
 

 
 

1 

Efficacy of Linear Regression Modelling of SARS-CoV-2 cases based on 1 

local wastewater surveillance 2 

 3 

Martin Lehmann 1,*, Michael Geissler 2,*, Waldemar Hahn 1, Richard Gebler 1, Björn Helm 3, Roger 4 

Dumke 2, Alexander Dalpke 2,4, and Markus Wolfien 1 5 

1 Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität 
Dresden, Germany 

2 Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Dresden, Germany 

3 Institute of Urban and Industrial Water Management, Technische Universität Dresden, Germany 

4 Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, 
Germany 

* Contributed equally 

 Corresponding Author: Martin Lehmann, martin.lehmann2@ukdd.de 

 6 

Abstract 7 

In the ongoing SARS-CoV-2 pandemic, there is a need for new strategies for surveillance and 8 

identification of arising infection waves. Reported cases of new infections based on individual testing 9 

are soon deemed inaccurate due to ever changing regulations and limited testing capacity. 10 

Wastewater based epidemiology is one promising solution that can be broadly applied with low efforts 11 

in comparison to current large-scale testing of individuals. Here, we are combining local wastewater 12 

data from the city of Dresden (Germany) along with reported cases and vaccination data from a central 13 

database (Robert-Koch-Institute) with virus variant information to investigate the correlation of virus 14 

concentrations in the wastewater and reported SARS-CoV-2 cases. In particular, we compared Linear 15 

Regression and Machine Learning (ML) models, which are both revealing an existing correlation of 16 

virus particles in wastewater and reported cases. Our findings demonstrate that the different virus 17 

variants of concern (Alpha, Delta, BA.1, and BA.2) contribute differently over time and parameters vary 18 

between variants, as well. By comparing the Linear Regression and ML-based models, we observed 19 

that ML can achieve a good fit for training data, but Linear Regression is a more robust tool, especially 20 

for new virus variants. We hereby conclude that deriving the rate of new infections from local 21 

wastewater by applying Linear Regression may be a robust approximation of tracing the state of the 22 

pandemic for practitioners and policy makers alike. 23 

Keywords: SARS-CoV-2, Wastewater, Correlation, Linear Regression, Machine Learning 24 

1 Introduction 25 

Recently, more contagious but less severe variants of the severe acute respiratory syndrome 26 

coronavirus 2 (SARS-CoV-2) occurred and encountered increasing vaccination rates. At the same time 27 

community test resources, as well as testing rigour, are slowly diminishing. Hence, fewer people may 28 

be tested, which poses the challenge of underestimating the community transmissions by magnitudes. 29 

This affects both political and clinical pandemic management, community trust, and general risk 30 

awareness. Since the beginning of the current pandemic, researchers have been studying the efficacy 31 

of methods to detect the presence of the novel SARS-CoV-2 virus in municipal wastewater treatment 32 

plants (WWTP). Wastewater-based epidemiology (WBE) shall be used as an early warning system since 33 

it shows changes in community transmission levels days before affected persons even recognise their 34 
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infection and get themselves tested, if done at all (Olesen et al., 2021). In addition, long-term 1 

monitoring can be achieved at a low cost and low impact compared to individual testing approaches 2 

(Daughton, 2020; Han et al., 2022). 3 

The current gold standard for the detection of the SARS-CoV-2 pathogen is the quantitative reverse 4 

transcriptase polymerase chain reaction (RT-qPCR) to target different genomes by means of specific 5 

primers. Advantages of RT-qPCR include high sensitivity and specificity, as well as wide adoption and 6 

availability. Disadvantages are mainly due to relatively high costs compared to other individual clinical 7 

testing methods (e.g., rapid antigen tests) and a long analysis time (Pérez-López & Mir, 2021). 8 

However, for wastewater surveillance, these disadvantages are negligible due to the low sampling 9 

frequency (once a day) and high pool-testing ratio (one test required for hundreds of thousands of 10 

people). RT-qPCR allows for additional quantification of the collected SARS-CoV-2 material (Nagura-11 

Ikeda et al., 2020). All existing variants of concern (VOC) of this virus (e.g., Alpha, Delta) can be detected 12 

by means of RT-qPCR tests with a high sensitivity, except for one specific S-gene target failure. 13 

Therefore, the recommendation is to test for a minimum of two different genome targets (Ferré et al., 14 

2022), which was also done in this study. Furthermore, since virus generation times (time of a complete 15 

infection cycle) and presence of distinct symptoms vary between variants and there remains a time lag 16 

upon official case reporting, it is expected that time lags between wastewater and reported cases may 17 

be different between virus variants as well (Abbott et al., 2022; Hart et al., 2022; Olesen et al., 2021). 18 

Following advances in sample treatment and analysis methods, test sensitivity appears high for these 19 

methods, so that SARS-CoV-2 residues can be detected in wastewater with a lower threshold of 20 

13/100k people (Manuel et al., 2021). 21 

However, interpretation and quantification of results of wastewater investigations is difficult in 22 

relation to officially reported community transmission levels since there are many differing influence 23 

factors on both approaches. The European Union (EU) is recommending the use of WBE even beyond 24 

the current pandemic for all its member states (Sinkevicius, 2021) and the World Health Organization 25 

(WHO) recognises its advantages alike (World Health Organization, 2020). Nevertheless, without a 26 

clear interpretation guideline for practitioners and policy makers, WBE alone might be prevented from 27 

delivering on its full potential. Hence, we are proposing a means of linking the results with the well-28 

known and established cases of new infections towards specific virus variants. 29 

This work shall investigate how effectively local wastewater data can be used to estimate community 30 

transmission levels (reported by the German authority “Robert Koch Institut” [RKI]) based on data from 31 

a medium-sized German city, namely Dresden (~500,000 inhabitants, area of 330 km²), in the time 32 

from 15th March 2021 to 30th April 2022. Our study includes a comparison between Linear Regression 33 

and Deep Learning (DL) models with Long Short-Term Memory (LSTM) units, to account for an 34 

interdependency and precise estimation between locally reported SARS-CoV-2 incidence and virus 35 

level in the wastewater.  36 

2 Methods 37 

2.1 Dataset 38 

For this analysis, SARS-CoV-2 concentrations in wastewater, reported case numbers, the virus variant 39 

distribution, vaccination status, as well as precipitation were combined into a daily time-series dataset. 40 

Cases are reported in numbers of infected people or in incidence rates (cases per 100,000 people). The 41 

latter allows a better comparison of regions with very different population densities. All of the above-42 

mentioned data was sampled from five different data sources as the following: 43 
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i) The wastewater sampling, measurement and analysis were conducted and results were 1 

provided by the TU Dresden wastewater and virology research groups (M. Geissler, R. 2 

Dumke, A. Dalpke). The data comprises of daily virus concentration measurements from 3 

wastewater samples (discharge proportional 24h composite samples, collected after the 4 

grit chamber and before primary clarification) for the Dresden area (WWTP Dresden-5 

Kaditz). In the present study, the raw wastewater samples were analysed by  means of 6 

polyethylene glycol precipitation (PEG), RNA extraction, PCR inhibitor removal, and final 7 

RT-qPCR using a commercial kit for amplification of E and S gene of SARS-CoV-2 as 8 

published earlier (Dumke et al., 2021). Here, concentrations of SARS-CoV-2 in wastewater 9 

are referred to as wastewater data. 10 

ii) The reported cases were provided by the RKI on their Github-page 11 

(https://github.com/robert-koch-institut/SARS-CoV-2_Infektionen_in_Deutschland). It 12 

contains data for each day and age group with an update of infection rates (also looking 13 

back in time in case of late reports or error corrections). After aggregation, one row 14 

remains for each day based on the most recent data. There were two different date 15 

columns available: (a) when the result was reported to the authorities, (b) when the 16 

patient reported symptom onset (which is usually a few days earlier; if no date was 17 

reported by the patient, it matches (a)). As reference for later analysis, the symptom onset 18 

date is used (“Refdate”), instead of the reporting date. Doing this will align the data better 19 

with the SARS-CoV-2 concentration in wastewater. 20 

iii) RKI data for virus variant sequencing (https://github.com/robert-koch-institut/SARS-CoV-21 

2-Sequenzdaten_aus_Deutschland) contains a table of analysed virus samples with 22 

attributes of date, found lineage, and sampling reason. According to their provided legend, 23 

sampling reasons “X” (unknown) and “N” (None) were excluded. 24 

iv) Vaccination data were also provided by RKI on their Github page 25 

(https://github.com/robert-koch-institut/COVID-19-Impfungen_in_Deutschland). Data is 26 

grouped by day and age group. It contains the number of vaccinated people in each group 27 

and how many shots they have received so far. From this, time-series were built for both 28 

the relative population with full vaccination status and booster status. 29 

v) Precipitation data for Dresden was downloaded from Meteostat 30 

(https://meteostat.net/de/place/de/dresden?s=D1051&t=2021-03-15/2022-04-30) and 31 

contains accumulated samples for each day from 15th March 2021 to 30th April 2022. 32 

2.2 Data preprocessing 33 

The RKI data was filtered for the locality “SK Dresden” and daily reported cases were accumulated as 34 

moving sum for n previous days (being 7, 14, and 28) respectively for each sample at time point 𝑡. 35 

Accumulation for seven days was selected in accordance with the standard RKI reporting scheme, 14 36 

days as it is handled often internationally, and 28 days was used as accumulation period in some 37 

previous studies (Galani et al., 2022; Medema et al., 2020; Zhu et al., 2022). Cases are represented as 38 

incidence rates, i.e. the case numbers were divided by the population number. Additionally, 39 

accumulates were normalised to seven days (equation (1)). This makes the results more comparable 40 

(same value range) and improves later interpretation and application of the model.  41 

 𝑠𝑢𝑚_𝑛𝑡 =
∑ 𝑑𝑎𝑖𝑙𝑦𝑡−𝑘
𝑛
𝑘=1

𝑛
∗ 7 (1) 

   

The wastewater data was also accumulated for 7, 14, and 28 days using equation (1) and will be 42 

analysed up until 30th April 2022, allowing for another three weeks (as per 22nd May 2022) of delayed 43 
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case reporting (which is then attributed to an earlier date). All data was merged and gaps were linearly 1 

interpolated, as well as negative values excluded. In addition, for the linear model, all days with more 2 

than 5mm precipitation were excluded according to Rubio et al. (2021), then interpolated before 3 

aggregating additional columns.  4 

The final data table summarises each variable together with their source and reason of inclusion after 5 

preprocessing (Table 1). A plot of the resulting time series is given in Figure 5. 6 

Table 1 Summary of variables in the final dataset after preprocessing with data source and reason for inclusion. Data source 7 
numbering according to dataset section -wastewater. 8 

Variable name Data Source Reason for inclusion Comment 

WW daily i (UKDD) correlation parameter/ 
Machine Learning input 

raw data 

WW 7 days i (UKDD) correlation parameter/ 
Machine Learning input 

aggregated 7 days 

WW 14 days i (UKDD) correlation parameter/ 
Machine Learning input 

aggregated 14 days 

WW 28 days i (UKDD) correlation parameter/ 
Machine Learning input 

aggregated 28 days 

Cases daily ii (RKI) correlation parameter/ 
estimation target 

raw data 

Cases 7 days ii (RKI) correlation parameter/ 
estimation target 

aggregated 7 days 

Cases 14 days ii (RKI) correlation parameter/ 
estimation target 

aggregated 14 days 

Cases 28 days ii (RKI) correlation parameter/ 
estimation target 

aggregated 28 days 

Variant contribution: Alpha iii (RKI) linear model separation/ 
Machine Learning input 

potential influence on case numbers 

Variant contribution: Delta iii (RKI) linear model separation/ 
Machine Learning input 

potential influence on case numbers 

Variant contribution: BA.1 iii (RKI) linear model separation/ 
Machine Learning input 

potential influence on case numbers 

Variant contribution: BA.2 iii (RKI) linear model separation/ 
Machine Learning input 

potential influence on case numbers 

# People 2nd vaccination shot iv (RKI) Machine Learning input potential influence on case numbers 

# People 3rd vaccination shot iv (RKI) Machine Learning input potential influence on case numbers 

Precipitation daily v (Meteostat) preprocessing input/ 
Machine Learning input 

potential dilution of wastewater 
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 1 

2.3 Modelling of SARS-CoV-2 cases via Linear Regression 2 

The simplest possible dependency between wastewater data and new infection cases is linear. Many 3 

studies found that correlation of confirmed cases and concentration of SARS-CoV-2 in wastewater can 4 

be very strong and models are effective (Ai et al., 2021; Medema et al., 2020). Under the assumption 5 

of linear correlation and because of the independence of scale of its results, we used Pearson 6 

correlation. In particular, the most common approach for time-series is to employ cross-correlation 7 

(Bracewell, 1965) and calculate a “lead time” or “lag” by which both wastewater and reported cases 8 

time series would need to be shifted against each other to yield a maximum correlation coefficient. 9 

Medema et al. (2020) suggest that community prevalence should be accumulated for 28 days 10 

(following indications that virus shedding continues for that long) and correlated against daily 11 

wastewater data. However, their data was from early 2020, only targeting the “wildtype” 12 

(unmutated/first occurring) virus variant and (comparably) low community transmission levels 13 

(Incidence < 100). Newer studies employ varying periods between 3 and 28 days of averaging 14 

depending on the target application. Interestingly, longer periods usually yield better correlation 15 

coefficients and can therefore be used when a single conversion factor is required (Galani et al., 2022; 16 

Weidhaas et al., 2021; Zhu et al., 2022). 17 

A Linear Regression is fitted (using the Python library ”scikit-learn”), which approximately represents 18 

the actual correlation between both series for each accumulation period, while accounting for the 19 

relative proportion of the respective variant at each point in time by weighting the sample contribution 20 

by equations (2) (sample weighting), (3) (weighted covariance), and (4) (weighted correlation 21 

coefficient). 𝑖 is the sample index, 𝑤𝑖 the variant specific contribution factor, 𝑥𝑖 the sample value of 22 

the first time series and 𝑦𝑖  the sample value of the other time series. Comparing actual and modelled 23 

cases, the (weighted) correlation coefficient (𝑟 ∈ [0; 1]) will be used as a performance metric for each 24 

partition and accumulation period, as well as for the entire data set. 25 

 𝑚(𝑥;𝑤) =
∑ 𝑤𝑖𝑥𝑖𝑖

∑ 𝑤𝑖𝑖
 (2) 

   

 𝑐𝑜𝑣(𝑥, 𝑦;𝑤) =
∑ 𝑤𝑖 ∙ (𝑥𝑖 −𝑚(𝑥;𝑤))(𝑦𝑖 −𝑚(𝑦;𝑤))𝑖

∑ 𝑤𝑖𝑖
 (3) 

   

 𝑐𝑜𝑟𝑟(𝑥, 𝑦; 𝑤) =
𝑐𝑜𝑣(𝑥, 𝑦;𝑤)

√𝑐𝑜𝑣(𝑥, 𝑥; 𝑤)𝑐𝑜𝑣(𝑦, 𝑦;𝑤)
 (4) 

 26 

The virus variant data is filtered for variants of concern (VOC), rolling averaged with a window of ten 27 

days, to average out fluctuations in the sampling process (e.g. non-representative sampling, date not 28 

aligned with symptom onset), and the relative contribution to all samples is calculated. 29 

2.4 Modelling of SARS-CoV-2 cases via Machine Learning 30 

More complex interdependences of multiple variables could be described with non-linear models, such 31 

as neural networks. Machine Learning models have been trained to show an alternative route towards 32 

the estimation of actual infections. Sequential models with LSTM units have been successfully used in 33 

similar real-world applications (Ahmed et al., 2022; Nikparvar et al., 2021; Rashed et al., 2022). 34 

The input data for this model comprises the wastewater data (accumulated for 14 days only, this seems 35 

a good compromise between smoothness and timeliness of the results), virus variant distribution, 36 
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community vaccination status, and finally, the reported cases (14 days accumulated) as a target vector. 1 

All input data has been scaled to the target range of 0-1 and two different sequential models have 2 

been trained (Table 1), using Google’s python library “Tensorflow” (Abadi et al., 2016). Training data 3 

has been split into windows of constant length (60 samples each) and two sets of windows for training 4 

(75%) and validation (25%) of the model. A variable portion at the end of the dataset is excluded for 5 

final evaluation of the model’s performance (e.g. the BA.2 wave, see Figure 4). Therefore, the models 6 

are trained to predict each day’s actual reported cases based on the history of the input data 7 

summarised. The training was conducted on a free instance of Google’s Colaboratory platform using 8 

default GPU resources. 9 

The properties of the layers of the models are outlined in Table 4 The first “simple” model has only 1 10 

LSTM layer and ~5,000 neurons, and serves as a simple baseline; the “deep” model comprises 4 LSTM 11 

layers and over 300,000 neurons to cover more complexity. LSTM units (“Long short-term memory”), 12 

introduced by Hochreiter & Schmidhuber (1997), are used to model recurrent patterns in time series. 13 

The main aspect is that non-linear correlations might also have a time dependent element of variable 14 

length (Staudemeyer & Morris, 2019). The size of the networks are based on literature findings and 15 

experimentation with the data. More details can be found in Table 4. Using variable-length windows, 16 

(covering the entire training data from the beginning) instead of fixed-length windows, has been 17 

considered for this work but did not yield better overall performance. The model is expected to learn 18 

the influence of wastewater virus load on the reported case numbers, which is a pattern that seems 19 

to repeat itself throughout the dataset with slightly different (and also time-dependent) parameters, 20 

such as vaccination status and currently dominant virus variant. 21 

3 Results 22 

According to the methods described earlier, data was preprocessed, analysed, and evaluated against 23 

the reported cases. Error and correlation metrics were used to compare different models and 24 

architectures against each other. 25 
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3.1 Linear Regression 1 

2 

 3 

A local linear fit for each of the virus variants (rows) and each of the accumulation periods (columns) 4 

with data that has been time shifted already according to maximum Pearson coefficient (Equations (2)-5 

(4)) together with the best linear fit is displayed in Figure 1, where each subtitle also indicates a lag 6 

period. A positive lag means that wastewater data leads and case data lags, a negative lag vice versa. 7 

Since virus variant contribution varies in time, the input samples for the time lagging, the generation 8 

of the Linear Regression model, as well as the calculation of Pearson r have been weighted according 9 

to the respective variant’s contribution of each sample. This results in a strong influence of samples 10 

where a variant is dominant and a weak influence of samples with a relative variant contribution of 11 

<0.5. Generally, longer accumulation periods result in a better fit of the Linear Regression and 12 

therefore higher values for the Pearson Correlation Coefficient r and lower errors. Samples with lower 13 

Figure 1 Linear regression for each virus variant and accumulation period (point size relative to strain contribution, r: 
Pearson correlation coefficient, y: regression equation, error: root mean squared error (RMSE)) 
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variant contribution (smaller scatter points) do not seem to have a higher likelihood of being outliers 1 

in terms of the Linear Model. 2 

Figure 2 shows a combination of all derived linear models. In general, a positive proportional relation 3 

between wastewater and case data prevailed. Yet, different curves for each virus variant highlight the 4 

differences between the individual models. BA.2 and Delta are very close to the global model, Alpha 5 

and BA.1 have a significantly different slope, while all models are roughly pointing towards the origin 6 

of coordinates. 7 

 8 

Figure 2 Linear Regression for each virus variant (Blue: Alpha, Orange: Delta, Green: BA.1, Red: BA.2) and combined global 9 
linear model (black line). Scatter points: raw data. Accumulated over 14 days. 10 

By applying the regression models to the time series of wastewater data, virus variant specific as well 11 

as overall estimates of cases for each aggregation period can be derived (see Figure 3). Each of the 12 

models fits the data best in the periods where the respective variant is dominant and is less accurate 13 
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for other periods. While estimates from the Delta, BA.2 and global model lie very close together, the 1 

Alpha and BA.1 models mark the upper and lower boundaries respectively. 2 

 3 

Figure 3 Estimation of reported cases from wastewater data from individual models. Color shades represent local dominance 4 
of virus variants. Blue: Alpha, Orange: Delta, Green: BA.1, Red: BA.2 5 

3.2 Machine Learning 6 

Machine Learning models have been trained to show an alternative route towards the estimation of 7 

actual cases. The input data for this model comprises the wastewater data (accumulated for 14 days 8 

only, which poses a good compromise between smoothness and timeliness of the results), virus variant 9 

distribution, community vaccination status, precipitation, and finally, as a target vector, the reported 10 

cases (14 days accumulated). All input data has been scaled to the target range of 0-1.  11 

After training each model for a maximum of 500 epochs (i.e. iterations of the entire data) until 12 

convergence with a batch size of 32 samples (per update of the internal weights), the wastewater data, 13 

reported cases, estimate (model output) together with the resulting error are plotted in Figure 4. The 14 

red and green shades indicate the model’s variation of estimate and error within ten iterations of the 15 

entire training process, including random split of training and validation data. The dashed vertical line 16 

indicates the split between training and testing data (between BA.1 & BA.2 wave). Data before the line 17 

(2022-03-11) was used for training, while data beyond the line was only used for evaluating the model 18 

after training. Here, the BA.2 wave was used as a realistic testing scenario for new variants, which the 19 

model will have to predict. While there is good fit of the models in the first three waves, errors increase 20 

significantly after that for the last BA.2 wave (dashed line) where they have never seen the training 21 

data. The simple model exhibits higher errors in the training section, but shows some correlation in 22 
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the testing section, where the deep models fails to fit the target curve. Both ML-based models are 1 

exhibiting a relatively low variation in the training interval (until BA.2). 2 

 3 

Figure 4 Estimations with the “simple” and “deep” model based on training data up to the BA.1 wave (April 2022). Red and 4 
green shades are variations between different training batches. 5 

 6 

3.3 Comparison of estimation outcome for Linear Regression and Machine Learning 7 

For the comparison of the two methods, the 14-days aggregated input data was segmented according 8 

to periods of dominant variants, i.e. Alpha, Delta, BA.1, and BA.2 as shown in the methods section. 9 

Models were fitted to the respective individual periods or consecutive multiple periods. Subsequently, 10 

the fitted models were applied to the periods of the other variants.  For all model-period combinations, 11 

after correcting for the time lag of each wave, goodness-of-fit was evaluated separately. Root Mean 12 

Squared Errors (RMSE) and Pearson Correlation Coefficients served as indicators for model 13 

performance. Results for all models and combinations of training and testing data are displayed in 14 

Table 2 and Table 3 respectively. The columns either describe a single wave, for which the model was 15 

trained (e.g. “Alpha”) or a series of consecutive waves (e.g. “Alpha->Delta”), i.e. all data included in the 16 

period which were used for training.  17 

It can be observed, that the deep ML model, while yielding lower errors on the training data, does not 18 

consistently yield lower errors on the test data (Table 2). Variance is low for training and high for testing 19 

periods for both ML models (Figure 4). Conversely, the correlation coefficients are high for training and 20 

low for testing periods (Table 3).  21 

The Linear Model’s correlation (Table 3) with the training data is lower than that of the ML models, 22 

because there is no curve fitting process involved and wastewater data is simply shifted linearly in y-23 

direction. Hence, the correlation coefficient is the same for each wave, independently of the model 24 

used, since the time lag is corrected in the evaluation stage of each wave. 25 

Of note, due to the lack of sufficient training data on the Alpha wave (due to 60 days window length), 26 

results might not be directly comparable to the linear model for this wave.27 
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Table 2  Errors (RMSE) for all models, training and testing sections. Lowest errors for each column are in bold font. 

 Linear Model Simple LSTM Model Deep LSTM Model 

Train on→  

 

Test on ↓ 

Alpha Delta BA.1 BA.2 Alpha 

-> 

Delta 

Alpha 

-> 

BA.1 

Alpha 

-> 

BA.2 

Alpha Delta BA.1 BA.2 Alpha 

-> 

Delta 

Alpha 

-> 

BA.1 

Alpha 

-> 

BA.2 

Alpha Delta BA.1 BA.2 Alpha 

-> 

Delta 

Alpha 

-> 

BA.1 

Alpha 

-> 

BA.2 

Alpha 0.005 0.074 0.123 0.061 0.071 0.150 0.142 0.003 0.136 0.222 0.150 0.004 0.005 0.006 0.001 0.461 0.190 0.144 0.002 0.005 0.006 

Delta 0.148 0.029 0.161 0.071 0.029 0.168 0.082 0.189 0.042 0.145 0.193 0.014 0.017 0.018 0.196 0.161 0.145 0.128 0.007 0.009 0.010 

BA.1 0.357 0.182 0.061 0.195 0.184 0.070 0.120 0.499 0.147 0.082 0.297 0.245 0.070 0.061 0.539 0.112 0.091 0.331 0.136 0.014 0.015 

BA.2 0.501 0.107 0.421 0.069 0.108 0.414 0.083 0.557 0.412 0.233 0.332 0.547 0.203 0.063 0.598 0.224 0.192 0.370 0.211 0.228 0.015 

Avg. 0.253 0.098 0.191 0.099 0.098 0.201 0.107 0.312 0.184 0.171 0.243 0.203 0.074 0.037 0.334 0.239 0.155 0.243 0.089 0.064 0.012 

 

 

Table 3  Pearson Correlation Coefficients for all models, training and testing sections. Lowest errors for each column are in bold font. 

 Linear Model Simple LSTM Model Deep LSTM Model 

Train on→  

 

Test on ↓ 

Alpha Delta BA.1 BA.2 Alpha 

-> 

Delta 

Alpha 

-> 

BA.1 

Alpha 

-> 

BA.2 

Alpha Delta BA.1 BA.2 Alpha 

-> 

Delta 

Alpha 

-> 

BA.1 

Alpha 

-> 

BA.2 

Alpha Delta BA.1 BA.2 Alpha 

-> 

Delta 

Alpha 

-> 

BA.1 

Alpha 

-> 

BA.2 

Alpha 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.988 0.830 0.772 -0.553 0.985 0.983 0.982 0.999 0.737 0.681 0.915 0.995 0.997 0.996 

Delta 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.929 0.977 0.598 0.630 0.997 0.995 0.994 0.800 0.614 0.868 0.960 0.999 0.999 0.999 

BA.1 0.912 0.912 0.912 0.912 0.912 0.912 0.912 0.880 0.947 0.956 0.646 0.937 0.967 0.981 0.634 0.919 0.941 0.850 0.914 0.999 0.999 

BA.2 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.611 0.200 0.461 0.730 0.223 0.665 0.969 0.324 0.335 0.634 -0.043 0.442 0.510 0.998 

Avg. 0.958 0.958 0.958 0.958 0.958 0.958 0.958 0.852 0.739 0.697 0.363 0.786 0.902 0.982 0.689 0.651 0.781 0.670 0.838 0.876 0.998 
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4 Discussion 1 

While being aware of a multitude of uncertainties in the input data, which are often impossible to 2 

quantify (see Limitations), the above work shows that a good correlation can be found when building 3 

separate models for each virus variant. In contrast to other findings, those correlations can all be 4 

described as linear and none of the axes was transformed. Linearity was inherently assumed at the 5 

beginning of the analysis when calculating the time lag. For this calculation, the Pearson coefficient 6 

has been used, which is a linear measure. More research could be conducted using non-linear 7 

correlation measures, such as spearman or dynamic time warping (Berndt & Clifford, 1994; Spearman, 8 

1961; Tsinaslanidis et al., 2014). Furthermore, potential heteroscedasticity (scale-dependent variance) 9 

of the linear correlation models should be investigated. 10 

When analysing Figure 1, some scatter plots showed hysteresis around the linear model which may 11 

result from a different time lag depending on whether slopes are rising or falling (e.g.: “BA.2, 28 days”). 12 

A potential explanation could be that cases are only reported once when an infection is detected 13 

whereas virus material can be found in wastewater for a longer period. This seems to be dependent 14 

on the respective virus variant as indicated earlier in the literature, where shedding patterns were 15 

found to differ between virus variants (Bertels et al., 2022; Sapoval et al., 2021; Wurtzer et al., 2022). 16 

It may be worthwhile to train a separate model (and lag) for each slope of the data to enhance 17 

coherence. Different, more fine-tuned aggregation times could be investigated as indicated by some 18 

of the literature (Galani et al., 2022; Zhu et al., 2022). Furthermore, different testing efficiencies for 19 

establishing case numbers might impact lag time and shape parameters of the functional relation 20 

between wastewater and case data (Xiao et al., 2022). A correction of testing efficiency to estimate 21 

total infected population, e.g. provided by (Chiu & Ndeffo-Mbah, 2021) might improve the consistency 22 

in parameter estimation. 23 

As shown in Figure 3, the different models can be used to estimate today’s rate of new infections for 24 

each virus variant. However, as models are derived for individual virus variants, deriving new models 25 

for new variants can be very challenging, as case reports may not continue to be as reliable in the 26 

future. Potential solutions may be: (1) Using the global model, which is derived from all data, 27 

disregarding the influence of different virus variants. This would significantly add to the overall 28 

uncertainty but may reduce specific uncertainty for unknown novel virus variants until more 29 

information is available. (2) Small scale studies of specific shedding patterns of future variants and their 30 

correlation to actual reported cases. This could happen in closed communities, e.g. in hospitals, cruise 31 

ships or small towns. Further research would be necessary on how that is applicable to larger WWTPs 32 

and areas, such as the case shown. (3) Tune a free modelling parameter for new virus variants, which 33 

are easily adjusted as more information about variant specific properties become available. A future 34 

model might comprise of e.g. 80% Delta and 20% BA.2 characteristics. 35 

It could be shown that, with relatively little effort, an accurate machine-learning model can be trained 36 

for periods where data is available. However, in the testing periods (beyond training period), those 37 

models often fail to even correlate to the target variable. Without more insight into the inner workings 38 

of the black box or lengthy hyperparameter tuning, it is difficult to build a reasonable predictive model 39 

for new data samples, especially new virus variants, as model parameters are difficult to adjust 40 

manually. An interesting future research question will be how to update future models with a less than 41 

optimal target vector. Still, gaining practitioner’s trust in such models remains a challenge and linear 42 

models are often much easier to implement, e.g. in database systems and visualisations. Since the ML 43 

models learn from the features in the training data and because each virus variant development is 44 

stored in its own feature, new variants are only represented in their own feature, which was not 45 
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present (or holding meaningful data) during the training process. So whatever characteristics the 1 

model has learnt from those features is significantly crippled when they vanish for new testing data. 2 

Given that little hyperparameter-tuning has been done there is a large potential for further 3 

optimisation of all presented model types and room for research on different model architectures. 4 

Furthermore, overfitting might have occurred during the training process and should be investigated.  5 

Given the results of this work, we conclude that ML may not be the best tool for this task because of 6 

the mentioned drawbacks and difficult tuning process. Investigating a multivariate Linear Regression 7 

is probably a more successful path and is a promising topic for further research. 8 

When case reporting fails to reflect the actual rate of infections, wastewater surveillance can be a 9 

surrogate measure, even when observing a slightly higher uncertainty. Wastewater data is easier much 10 

less expensive to procure than conducting individual swabs on people, especially on a large scale. 11 

When basing pandemic measures on WBE, politics and businesses alike could be using a very robust 12 

tool (given further research on uncertainties) that is independent of individual testing motivation, test 13 

centre availability or kind of testing procedure (rapid antigen tests vs. PCR). Hospitals could plan their 14 

occupation ahead, communities adjust their guidelines and measures and individuals assess their 15 

personal risk before meeting anyone. Especially hospitalisation is yet underrepresented in research 16 

and should soon be investigated (also see Lünsmann et al., 2022; Zhu et al., 2022). 17 

Furthermore, further research is needed on virus shedding patterns in faeces, viral load concentration 18 

and their development over time (Zhu et al., 2022). 19 

5 Limitations 20 

In general, due to a lack of standardisation and different population density and different local 21 

properties, the results between any two WWTP are not directly comparable. The RKI data source for 22 

reported cases only contains locality information on district level (third level territorial units for 23 

statistics). Cases are aggregated with a provided district-level code. However, according to the Dresden 24 

WWTP, wastewater is collected from twelve municipalities surrounding Dresden area as indicated in 25 

the RKI data and amounts for roughly 650k citizens or 613km² (compare Dresden: 556k, 328km²) 26 

(Stadtentwässerung Dresden, 2018; Statistisches Bundesamt, 2021). As data for such small entities is 27 

not available in the RKI data, it can only be noted as a potential influence factor to explain uncertainties 28 

in the model. 29 

5.1 Influencing factors on measured virus load in wastewater 30 

As Kitajima et al. (2020) point out, many factors can influence wastewater surveillance data, such as 31 

“differences in excretion rates of viruses during the course of infection, temporal delays and the 32 

inconsistent capture of spatial variability due to travel and use of multiple wastewater systems in time, 33 

and dilution due to precipitation” that may limit virus detection rates. A lack of standardisation of the 34 

methods used in each WWTP also makes the results less comparable. A recent comparative study of 35 

the recovery rates using three commonly used viral concentration methods found little differences 36 

between the methods per se, but highlighted sample turbidity, storage temperature and surfactant 37 

load as potential major influence factors in UK wastewater samples (Kevill et al., 2022). Bertels et al. 38 

(2022) confirm in their literature review that at least 17 factors can influence measured viral loads in 39 

wastewater and try to categorise them, such as shedding-related factors, population size, in-sewer 40 

factors, as well as sampling strategy. 41 

Also, the contributions of different virus variants are found to influence the amount of virus material 42 

shed into the wastewater through faeces (Weidhaas et al., 2021), specifically, the Omicron (BA.1) 43 
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variant appears to expose lower levels of virus shedding (low amounts of virus material contained in 1 

bodily fluids) (Yuan et al., 2022). It remains an open question how the new BA.2 fits into this. While 2 

there are specific PCR, as well as genome sequencing tests available and widely adopted, to detect 3 

specific variants of the virus (Wurtzer et al., 2022), it is less relevant for the envisaged correlation of 4 

the reported community transmission levels.  5 

As for rain on the sewage systems, Rubio-Acero et al. (2021) found in their data, that precipitation of 6 

less than 5mm (in 24h) had no adverse effect on the viral detection performance. They disregarded all 7 

days in their data above this threshold and found their data unaffected by rainfall (see also Trottier et 8 

al., 2020).  9 

5.2 Official case reporting 10 

Governmental strategies for testing and reporting official case numbers vary over time depending on 11 

epidemical situation and current political agenda. For example, in the beginning of the pandemic in 12 

2020, when vaccines were not available yet, measures were very strict on a personal and public level. 13 

As soon as rapid antigen tests were available, regular testing was demanded by many businesses (e.g. 14 

restaurants) as an entry requirement. Upon a positive rapid testing result, citizens were required to 15 

get a PCR test that feeds into the official reports. This strategy led to a high percentage of actual 16 

discovered infections (and a low number of undetected infections). An additional direct influence 17 

factor on reported cases refers to the varying access to testing (Olesen et al., 2021).  18 

The more vaccinations had been administered and hospitalisation rates went down, the less often 19 

people had to get themselves tested. Furthermore, some virus variants (e.g. Omicron) cause milder 20 

symptoms, which often do not require medical treatment, which leads to more people just staying 21 

home instead of going to a test centre (Maisa et al., 2022). On public holidays and in times of high 22 

community transmission rates, it can be very challenging to find free capacities in either a test centre 23 

or a laboratory or even get the results back on time. 24 

All of the earlier mentioned uncertainties in the input data might explain any outliers and diversions, 25 

especially in the linear model. With the current knowledge, it is near impossible to quantify any of 26 

those effects so that the only option at this point is to accept them as the given approximation. 27 

5.3 Computational shortcomings 28 

Due to the focus of this work and partly due to the lack of computational resources, intensive 29 

hyperparameter tuning has not been done on the deep learning models. It is expected that the efficacy 30 

of the models could be enhanced with proper fine-tuning but was simply out of scope in this work. 31 

Different model sizes have not been considered systematically. 32 

6 Conclusion 33 

The use of wastewater-based epidemiology has been evaluated in light of the current SARS-CoV-2 34 

pandemic. Input data has been procured and analysed. Virus variant based Linear Regression models 35 

and ML models have been built, and their performance compared. Lastly, their use cases, shortcomings 36 

and potential fields of further research have been discussed. 37 

We hereby conclude that quantified virus particles in the wastewater can be a reasonable 38 

approximation for the reported cases. However, the accuracy and detail of the modelled correlation is 39 

highly virus variant dependent, which is why a continuous adaptation of the currently most dominant 40 

variant in terms of availability and verifiability is essential for our proposed approach. Since it is rather 41 

difficult to obtain precise information about the dilution of virus particles of new virus variants, one 42 

may use information from other local areas with newly arising variants and parametrize the new model 43 
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accordingly. The respective variant information could be tested via qPCR or sequencing approaches. In 1 

turn, we suggest the incorporation of virus variant information into other related forecasting models, 2 

which can be an essential asset because it addresses different existing and novel variants at the same 3 

time. 4 

The proposed linear model can easily be incorporated into any database or visualisation platform, as 5 

well as parameterised and extended. It can be of great use for any authority, clinical, and political 6 

decision makers, as well as the public as an indication of the current level of local infections. 7 
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 Dropout (None, 16) 0 Chance=0.3 

 Dense (None, 1) 17  

deep 

 LSTM (None, 7, 64) 32000  

 LSTM (None, 7, 128) 98816  

 Dropout (None, 7, 128) 0 Chance=0.3 

 LSTM (None, 7, 128) 131584  

 Dropout (None, 7, 128) 0 Chance=0.3 

 

LSTM (None, 64) 49408 

Recurrent dropout=0.1 

L1 regularizer=0.01 

L2 regularizer=0.01 

 Dropout (None, 64) 0 Chance=0.3 

 Dense (None, 1) 65  

 1 
Figure 5 Raw wastewater data and reported cases with different accumulation periods (cases_xdays: reported cases 2 
(dashed), WW_xdays: Aggregated wastewater (WW) concentration (each accumulated over x∈[7,14,28] days)). Color 3 
shades represent local dominance of virus variants. Blue: Alpha, Orange: Delta, Green: BA.1, Red: BA.2 4 
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