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Abstract 10 

We introduce the angular reproduction number W, which measures time-varying changes in 11 
epidemic transmissibility resulting from variations in both the effective reproduction number R, 12 
and generation time distribution w. Predominant approaches for tracking pathogen spread 13 
either infer R or the epidemic growth rate r. However, R is biased by mismatches between the 14 
assumed and true w, while r is difficult to interpret in terms of the individual-level branching 15 
process underpinning transmission. R and r may also disagree on the relative transmissibility 16 
of epidemics or variants (i.e., rA>rB does not imply RA>RB for variants A and B). We find that 17 
W responds meaningfully to mismatches and time-variations in w while mostly maintaining the 18 

interpretability of R. We prove that W>1 implies R>1 and that W agrees with r on the relative 19 

transmissibility of pathogens. Estimating W is no more difficult than inferring R, uses existing 20 
software, and requires no generation time measurements. These advantages come at the 21 
expense of selecting one free parameter. We propose W as complementary statistic to R and 22 
r that improves transmissibility estimates when w is misspecified or time-varying and better 23 
reflects the impact of interventions, when those interventions concurrently change R and w or 24 
alter the relative risk of co-circulating pathogens.  25 

Keywords: infectious diseases; epidemic models; reproduction numbers; generation times; 26 
growth rates; transmission dynamics. 27 

Introduction 28 

Estimating the rate of spread or transmissibility of an infectious disease is a fundamental and 29 
ongoing challenge in epidemiology [1]. Identifying salient changes in pathogen transmissibility 30 
can contribute important information to policymaking, providing useful warnings of resurgent 31 
epidemics, assessments of the efficacy of interventions and signals about the emergence of 32 
new variants of concern [1–3]. The effective or instantaneous reproduction number, R, and 33 
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time-varying growth rate, r, are commonly used to characterise pathogen transmissibility. The 34 
former statistic is an estimate of the average number of new infections per active (circulating) 35 
past infection, while the latter describes the exponential rate of new infection accumulation [4]. 36 

Although R and r are important and popular means of tracking the dynamics of epidemics, 37 
they suffer from key limitations that diminish their fidelity and interpretability. Specifically, the 38 
meaningfulness of R depends on our ability to measure the generation time distribution of the 39 
infection under study, w. This distribution captures the inter-event times among primary and 40 

secondary infections [5] and is convolved with the past infections to define L, the time-varying 41 

total infectiousness of the disease. The total infectiousness serves as the denominator when 42 

inferring R, which is the ratio of new infections to L. We illustrate all key notation in Figure 1. 43 

However, infection times and hence w are difficult to measure, requiring detailed  transmission 44 
chain data from contact tracing or transmission studies [6]. Even if these data are available, 45 

the estimated w (and hence L) depends on how inter-event times are sampled or interpreted 46 

(e.g., there are forward, backward, intrinsic and realised generation intervals) [7,8]. 47 

 48 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2023. ; https://doi.org/10.1101/2022.10.19.22281255doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.19.22281255
http://creativecommons.org/licenses/by/4.0/


Figure 1: Definitions of transmissibility metrics. Panel A plots generation time distributions 49 
that define how past infections cause later ones via the probabilities or weights w with support 50 
m. This involves convolving these weights with past infection incidence I. We show in panel B 51 
that if we represent w and I as vectors then the convolution is equivalent to a projection of w 52 
onto the vector of I. Panels C-D illustrate that standard reproduction numbers R implicitly apply 53 

this projection to compute the denominator L. This projection and hence L is sensitive to the 54 

w, meaning that if the distribution switches between the two from panel A, our estimates of R 55 
become biased (often changes in generation time are difficult to measure). Our new metric W 56 
maximises the projection from panel B to reduce sensitivity (practically this involves a window 57 
based on m) leading to a new denominator M in panel C. This maintains the branching process 58 
interpretation of the epidemic in panel D, while improving transmissibility estimate robustness. 59 

Workarounds, such as approximating w by the serial interval distribution [9], which describes 60 
inter-event times between the onset of symptoms, or inferring w from this distribution [10], do 61 

exist but suffer from related problems [6]. Consequently, w and L can often be misspecified, 62 

biasing R and likely misrepresenting the true branching process dynamics of epidemics. While 63 
r is more robust to w misspecification (it only depends on the log gradient of the smoothed 64 
infection time series) [4], it lacks the individual-level informativeness and interpretation of R. 65 
Given estimates of r, it is unclear how to derive the proportion of new infections that need to 66 
be suppressed (roughly R-1), herd immunity thresholds (related to 1-R-1) or the probability of 67 
epidemic elimination and establishment (both linked to R-N for N infections) [11–13]. The only 68 
known means of attaining such information converts r into R using estimates of w [14]. 69 

Difficulties in accurately inferring generation times therefore cause practical bottlenecks that 70 
constrain our ability to measure pathogen transmissibility. These problems are worsened as 71 
recent studies have empirically found that generation times also vary substantially with time 72 
(i.e., w is non-stationary) [15]. These variations may correspond to different epidemic phases 73 
[16], emerging variants of concern [17] and coincide with the implementation of interventions 74 
[18]. These are precisely the situations in which we also want to infer R. However, concurrent 75 
changes in R and w are rarely identifiable, and r inextricably groups the effects of w and R on 76 
transmissibility. While high quality, longitudinal contact tracing data [19] can potentially resolve 77 
these identifiability issues, this is an expensive and logistically hard solution. Here we propose 78 
another means of alleviating the above problems and complementing the insights provided by 79 

R and r – the angular reproduction number, W.    80 

The angular reproduction number defines transmissibility as a ratio of new infections to M, the 81 
root mean square number of past infections over a user-defined window d. Because it replaces 82 
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L with M, a quantity that does not require knowledge of generation times, W is more robust to 83 

the problems of inferring w. We demonstrate that W is able to measure the overall changes in 84 

transmissibility caused by fluctuations in both R and w. Moreover, we prove that W has similar 85 
threshold properties to R, maintains much of its individual-level interpretation and is a useful 86 
metric for communicating transmissibility. This last point follows as we only need to quote W 87 

and the known window d to generalise our estimates of transmissibility to different settings. In 88 
contrast, the meaningfulness of R is contingent on the unknown or uncertain w. Downstream 89 
studies sometimes use R outside of its generation time context [20], while dashboards aiming 90 
at situational awareness commonly quote R without w, introducing biases and interpretability 91 
problems into how disease spread is communicated [21]. 92 

Additionally, we demonstrate how r and R can easily disagree on relative transmissibility, both 93 
across time and for co-circulating variants. Unmeasured changes in w over time can cause R 94 
and r to vary in opposite directions (one signals an increase in transmissibility and the other a 95 
decrease). Similarly, co-circulating pathogens with different but stationary and known w, may 96 
possess contradictory R and r value rankings i.e., for variants A and B, rA > rB does not imply 97 
RA > RB. These issues are amplified when interventions (which can change w, R or both [18]) 98 
occur, obscuring notions of the relative risk of spread. However, we find rA > rB guarantees WA 99 

> WB and that W is consistent with r across time even when w changes.  100 

Last, while we may also convert r into threshold statistics about 1 by using a free parameter 101 
together with a transformation from [14], we show that W is more robust to choices of its free 102 
parameter than those statistics, which implicitly make stronger assumptions (Supplementary 103 
Information). These robustness and consistency properties of W reinforce its usefulness for 104 
tracking and comparing outbreak spread and emerge from its maximum entropy approach to 105 
managing uncertain generation time distributions. We propose W as a complementary statistic 106 
that can be integrated with R and r to present a more comprehensive perspective on epidemic 107 
transmissibility, especially when w is poorly specified or varying with time. 108 

Results 109 

Angular reproduction numbers 110 

The epidemic renewal model [22] provides a general and flexible representation of disease 111 

transmission. It defines how the incidence of new infections at time t, denoted 𝐼!, depends on 112 

the effective or instantaneous reproduction number, 𝑅!, and the past incident time series of 113 

infections, 𝐼"!#" ≝ {𝐼", 𝐼$, … 𝐼!#"}. This results in the conditional moment relationship in Eq. (1) 114 

[9]. Generally, we use 𝑋%& to denote the time series {𝑋% , 𝑋%'", … , 𝑋&#", 𝑋&} and 𝐄[𝑋|𝑌] for the 115 
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expectation of 𝑋 over possible epidemic trajectories given known variables 𝑌. Where obvious, 116 

and for convenience, we sometimes drop 𝑌 in 𝐄[𝑋|𝑌], writing 𝐄[𝑋]. 117 

𝐄[𝐼!|	𝐼"!#", 𝑤"(] = 	𝑅!Λ! ,								Λ! =2 𝑤)𝐼!#)	.
(

)+"	
				(1) 118 

In this model Λ! is known as the total infectiousness and summarises the weighted influence 119 

of past infections. The set of weights 𝑤! for all u defines the generation time distribution of the 120 

infectious disease with ∑ 𝑤) = 1(
)+"	 , and 𝑚 as the support of this distribution, which we 121 

assume to be practically finite [14]. When the time series is shorter than 𝑚 we truncate and 122 

renormalise the 𝑤!. Commonly, the stochasticity around the expectation 𝑅!Λ! is modelled 123 

using either Poisson or negative binomial count distributions [1,12]. 124 

Although Eq. (1) has successfully been applied to model many diseases including COVID-19, 125 
Ebola virus disease, pandemic influenza and measles, among others, it has one major flaw – 126 
it assumes that the generation time distribution is fixed or stationary and known [9]. If this 127 
assumption holds (we ignore surveillance biases [9,23] until the Discussion), Eq. (1) allows 128 

epidemic transmissibility to be summarised by fluctuations of the time-varying 𝑅! parameters. 129 

This follows because the sign of 𝑅! − 1 determines if 𝐼! will increase or decline relative to the 130 

total infectiousness Λ!. This reproduction number can be linked to the instantaneous epidemic 131 

growth rate,	𝑟!, using the moment generating function of the generation time distribution [14].  132 

Consequently, from 𝑅!, we obtain temporal information about the rate of pathogen spread and 133 

its mechanism i.e., we learn how many new infections we can expect per circulating infection 134 

because 𝑅! = 	𝐄[𝐼!]Λ!#". As 𝑅! is a threshold parameter, we know that we must block at least 135 

a fraction 1 − 𝑅!#" of new infections to suppress epidemic growth (𝑅! = 	1	signifies that 𝑟! =136 

0). The time scale over which this suppression is achievable [14] and our ability to detect these 137 

changes in 𝑅! [24] in the first place, however, are determined by the generation times.  138 

Recent works emphasise that the assumption of a known or fixed generation time distribution 139 
is often untenable, with appreciable fluctuations caused by interventions [15,18] and emerging 140 
pathogenic variants [17] or occurring as the epidemic progresses through various stages of 141 

its lifetime [5]. Substantial biases in 𝑅! can result (because its denominator Λ! is incorrectly 142 

specified [4]), which even impede optimal Bayesian inference algorithms [25]. As 𝑅! is the 143 

predominant metric of transmissibility, contributing key evidence towards infectious disease 144 
policymaking [1], this may potentially obscure situational awareness or misinform intervention 145 
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planning. While improved and intensive contact tracing can provide updated generation time 146 
information, this is usually difficult and expensive. We propose a robust alternative. 147 

We redefine Λ! by recognising it as a dot product between the vectors of generation time 148 

probabilities 𝑤<<⃗ ≝ 𝑤"( and the past incidence 𝐼 ≝ 𝐼!#(!#"  over the support of the generation time 149 

distribution, 𝑚. This gives the left equality of Eq. (2) with the Euclidian norm of 𝑋⃗ as >𝑋⃗> ≝150 

(∑ 𝑋)$(
)+"	 )

1
2 and 𝜃! as the time-varying angle between 𝑤<<⃗  and 𝐼. This equality holds for non-151 

stationary generation times i.e., both 𝑤<<⃗  and 𝐼 can have elements that change over time. We 152 
illustrate this notation and elements of the subsequent derivation in Figure 1. Eq. (2) implies 153 

that the count of new infections (for any 𝑅!) is maximised when 𝜃! is minimised i.e., when the 154 

temporal profile of past infections matches the shape of the generation time distribution.  155 

Λ! = ‖𝑤<<⃗ ‖>𝐼> cos 𝜃! , 𝐄[𝐼!] = D
‖𝑤<<⃗ ‖

‖𝑤<<⃗ ,-.‖
𝑅! cos 𝜃!E𝑀! .		(2) 156 

We can compute the root mean square of the incidence across the support of the generation 157 

time distribution as 𝑀! ≝
"
√(
>𝐼>. Under the constraint that ∑ 𝑤) = 1(

)+"	  (if 𝑡 − 1 < 𝑚 we 158 

truncate this distribution to sum to 1 – this is an edge effect of the epidemic) then the maximum 159 

possible value of the generation time norm is ‖𝑤<<⃗ ,-.‖ =
"
√(

. This is achieved by the maximum 160 

entropy generation time distribution of 𝑤<<⃗ , which is uniform (has 𝑚 entries of  "
(

). 161 

Combining these definitions with Eq. (1), we derive the second expression in Eq. (2) for the 162 
expected number of new infections at time t. This may seem an unnecessarily complicated 163 
manipulation of the standard renewal model, but it admits a novel and important insight – we 164 
can separate the influences of the reproduction numbers and the generation time distribution 165 

(together with its changes) on epidemic transmissibility. These multiply 𝑀!, which defines a 166 

new denominator – the root mean square number of past infections (this is also the average 167 

signal power of the past infection time series) – that replaces the total infectiousness Λ!. 168 

Consequently, we define a new metric in Eq. (3), the angular reproduction number Ω!, which 169 

multiplies 𝑅! by the scaled projection of the generation time distribution, 
‖122⃗ ‖

‖122⃗!"#‖
cos 𝜃!, onto 𝐼, 170 

the past incidence vector (see Figure 1). This means that Ω! is a time-varying ratio between 171 

the expected infection incidence and the past root mean square incidence 𝑀!. We use the 172 
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term reproduction number for Ω! due to its relation to 𝑅!, the similarity of Eq. (2) and Eq. (3)  173 

and because of its threshold properties, which we explore in the next section. 174 

Ω! ≝
‖𝑤<<⃗ ‖

‖𝑤<<⃗ ,-.‖
𝑅! cos 𝜃! 			⟹ 			Ω! = 𝐄[𝐼!]𝑀!

#".			(3) 175 

This metric captures all possible variations that impact the ability of the epidemic to transmit. 176 

It responds to both changes in 𝑅! and the generation time distribution. The latter would scale 177 

‖𝑤<<⃗ ‖ and rotate 𝜃!, which is why we term this angular. The benefit of compactly describing 178 

both types of transmissibility changes does come with a trade-off in interpretability as it may 179 

be harder to intuit the meaning behind 𝐄[𝐼!] = Ω!𝑀! than the more usual 𝐄[𝐼!] = 𝑅!Λ!. 180 

We argue that this is not the case practically because Λ! is frequently misspecified [15,26], 181 

obscuring the meaning of 𝑅!. In contrast, 𝑀! does not depend on generation time assumptions 182 

(beyond characterising its support m).  We remove structural uncertainty induced by the often 183 

unknown 𝑤) because 𝑀! is a maximum entropy version of Λ! i.e., 𝑀! = max
‖122⃗ ‖ 456 7$

Λ! =184 

	‖𝑤<<⃗ ,-.‖>𝐼> subject to ∑ 𝑤) = 1(
)+"	 . We also find that 𝑀! = Λ! and hence Ω! = 𝑅!, when 185 

the past incidence is flat (as then Λ! = 𝑀! and 𝑤) has no effect). This defines the important 186 

and universal equilibrium condition Ω! = 𝑅! = 1. There is further convergence for branching 187 

process models [27] with timesteps at its fixed generation time, as then trivially 𝑤" = 1. 188 

Relationship to popular transmissibility metrics 189 

Having defined the angular reproduction number above, we explore its properties and show 190 
why it is an interesting and viable measure of transmissibility. We examine an exponentially 191 

growing epidemic with incidence 𝐼! = 𝐼8𝑒9! and constant growth rate 𝑟. This model matches 192 

the dynamics of fundamental compartmental models such as the SIR and SEIR (in the limit of 193 

an excess of susceptible individuals) and admits the known relation 𝑔𝑟 = (𝑅 − 1) [28], with 194 

𝑔 as the mean generation time. We assume growth occurs over some period of 𝛿 and compute 195 

Ω! as the ratio 𝐄[𝐼!]𝑀!
#" from Eq. (3). Since this model is deterministic 𝐄[𝐼!] = 𝐼! = 𝐼8𝑒9!.  196 

We evaluate 𝑀! from its definition above as "
√(
>𝐼> with 𝛿 = 𝑚 and using the continuous-time 197 

expression for >𝐼> = S∫ 𝐼:$	𝑑𝑠
!
!#; W

1
2. This yields 𝑀! = S𝛿#" ∫ 𝐼:$	𝑑𝑠

!
!#; W

1
2 with 𝐼:$ = 𝐼8$𝑒$9: from 198 

the exponential incidence equation and evaluates to X2𝛿𝑟𝐼8(𝑒$9! − 𝑒$9(!#;)). Substituting 199 

this into Ω! = (𝐼8𝑒9!)𝑀!
#" results in the left relation in Eq. (4). 200 
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Ω!$ =
2𝛿𝑟

1 − 𝑒#$;9	
≥ 1, Ω!$ =

2𝛿𝑔#"(𝑅 − 1)
1 − 𝑒#$;>%&(?#")

.			(4) 201 

Several important points follow. First, as 𝑥 ≥ 1 − 𝑒#@ for every 𝑥 ≥ 0, then Ω! − 1 and 𝑟 are 202 

positive too (an analogous argument proves the negative case). Second, we substitute for 𝑟 203 

using the compartmental R-r relationship 𝑔𝑟 = (𝑅 − 1) to get the right-side relation of Eq. (4). 204 

Applying L’ Hopital’s rule we find lim
?→"

Ω! = 1. We hence confirm the threshold behaviour of Ω" 205 

i.e., the sign of Ω! − 1 and 𝑅! − 1 are always consistent (for all values of 𝛿 > 0). 206 

Third, we see that constant growth rates imply constant angular reproduction numbers. The 207 

converse is also true, and we may input time-varying growth rates, 𝑟!, into Eq. (4) to estimate 208 

Ω!. These properties hold for any 𝛿, which is now a piecewise-constant time window. We plot 209 

the ramifications of Eq. (4) in Figure 2. Further, in Table 1 we summarise how Ω! relates to 210 

predominant 𝑅! and 𝑟! metrics. We explore some properties in this table in later sections (in 211 

addition to reinforcing our analyses with stochastic models) and demonstrate that relationships 212 

among 𝑟! , 	𝑅! and Ω! have important consequences when comparing outbreaks subject to 213 

interventions and variations in generation times.  214 

Metric property Growth r Effective R Angular W 

Definition of transmissibility 𝑟! ≝
𝑑 log 𝐄[𝐼!]

𝑑𝑡  𝑅! ≝
𝐄[𝐼!]
Λ!

 Ω! ≝
𝐄[𝐼!]
𝑀!

 

Pathogen spread threshold 𝑟! > 0 𝑅! > 1 Ω! > 1 

Biased by generation time 𝑤<<⃗  

assumed, given curve 𝐼"! 

Insensitive to the 

assumed 𝑤<<⃗  

Biased when 𝑤<<⃗  is 

misspecified 

Signals changes 

in 𝑤<<⃗  and 𝑅! 

Ranking risk of outbreaks or 

variants by spreading rate 

𝑟B > 𝑟C ⇒ variant 

A spreads faster 

𝑟B > 𝑟C 	⇏ 𝑅B >

𝑅C (inconsistent) 

𝑟B > 𝑟C 	⇒ ΩB >

ΩC (consistent) 

Short-term predictive power Negligible differences among metrics in prediction quality 

Non-dimensional metric No, inverse time Yes, both have no units, scalable 

Individual-level interpretability Not obvious New infections per circulating ones 
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Computability if 𝑤<<⃗  unknown Yes (smooth 𝐼"!) Not possible Yes, for any 𝛿 

Table 1: Summary of transmissibility metrics. We list important relationships among the 215 
instantaneous growth rate (r), the instantaneous or effective reproduction number (R) and the 216 
angular reproduction number (W) and assess their value as measures of transmissibility. 217 

Note that we may also invert the relationship in Eq. (4) to estimate 𝑟! from Ω! (see Methods 218 

for details). This involves solving Eq. (5), where 𝑊D(𝑥) is the Lambert W function with index 219 

𝑘 ∈ [0, −1] (this range results from the indicator 𝟏(𝑦)) [29]. 220 

𝑑 log 𝐼!
𝑑𝑡 = 𝑟! = 2𝛿#" SΩ!$ +𝑊#𝟏(FG")f−Ω!$𝑒#F$

'gW.			(5) 221 

A central implication of Eq. (4) and Eq. (5) is that we can infer angular reproduction numbers 222 
directly from growth rates or vice versa, without requiring knowledge of the generation times.  223 

We further comment on connections between angular and effective reproduction numbers 224 
using a deterministic branching process model, which is also foundational in epidemiology. 225 
We again focus on growth, which is geometric as this is a discrete-time process with time 226 

steps scaled in multiples of the mean generation time 𝑔. Here incidence is 𝐼! = 𝑅! and Ω! =227 

𝐄[𝐼!]𝑀!
#" = 𝑅!f𝛿#"∑ 𝑅$:!#"

:+!#; g−
1
2, with window 𝛿 in units of 𝑔. If 𝛿 = 1 we recover Ω! = 𝑅. 228 

If 𝑅 = 1, then Ω! = 𝑅 for all 𝛿. For growing epidemics, as 𝛿 increases, Ω! > 𝑅 because we 229 

reference present incidence to smaller past infections (or denominators). The opposite occurs 230 

if the epidemic declines. This may seem undesirable, but we argue that Ω! improves overall 231 

practical transmissibility measurement because 𝑔 will likely be misspecified or vary with time.  232 

Any 𝑔 mismatches bias R, limiting its interpretation, meaningfulness and making comparisons 233 

among outbreaks or pathogenic variants difficult, because we cannot be certain that our 234 
denominators correspond. This is particularly problematic when estimates of R obtained from 235 
a modelling study are incorporated as parameters into downstream studies without accounting 236 
for the generation time context on which those estimates depend. However, by additionally 237 

communicating W and 𝛿, we are sure that denominators match and that we properly include 238 

the influences of any 𝑔 mismatches. Choosing 𝛿 is also no worse (and more explicit) than 239 

equivalent window assumptions made when inferring R and r [4,30] In the Supplementary 240 
Information we perform analyses of window choices for W and other threshold metrics. 241 
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 242 

Figure 2: Relationships among transmissibility metrics. Panel A and B show how growth 243 
rates (r) and reproduction numbers (R) have diverse functional relationships (see [14,30]) for 244 
SEIR models with an excess of susceptible individuals and branching processes. Coloured 245 
lines indicate R at different mean generation times (g). Black lines highlight a single functional 246 
relationship between angular reproduction numbers W and r at all g, using a window d  of 20d. 247 

Panel C shows that while W varies with choice of d (increasing from blue to red and computed 248 
from Eq. (4)), we have a bijective relationship with r. Panel D indicates that R and r can signify 249 
inverted changes e.g., an NPI reducing R and g may increase r, raising questions about impact 250 
(see [15,18]). Here W converts r into a consistent transmissibility metric (also from Eq. (4)).  251 
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Last, we illustrate how Ω! relates to other key indicators of epidemic dynamics such as herd 252 

immunity and elimination probabilities. As our derivation replaces Eq. (1) with 𝐄[𝐼!|	𝐼"!#", 𝛿] =253 

	Ω!𝑀! for the same observed incidence, these indicators are also readily obtained. Assuming 254 

Poisson noise, the elimination probability ∏ 𝐏[𝐼! = 0|	𝐼"!#", 𝑅"!#"] =H
:+! 	𝑒#∑ J$?$(

)*$  is replaced 255 

by 𝑒#∑ K$F$(
)*$ , and has analogous properties [31]. Herd immunity, which traditionally occurs 256 

when a fraction 1 − 𝑅#" of the population is immune is approximated by 1 − Ω#" (since both 257 

metrics possess the same threshold behaviour) [11]. In a subsequent section we demonstrate 258 
that one-step-ahead incidence predictions from both approaches are also comparable. 259 

Responding to variations in generation time distributions 260 

We demonstrate the practical benefits of Ω! using simulated epidemics with non-stationary or 261 

time-varying generation time distributions. Such changes lead to misspecification of Λ! in Eq. 262 

(1), making estimates of the effective reproduction number 𝑅!, denoted 𝑅k!, a poor reflection 263 

of the true underlying 𝑅!. In contrast variations in the estimated Ωl! are a feature (see Eq. (3)) 264 

and not a bug (for some chosen 𝛿 we control 𝑀!, which is not misspecified). We simulate 265 

epidemics with Ebola virus or COVID-19 generation times from [32,33] using renewal models 266 

with Poisson noise [9]. We estimate both the time-varying 𝑅! and Ω! using EpiFilter [25], which 267 

applies Bayesian algorithms that minimise mean square estimation error.  268 

Inferring Ω! from incident infections, 𝐼"!, requires only that we replace the input Λ! with 𝑀! in 269 

the estimation function and that we choose a window 𝛿 for computing 𝑀!. We provide software 270 

for general estimation of Ω! and code for reproducing this and all other analyses in this paper 271 

at https://github.com/kpzoo/Omega. We heuristically set 𝛿 ≈ 2𝑔8 as our window with 𝑔8 as 272 

the original mean generation time of each disease from [32,33]. We find (numerically) that this 273 

𝛿 ensures ∑ 𝑤) ≥ 0.;
)+8 86 over many possible gamma distributed generation times i.e., it is 274 

long enough to cover most of the likely probability mass of unknown changes to the generation 275 

time distributions, which cause time-varying means 𝑔!. In general, we find that an overly small 276 

𝛿 tends to neglect important dynamics, while too large a 𝛿 induces edge effects. The Methods 277 

and Supplementary Information provide for more information on choosing 𝛿. 278 

Our results are plotted in Figure 3. We show that Ωl! responds as expected to both changes 279 

in the true 𝑅! and 𝑤"(, subject to the limits on what can be inferred [24]. In Figure 3 we achieve 280 

changes in 𝑤"( by altering the mean generation time 𝑔! by ratios that are similar in size to 281 

those reported from empirical data [15]. In contrast, we observe that 𝑅k! provides incorrect and 282 
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overconfident transmissibility estimates, which emerge because its temporal fluctuations also 283 

have to encode structural differences due to the misspecification of 𝑤"(. These can strongly 284 

mislead our interpretation and understanding of the risk posed by a pathogen. 285 

 286 

Figure 3: Estimating transmissibility under temporal variations in generation times. We 287 
simulate epidemic incidence curves (black) using generation time distributions of Ebola virus 288 
disease (EVD) [32] and COVID-19 [33] in panels A and B. The means of these distributions 289 
(g) vary over time (grey piecewise, starting from original mean g0), but we fix their variance at 290 
their original values. We find substantial bias in R estimated from the initial EVD and COVID-291 
19 generation times (red with 95% credible intervals, true value in black). These estimates try 292 
to compensate for generation time mismatches and changes in an uncontrolled manner that 293 
obscures interpretation. However, W responds as we expect (blue with 95% credible intervals, 294 

window d, true value in black) and we infer change-points due to both R and g fluctuations 295 
(subject to bounds induced by noise i.e., at low incidence inference is more difficult [24]). Our 296 
estimates derive from EpiFilter [25] with default settings and we truncate time series to start 297 
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from d to remove any edge effects. Vertical dashed lines highlight times at which we change 298 

g or keep it fixed. When it is fixed, W infers no spurious changes. 299 

We can derive alternative threshold statistics that relate to 𝑟! and do not explicitly depend on 300 

the generation time by applying monotonic transformations from [14]. In theory these should 301 

have comparable behaviour around the critical point of 1 to both 𝑅! and Ω!. We investigate 302 

these statistics in the Supplementary Information, computing them across the simulations 303 

of Figure 3. We find that they require stronger assumptions than Ω! (i.e., they fix distributional 304 

formulae for generation times), possess at least as many free parameters as Ω! and are less 305 

robust to changes in those parameters (often strongly over-estimating transmissibility), than 306 

Ω! is to fluctuations in 𝛿. This confirms that angular reproduction numbers can complement 307 

standard metrics, improving transmissibility estimates when generation times are changing, 308 
or unknown and forming part of a more comprehensive suite of outbreak diagnostics. 309 

Ranking epidemics or variants by transmissibility 310 

Misspecification of generation time distributions, and corresponding misestimation of R as in 311 
Figure 3, also plays a crucial role when assessing the relative transmissibility of pathogens, 312 
variants of concern or even outbreaks (where we may want to contrast the spread of contagion 313 
among key demographic or spatial groups). As shown in Figure 2, these variations can mean 314 

that increases in the growth rate 𝑟! actually signify decreases in the effective reproduction 315 

number 𝑅! or that a pathogen with a larger 𝑟! can have a smaller 𝑅!. Here we illustrate that 316 
these issues can persist even if the generation time distributions of pathogens are correctly 317 
specified and remain static, obscuring our understanding of relative transmission risk.  318 
 319 
In Figure 4 we simulate epidemics under two hypothetical variants of two pathogens. We use 320 
EVD and COVID-19 generation time distributions from [32,33] to define our respective base 321 
variants. For both pathogens we specify the other variant by reducing the mean generation of 322 
each base but fixing the variance of the generation times. Reductions of this type are plausible 323 

and have been measured for COVID-19 variants [17]. All 𝑤"( distributions are stationary and 324 

known in this analysis. We discover that changes in 𝑅! alone can initiate inversions in the 325 

relative growth rate of different variants or epidemics. As far as we can tell, this phenomenon 326 

has not been explicitly investigated. Given that interventions can change 𝑅! in isolation or in 327 

combination with 𝑤"( [15,18], this effect has the potential to be widespread. We determine the 328 

mathematical conditions for this inversion in the Supplementary Information. 329 
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Interestingly, the angular reproduction numbers of Figure 4 do preserve an ordering that is 330 
consistent with growth rates, while maintaining the interpretability (e.g., threshold properties) 331 

of reproduction numbers. Hence, we argue that Ω! blends advantages from both 𝑅! and 𝑟! [4] 332 

and serves as a useful outbreak analytic for understanding and conveying the relative risk of 333 
spread of differing pathogens or pathogen strains, or of spread among different spatial and 334 
demographic groups. Recent studies have only begun to disentangle component drivers of 335 
transmission, including the differing effects that interventions can introduce (e.g., by defining 336 
the strength and speed of control measures [34]) and the diverse properties of antigenic 337 
variants [17]. We believe that W can play a distinctive role in accelerating these investigations. 338 

 339 

 340 
Figure 4: Comparing transmissibility across outbreaks, variants or even diseases. We 341 
simulate epidemics of variant 1 in blue (with estimates of metrics also in blue) under standard 342 
generation time distributions of Ebola virus disease (EVD) [32] and COVID-19 [33] in panels 343 
A and B. In red (with estimates also in red) we overlay simulations in which the generation 344 
time of these diseases is 40% and 50% shorter (than the blue epidemics), which may indicate 345 
a new co-circulating variant 2 or another epidemic with different properties (e.g., in a higher 346 
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risk group). We demonstrate (for the first time to our knowledge) that changes in R due to an 347 
intervention (or release of one) may invert the relative growth rates (r) of the epidemics (see 348 
Supplementary Information for mathematical intuition for this inversion). The mismatches in 349 
the R-r rankings alter perceptions of relative risk, making transmissibility comparisons difficult. 350 
However, W classifies the risk of these epidemics in line with their realised growth rates, while 351 
still offering the individual-level interpretability of a reproduction number. True values are in 352 
black and all estimates (with 95% credible intervals) are outputs from EpiFilter [25] with default 353 
settings. We truncate the time series to start from d to remove any edge effects. 354 

Reproduction numbers for explanation or prediction? 355 

We highlight an important but underappreciated subtlety when inferring the transmissibility of 356 
epidemics – that the value of accurately estimating R, r and W largely depends on if our aim 357 
is to explain or predict [35] the dynamics of epidemics. The above analyses have focussed on 358 
characterising transmissibility to explain mechanisms of spread and design interventions. For 359 
these problems, misestimation of parameters, such as R, can bias our assessment of outbreak 360 
risk and hence misinform the implementation of control measures. An important concurrent 361 
problem aims to predict the likely incidence of new infections from these estimates. This 362 
involves projecting the epidemic dynamics forward in time to infer upcoming infection patterns.  363 

Here we present evidence that the solution of this problem, at least over short projection time 364 
horizons, is robust to misspecification of generation times provided both the incorrect estimate 365 
and the misspecified denominator are used in conjunction. We repeat the analyses of Figure 366 
3 for 200 replicate epidemics and apply EpiFilter [25] to obtain the one-step-ahead predictive 367 

distributions 𝐏(𝐼!|	𝐼"!#") for every 𝑡. We compute the predicted mean square error (PMSE) 368 

and the accumulated predictive error (APE). These scores, which we denote as 𝐷(𝐼!|	𝐼"!#"), 369 

average square errors between mean predictions and true incidence and sum log probabilities 370 
of observing the true incidence from the predicted distribution respectively [36,37]. We plot the 371 
distributions of scores over replicates and illustrate individual predictions in Figure 5. 372 

We find only negligible differences among the one-step-ahead predictive accuracies of the R 373 
estimated given knowledge of the changing generation times (R|w), the R estimated assuming 374 
an unchanged (and hence wrongly specified) w and our inferred W. As APE and PMSE also 375 
measure model suitability, their similarity across the three estimates demonstrate that, if the 376 
problem of prediction is of interest, then incorrect generation time choices are not important 377 

as long as the erroneous denominator (Λ!) and estimate (𝑅!) are used together. If this estimate 378 

is however used outside of the context of its denominator (e.g., if it is simply input into other 379 
studies), then inaccurate projections will occur (in addition to poor estimates). As multi-step-380 
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ahead predictions can be composed from iterated one-step-ahead ones [38], we conjecture 381 
that subtleties between prediction and explanation are likely to also apply on longer horizons. 382 

 383 

Figure 5: One-step-ahead prediction accuracy and model mismatch. We simulate 200 384 
replicates of the epidemics from Figure 3, which involve non-stationary changes to EVD and 385 
COVID-19 generation times. We use estimates of effective, R, and angular, W, reproduction 386 
numbers to produce successive one-step-ahead predictions and assess their accuracy to the 387 
simulated (true) incidence. Panels A-D provide a representative example of a single simulated 388 
epidemic (true incidence shown as black dots) and the R and W one-step ahead predictions 389 
(red and blue respectively with 95% credible intervals). In panels E-F we formally compute 390 
accuracy using distance metrics, D, based on accumulated prediction errors (APE, dashed) 391 
and prediction mean square errors (PMSE, solid) for all 200 replicates from R, W and R given 392 
knowledge of the generation time changes i.e., R|w. We obtain distributions of D by applying 393 
kernel smoothing. We find negligible differences in predictive power from all approaches. 394 

Empirical example: COVID-19 in mainland China 395 
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We complete our analysis by illustrating the practical usability of W on an empirical case study 396 
where generation time changes are known to have occurred. In [15], the dynamics of COVID-397 
19 in mainland China are tracked across January and February 2020. Transmission pair data 398 
indicated that the serial interval of COVID-19 shortened across this period leading to biases 399 
in the inferred R if updated serial intervals are not used. Here serial intervals, which measure 400 
the lag between the symptom onset times of an infector and infectee are used as a proxy for 401 

the generation time. Figure 6 presents our main results. We find W (blue), which requires no 402 
serial interval information, behaves similarly to the R (red) inferred from the time-changing w. 403 
Both metrics appear less biased than estimates of R (green) that assume a fixed serial interval. 404 
This is largely consistent with the original investigation in [15].  405 

 406 
Figure 6: COVID-19 transmissibility in China under non-stationary generation times. We 407 
analyse COVID-19 data from [15], which spans 9th January 2020 to 13 February 2020 and is 408 
known to feature a serial interval distribution that shortened in mean substantially from 7.8d 409 
to 2.6d (change times are shown as grey vertical lines). We assume that the serial interval 410 
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approximates the generation time well and replicate the analysis from Figure 2 of [15]. In panel 411 
A, we compare estimates (green) of effective reproduction numbers, R, using fixed generation 412 
time distributions inferred in [15] (specified by their means g) against those of our angular 413 
reproduction number W (blue). We use EpiFilter [25] to obtain all estimates (means shown 414 
with 95% credible intervals) and find relative trends similar to those in Figure 2 of [15]. In panel 415 
B we plot the incidence (black) and the denominators we use to compute an R that does 416 

account for the generation time changes (L, red) and for W (M, blue). This R uses the different 417 

distributions inferred at the grey vertical change times (their means are in panel B and are 418 
also the fixed distributions of panel A in sequence). We plot these R and W estimates in panel 419 

C. In panel D we show the growth rates that are inferred from the R and W estimates of C (red 420 
and blue respectively) against that obtained from taking the smoothed log derivative (black). 421 

We see that W provides a lower assessment of the initial transmissibility as compared to the 422 
R that is best informed by the changing w but that both agree in general and in particular at 423 
the important threshold between super- and subcritical spread. Interestingly, W indicates no 424 
sharp changes at the w change-times. This follows because the incidence is too small for 425 
those changes to shape overall transmissibility and matches the gradual w changes originally 426 
inferred in [15]. The distributions used in Figure 6 provide a piecewise approximation to these 427 
variations. We also compare r estimates derived from R (red, from [14]), W (blue, from Eq. (5)) 428 

and the empirical log gradient of smoothed incidence (black, L M5N O[Q$]
L!

 [4]). We find that the r 429 

from W agrees more closely with the empirical growth rate than the r from R, which somewhat 430 
by design shows jumps at the w change-points. While this analysis is not meant as a detailed 431 
study of COVID-19 in China, it does demonstrate the practical usefulness of W. 432 

Discussion 433 

Quantifying the time-varying transmissibility of a pathogen remains an enduring challenge in 434 
infectious disease epidemiology. Changes in transmissibility may signify shifts in the dynamics 435 
of an epidemic of relevance to both preparedness and policymaking. While this challenge has 436 
been longstanding, the statistics that we use to summarise transmissibility have evolved from 437 
dispersibility [39] and incidence to prevalence ratios [40] to cohort [41] and instantaneous [22] 438 
reproduction numbers. While the last, which we have denoted R, has become the predominant 439 
metric of transmissibility, all of these proposed statistics ultimately involve a ratio between new 440 
infections and a measure of active infections (i.e., the denominator). Deciding on appropriate 441 
denominators necessitates some notion (implicit or explicit) of a generation time [42]. 442 
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Difficulties in characterising these generation times and their changes substantially bias [6] 443 
estimates of transmissibility and have motivated recent works to propose the instantaneous 444 
growth rate, r, as a more reliable approach for inferring pathogen spread [20]. However, on its 445 
own, r is insufficient to resolve many of the transmission questions that R can answer and its 446 
computation may employ smoothing assumptions that are in some instances equivalent to the 447 
generation time ones behind R [4]. We formulated the novel angular reproduction number W, 448 
to merge some advantages from both R and r and to contribute to a more comprehensive view 449 
of transmissibility. By applying basic vector algebra (Eqs. 1-3), we encoded both changes to 450 
R and the generation time distribution, w, into a single time-varying metric, deriving W.  451 

We found that W maintains the threshold properties and individual-level interpretability of R 452 

but responds to variations in w, in a manner consistent with r (Figure 2). Moreover, W indicates 453 
variations in transmissibility caused by R and w without requiring measurement of generation 454 
times (Figure 3). This is a consequence of its denominator, which is the root mean square of 455 
infections over a user-specified window d that is relatively simple to tune (see Methods). We 456 

can interpret W = a > 1 as indicating that infections across d need to be reduced by a-1. This 457 

reduces mean and root mean square infections by a-1 and causes W to equal 1. Further, W 458 
circumvents identifiability issues surrounding the joint inference or R and w [43] by refocussing 459 
on estimating the net changes produced by both. This improves our ability to explain the shifts 460 
in transmissibility underpinning observed epidemic dynamics and means W is essentially a 461 
reproduction number that provides individual-level interpretation of growth rates (Eqs. 4-5).  462 

The benefits of this r-W correspondence are twofold. First, as interventions may alter R, w or 463 
R and w concurrently [15,18] situations can arise where r and R disagree across time on both 464 
the drivers and magnitude of transmissibility. While it may seem possible to minimise this issue 465 
by constructing alternative threshold statistics by directly combining r with assumed generation 466 
time structures, we find these statistics often exhibit worse performance and larger bias than 467 
W (Supplementary Information). Second, this disagreement can also occur when comparing 468 
pathogenic variants or epidemics (e.g., from diverse spatial or sociodemographic groups) with 469 
different but known and unchanging w. This study appears to be among the earliest to highlight 470 
these discrepancies, which can occur in multiple settings (see Supplementary Information). 471 
Realistic transmission landscapes possess all of the above complexities, meaning that relying 472 
solely on conventional measures of relative transmissibility can lead to contradictions.  473 

We found that W consistently orders epidemics by growth rate while capturing notions of the 474 

average new infections per past infection (Figure 4). This suggests W blends advantages from 475 

R and r, with clearer assumptions (choice of window d). However, W offers no advantage if we 476 
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want to predict epidemic dynamics (see [35] for more on prediction-explanation distinctions). 477 
For this problem even an R inferred using a misspecified denominator performs equally well 478 
(Figure 5). This follows as only the product of any reproduction number and its denominator 479 
matter when determining the next incidence value. Iterations of this product underpin multi-480 
step ahead predictions [38]. This may explain why autoregressive models, which ignore some 481 
characteristics of w, can serve as useful predictive models [44]. Other instances where W will 482 

not improve analysis are at times earlier than d (due to edge effects [9]) and in periods of near 483 
zero incidence (there is no information to infer R either [24]). We summarised and compared 484 
key properties of R, r and W in Table 1. 485 

There are several limitations to our study. First, we only examined biases inherent to R due to 486 
the difficulty of measuring the generation time accurately and across time. While this is a major 487 
limitation of existing transmissibility metrics [15], practical surveillance data are also subject 488 
to under-reporting and delays, which can severely diminish the quality of any transmissibility 489 
estimates [23,43,45]. While W ameliorates issues due to generation time mismatch, it is as 490 
susceptible as R and r to surveillance biases and corrective algorithms (e.g., deconvolution 491 

methods [46]) should be applied before inferring W. Second, our analysis depends on renewal 492 
and compartmental epidemic models [22]. These assume random mixing and cannot account 493 
for realistic contact patterns. Despite this key structural uncertainty, there is evidence that well-494 
mixed and network models are comparable when estimating transmissibility [47]. 495 

Although the above limitations can, in some instances, reduce the added value of improving 496 
the statistics summarising transmissibility, we believe that W will be of practical and theoretical 497 
benefit, offering complementary insights to R and r and forming part of a more comprehensive 498 
epidemic analytic toolkit. Its similarity in formulation to R means it is as easy to compute using 499 
existing software and therefore can be deployed on dashboards and updated in real time to 500 
improve situational awareness. Further, W improves comparison and communication of the 501 
relative risks of circulating variants or epidemics among diverse groups, avoiding R-r 502 
contradictions provided the known parameter, d, is fixed. This supplements R, which is hard 503 
to contextualise [20] when w is misspecified or varying and hence compare across groups, as 504 
each group may have distinct and correspondingly poorly specified denominators. Last, W can 505 
help probe analytical questions about how changes in R and w interact because it presents a 506 
common framework for testing how variations in either influence overall transmissibility. 507 

Methods 508 
Inferring angular reproduction numbers across time 509 
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We outline how to estimate Ω! given a time series of incident infections 𝐼"S, with 𝑇 defining the 510 

present or last available data timepoint i.e., 1 ≤ 𝑡 ≤ 𝑇. Because Ω! simply replaces the total 511 

infectiousness Λ!, used for computing 𝑅!, with the root mean square of the new infection time 512 

series (see Figure 1), 𝑀!, we can obtain Ω! from standard 𝑅! estimation packages with minor 513 

changes. This requires evaluating 𝑀! over some user-defined, backward sliding window of 514 

size 𝛿. Under a Poisson (Pois) renewal model this follows as in Eq. (6) for timepoint 𝑡. 515 

𝐏(𝐼!|	𝐼"!#", 𝛿) ≡ Pois(Ω!𝑀!),								𝑀! = u
1
𝛿2 𝐼)$

!#"

)+!#;	
v
1
2
.				(6) 516 

The choice of 𝛿 is mostly arbitrary but should be sufficiently long to capture most of the likely 517 

probability mass of the unknown generation time but not overly long since it induces an edge 518 
effect (similar to the windows in [9,37]). We found a suitable heuristic to be twice or thrice the 519 

initial expected mean generation time (𝑔8). We can then input 𝑀! and 𝐼! into packages such 520 

as EpiEstim [9] or EpiFilter [25] to estimate Ω! with 95% credible intervals. 521 

Due to the similarity between computing 𝑅! and Ω! we only specify the latter but highlight that 522 

replacing 𝑀! with Λ! yields the expressions for evaluating any equivalent quantities from 𝑅!. 523 

The only difference relates to how the growth rates 𝑟! are computed. We estimate 𝑟! from 𝑅! 524 

by applying the generation time, 𝑤<<⃗ , based transformation from [14]. For a correctly specified 525 

𝑤<<⃗  this gives the same result as the smoothed derivative of the incidence curve [4]. We derive 526 

𝑟! from Ω! using Eq. (5), which follows from rearranging Eq. (4) into $2𝛿𝑟𝑡 −Ω𝑡2' 𝑒&'𝑟𝑡−Ω𝑡
2
=527 

−Ω"&𝑒()#
$. This expression then admits Lambert W function solutions. In all estimates of 𝑟! we 528 

propagate uncertainty from the posterior distributions (see below) over 𝑅! or Ω!. 529 

We applied EpiFilter in this study due to its improved extraction of information from 𝐼"S. This 530 

method assumes a random walk state model for our transmissibility metric as in Eq. (7) with 531 

ϵ!#" as a normally distributed (Norm) noise term and η as a free parameter (default 0.1).   532 

Ω! = Ω!#" + fηXΩ!#"gϵ!#",								𝐏(ϵ!#") ≡ Norm(0, 1).				(7) 533 

The EpiFilter approach utilises Bayesian smoothing algorithms incorporating the models of 534 

Eq. (6)-(7) and outputs the complete posterior distribution 𝐏(Ω!|	𝐼"S , 𝛿) with 𝑇 as the complete 535 

length of all available data (i.e., 1 ≤ 𝑡 ≤ 𝑇). We compute our mean estimates Ωl! and 95% 536 

credible intervals from this posterior distribution and these underlie our plots in Figures 3-4.  537 
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EpiFilter also outputs the one-step-ahead predictive distributions 𝐏(𝐼!|	𝐼"!#", 𝛿), which we use 538 

in Figure 5. There we quantify predictive accuracy using the predicted mean square error 539 

PMSE and the accumulated prediction error APE, defined as in Eq. (8) [36,37] with 𝐼|! as the 540 

posterior mean estimate from 𝐏(𝐼!|	𝐼"!#", 𝛿) and 𝐼!∗ as the true simulated incidence. These are 541 

computed with 𝐏(Ω!#"|	𝐼"!#", 𝛿) and not 𝐏(Ω!|	𝐼"S , 𝛿), ensuring no future information is used. 542 

PMSE =
1

𝑇 − 𝛿2 f𝐼!∗ − 𝐼|!g
$S

!+;'"	
,			APE =2 −log𝐏(𝐼! = 𝐼!∗|	𝐼"!#", 𝛿)

S

!+;'"	
.				(8) 543 

We collectively refer to these as distance metrics 𝐷(𝐼!|	𝐼"!#") and construct their distributions, 544 

𝐏(𝐷), over many replicates of simulated epidemics. Last, we use 𝐏(Ω!|	𝐼"S , 𝛿) to compute the 545 

posterior distribution of the growth rate 𝐏(𝑟!|	𝐼"S , 𝛿) and hence its estimates as in Eq. (5). More 546 

details on the EpiFilter algorithms are available at [25,31,48]. We supply open-source code to 547 
reproduce all analyses at https://github.com/kpzoo/Omega as well as functions in MATLAB 548 

and R to allow users to estimate Ω! from their own data.  549 
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