-SNE plots of the same 

unstimulated cells, coloured by expression level of a selection of markers. D) As C), for 

stimulated cells. 

Figure 5. A) tSNE plots of unstimulated cells faceted by case-control status and coloured by 

cluster assignment. Samples were downsampled to 2746 cells each (n = 20). B) tSNE plot of 

unstimulated cells with conditions combined. Clusters with differential abundance in RA vs 

healthy controls (HC) according to MASC are highlighted (P ≤ 0.05). C) As A), for stimulated 

cells. Samples were downsampled to 2224 cells each (n = 20). D) As B), for unstimulated cells. 

Note that unstimulated and stimulated samples were clustered independently. 

Figure 6. Boxplots of the proportions of 20 T cell clusters identified in unstimulated RA and 

healthy control (HC) samples (n = 10 RA, 10 HC). The P value obtained from MASC is shown for 

each cluster, and a green outline indicates differential abundance between RA and HC (P ≤ 

0.05). 

Figure 7. Boxplots of the proportions of 20 T cell clusters identified in stimulated RA and 

healthy control (HC) samples (n = 10 RA, 10 HC). The P value obtained from MASC is shown for 

each cluster, and a green outline indicates differential abundance between RA and HC (P ≤ 

0.05). 
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Figure 8. Clusters 11 and 17 represent the abundance of manually gated subsets previously 

identified by the CyTOF automated clustering pipeline, shown here with mean and 95% 

confidence intervals. Clusters 20 and 16 represent the expression of CCR7 on Th1-like IL-17
+
 

cells. Points represent RA and HC samples. Mann Whitney U P values are shown above the 

pairwise comparisons. TEM: T effector memory cell. TCM: T central memory cell. 
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