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Abstract  
 
Leveraging linkage disequilibrium (LD) patterns as representative of population substructure 

enables the discovery of additive association signals in genome-wide association studies 

(GWAS). Standard GWAS are well-powered to interrogate additive models; however, new 

approaches are required to investigate other modes of inheritance such as dominance and 

epistasis. Epistasis, or non-additive interaction between genes, exists across the genome but 

often goes undetected due to lack of statistical power. Furthermore, the adoption of LD pruning 

as customary in standard GWAS excludes detection of sites in LD that may underlie the genetic 

architecture of complex traits. We hypothesize that uncovering long-range interactions between 

loci with strong LD due to epistatic selection can elucidate genetic mechanisms underlying 

common diseases. To investigate this hypothesis, we tested for associations between 23 common 

diseases and 5,625,845 epistatic SNP-SNP pairs (determined by Ohta’s D statistics) in long-

range LD (> 0.25cM). We identified five significant associations across five disease phenotypes 

that replicated in two large genotype-phenotype datasets (UK Biobank and eMERGE). The genes 

that were most likely involved in the replicated associations were 1) members of highly conserved 

gene families with complex roles in multiple pathways, 2) essential genes, and/or 3) associated 

in the literature with complex traits that display variable expressivity. These results support the 

highly pleiotropic and conserved nature of variants in long-range under epistatic selection. Our 

work supports the hypothesis that epistatic interactions regulate diverse clinical mechanisms and 

may especially be driving factors in conditions with a wide range of phenotypic outcomes. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.22280888doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.10.19.22280888
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Significance:  Current knowledge of genotype-phenotype relationships is largely contingent on 

traditional univariate approaches to genomic analysis. Yet substantial evidence supports non-

additive modes of inheritance and regulation, such as epistasis, as being abundant across the 

genome. In this genome-wide study, we probe the biomolecular mechanisms underlying 

complex human diseases by testing the association of pairwise genetic interactions with disease 

occurrence in large-scale biobank data. Specifically, we tested intrachromosomal and 

interchrosomal long-range interactions between regions of the genome in high linkage 

disequilibrium, these regions are typically excluded from genomic analyses. The results from 

this study suggest that essential gene, members of highly conserved gene families, and 

phenotypes with variable expressivity, are particularly enriched with epistatic and pleiotropic 

activity.  

 
Introduction 

Genome-wide scans serve as a foundation for understanding complex traits by elucidating 

how genomic variation affects phenotypic variation. However, the nature of biological systems 

suggests that relationships between genotypes and phenotypes are often more complex than can 

be detected using the methods usually employed (Moore, 2003). Extant phenotypic variation is a 

consequence of evolutionary processes and environmental effects, resulting in allele frequency 

changes within a population (Draghi, 2019). Phenotypic variation explained is due to a 

combination of additive and non-additive effects that together define broad-sense heritability 

(Sella & Barton, 2019). Non-additive effects, including higher order interactions or epistasis, can 

be interpreted as dependencies or complex relationships between genes or other sources of 

genetic variation that influence the presentation of a phenotype. Studies in model organisms 

demonstrate that epistatic interactions are a key factor driving phenotypic complexity, but the role 

of epistasis in phenotypic determination in humans remains elusive (Lehner, 2007; Mackay & 

Moore, 2014a). When studies that statistically test for interaction of genetic variants do identify 

higher order interactions, they are often hard to replicate due to reasons such as but not limited 

to: model instability, insufficient model complexity due to missing variables, limited statistical 

power in replication datasets, changes in allele frequency, variation in contextual factors, and lack 

of interpretability of identifiable models (Greene et al., 2009). Hence, the role of non-additive 

effects in the context of disease mechanisms remains a challenge to elucidate. 

Evolution shapes our genomes via natural processes. Changes in genomic structure that 

can affect disease risk and population disparity are driven by a variety of evolutionary 
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mechanisms such as genetic drift, gene flow, single locus, and polygenic selection (Charlesworth 

& Charlesworth, 2010).  Phenotypes of clinical relevance are often determined by combinations 

of loci across the genome. Therefore, to dissect the genetic architecture of clinical phenotypes, it 

is of particular importance to construct models that define relationships imitating evolutionary 

processes. As model instability and non-interpretability have hindered replication of epistatic 

interaction for human traits, using evolutionary processes to model genetics of complex traits can 

enrich our ability to detect epistasis (Mackay & Moore, 2014b). 

Evolutionary processes can produce genomic patterns of variation such as linkage 

disequilibrium (LD), or non-random associations of alleles (Slatkin, 2008). Since the patterns 

observed are due to past events, leveraging LD patterns to recapitulate evolutionary processes 

can enhance understanding of biological mechanisms. For example, strong LD (R2 >0.8) 

observed in conserved genomic regions across ancestry groups might indicate a functional 

relationship among variants that are of fundamental cellular phenomena (Guryev et al., 2006).  

(Guryev et al., 2006). Loci can remain in strong LD for many reasons, including physical proximity 

and functionality as a “supergene.” The mode of inheritance known as supergene occurs due to 

genomic rearrangement that strives to preserve or lock beneficial alleles across more than one 

gene (Thompson & Jiggins, 2014). This phenomenon of multiple tightly linked loci regulating a 

system of discrete phenotypes has been observed across the animal kingdom in functionally 

related genes that clearly contribute to a shared phenotype (Jeong et al., 2022; Joron et al., 2011). 

Evidence of physical interactions between regions that harbor regulatory elements alludes to the 

importance of non-additive effects. For example, Miele and Dekker document well-characterized 

cases of long-range interactions involved in activation and repression of transcription (Miele & 

Dekker, 2008).  

Ohta’s D statistics were developed to parse LD in order to determine the contribution of 

epistasis from population subdivision (Ohta, 1982). By partitioning the LD between a pair of loci 

into components within and between populations, the components attributable to differences in 

allele frequencies among subpopulations and to epistatic selection can be estimated. SNPs in 

strong LD are typically pruned out of genomic analyses to reduce the burden of “redundant” 

variants (Calus & Vandenplas, 2018). Genome-wide association studies (GWAS) leverage LD by 

testing associations between phenotypes and tag SNPs, which function as identifiable proxies for 

causal SNPs. Experiments in model systems have shown that variants under high selection in 

evolutionarily conserved regions undergo epistatic selection, possibly as a means of genomic 

regulation (Mackay, 2014). Although many non-coding regions have levels of evolutionary 

conservation comparable to those of protein-coding regions, they have a higher abundance of 
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small effect-size variants that can have a significant cumulative impact on phenotypes (Hua & 

Springer, 2018). Other studies hypothesize roles for epistatic selection in these highly conserved 

regions such as structure, function, and evolution of proteins through physical interactions, as well 

as changes in long-range regulatory activity by way of three-dimensional chromatin conformation 

(Huang et al., 2012; Navarro-Dominguez et al., 2022; Schaeffer & Miller, 1993). 

In humans, the biological mechanisms related to regions under epistatic selection remain 

unknown, thus there has been a long-standing debate about the role of epistasis in disease 

etiology. If genetic systems are assumed to be in flux, then evolution can be thought of as 

continuously “tinkering” or adding variation to functionally solve problems (Jacob, 1977). Phillips 

et al. describe this as something of a house of cards, in which the removal of one central 

component can bring the entire house down, given that one locus may be interacting with many 

other genes (Phillips, 2008). This intrinsic structural dependency predicated on an iterative 

accumulation of small changes can be thought of as the byproduct of 3.5 billion years of descent 

with modification, as opposed to an intricate piecemeal system (Lynch, 2007). Some alleles have 

stronger effects on the overall genetic system that can be captured as “main effects” in statistical 

models, whereas other alleles contribute more subtle effects through modes of regulation such 

as transcription, splicing, and epistasis (Phillips, 2008). Univariate and multivariate approaches 

with interaction effects can be used in tandem to yield greater insights into genetic disease 

mechanisms than can be obtained using either approach alone. 

There has been little study of the effects of epistatic interactions between regions of long-

range LD, especially in cases where the LD spans across chromosomes. Previous work has found 

an association between tightly linked SNPs in interchromosomal interactions and aging-related 

phenotypes such as premature death (Kulminski et al., 2013). A comprehensive review by Maass 

et al. provides background on nuclear architecture and the roles of chromosomal interactions in 

genome organization and cellular processes (Maass et al., 2019). Genomic interactions in three-

dimensional space are influenced by chromosome topology and transcriptional programs (Gandhi 

et al., 2012; Krueger et al., 2012). Techniques such as CRISPR live-cell imaging and Hi-C have 

contributed to our understanding of interchromosomal and intrachromosomal interactions (Belton 

et al., 2012; Clow et al., 2022). Recent work in mouse and human cell models has shown that 

certain three-dimensional interchromosomal interactions are a prerequisite for proper 

physiological gene expression programs and therefore exhibit conservation (Maass et al., 2019); 

Barutcu et al, 2018). For example, the long non-coding RNA locus CISTR-ACT on chromosome 

12 regulates chondrogenic gene expression via cis-acting interactions with PTHLH on 

chromosome 12 and trans-acting interactions with the transcription factor SOX9 on chromosome 
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17 (Maass et al., 2012a). Non-homologous chromosomal contacts (NHCCs) occur over longer 

distances and are more likely to be missed in pairwise interaction analyses than homologous 

chromosomal contacts unless there is a specific focus on long-range interactions. In the case of 

CISTR-ACT and SOX9, physical disruption of tissue-specific NHCCs causes local reorganization 

of the genome, rendering transcriptional programs dysfunctional and leading to a congenital 

cartilage malformation known as chondrodysplasia brachydactyly type E (Maass et al., 2012b). 

The main objective of this study was to uncover associations of disease phenotypes with 

long-range epistatic interactions between evolutionarily conserved regions in strong LD. Based 

on the pervasiveness of epistasis and what is known about epistatic selection and 

interchromosomal interactions, we hypothesize that uncovering long-range, high-LD interactions 

due to epistatic selection can help uncover genetic mechanisms underlying common diseases 

(Koch et al., 2013). 
 
 
Results 
 
Study overview 
A workflow schematic of the study is provided in Fig. 1. From a cohort of 384,331 individuals in 

the UK Biobank (UKBB), 23 different case/control sets were created for a range of complex 

diseases based on the PheCode system (Sudlow et al., 2015; W. Q. Wei et al., 2017). Phenotypes 

from diverse disease domains including cardiovascular, neurological, immune, rheumatic, 

pulmonary, ocular, gastrointestinal, dermatologic, and neoplastic diseases were selected to 

investigate the role of epistasis in independent pathologies affecting different tissues. A 

consideration of minimum case count was also made when selecting phenotypes. The mean age 

of the individuals in the UKBB dataset was 57.07 years (standard deviation = 8.07; 55.3% female). 

All of the phenotypes selected for our analysis, except for breast cancer, included both males and 

females. We tested for associations between the 23 disease phenotypes and 5,625,845 epistatic 

SNP-SNP models (determined by Ohta’s D statistics, described in detail in the Methods) that were 

in long-range LD (> 0.25cM) and conserved across ancestral populations. Associations that were 

significant after Bonferroni correction were tested for replication in the eMERGE consortium 

dataset (n = 50,646; 50.5% female; mean age 68.15 years, standard deviation = 18.96 years) 

(McCarty et al., 2011). All individuals in the eMERGE and UKBB cohorts were of European 
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ancestry. Case/control count information for each phenotype can be found in Table S1. Further 

details of the analysis are provided in the Methods section. 
Fig. 1: Study workflow. The first part of this study extracted epistatic SNP-SNP interaction models from 

1000 Genomes dataset based on Ohta’s D statistics. The second part of the study tested associations of 

each pair of SNPs across 23 complex phenotypes in the UKBB using FastEpistasis. Significant models 

were tested for replication in the eMERGE dataset. Replicating models were characterized further in the 

third part of the study. 
 

Association testing of epistatic interactions with complex phenotypes 

A total of 5,625,845 epistatic, long-range, high-LD SNP-SNP models were tested for association 

with each of 23 different phenotypes in the UKBB dataset using the FastEpistasis test, which 

models additive by additive SNPs (Schüpbach et al., 2010). We mapped each SNP to a 

chromosome cytoband region forming what we refer to as a cytoband-cytoband (cyto-cyto) model. 

Each chromosome arm is divided into regions, or cytogenetic bands (cytobands), that can be 

seen under a microscope when using specific stains (Dolan, 2011). The SNPs mapped to 

cytobands are labeled according to their distance from the centromere on the p or q arm of the 

chromosome. We evaluated the epistatic associations under the framework of cyto-cyto models 
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because the underlying hypothesis of epistasis was driven by identifying regions of chromosomal 

interaction rather than specific participating SNPs. Interpretation of specific SNP-SNP interactions 

is difficult because of local LD substructures; however, these are implicitly considered in SNP-to-

cytoband mapping. After applying Bonferroni correction to adjust for the number of unique cyto-

cyto models (0.05 / 44,860 = 1.1 ´ 10-6), the top SNP-SNP model significant for each unique 

cytoband-cytoband mapping was selected in cases where multiple models reached statistical 

significance. In the UKBB data, 15 out of 44,860 unique cyto-cyto models spanning 9 of the 23 

phenotypes reached statistical significance (Table 1). All UKBB FastEpistasis summary statistics 

can be found in supplemental files. 

 
Table 1: SNP-SNP interactions and disease associations identified by FastEpistasis test in the 
UKBB dataset. Associations between 5,625,845 SNP pairs and 23 phenotypes were tested using 

FastEpistasis in the UKBB dataset. Bonferroni correction was performed by mapping the SNPs to cytoband 

regions and adjusting for the total number of unique cytoband-cytoband pairs (0.05 / 44,860 = 1.1 ´ 10-6). 

Phenotype CHR A SNP A CHR B SNP B P-value 

Acute Pulmonary Heart Disease 12 12:6287428 10 10:93068004 9.60E-06 

AD 6 6:32648500 6 6:32364667 6.47E-07* 

COPD 15 15:81121350 3 3:16237372 2.06E-06 

T2D 16 16:7788521 14 14:86160697 2.29E-07* 

Essential Hypertension 12 12:112230036 12 12:111962581 4.89E-06 

Fibromyalgia 20 20:45562611 13 13:39174411 1.79E-06 

Glaucoma 9 9:133944198 7 7:119526478 7.68E-07* 
Hepatic Infection 13 13:39174411 8 8:30793179 1.57E-06 

Herpes 1 1:78446761 1 1:78092479 2.42E-07* 

Hyperplasia of Prostate 15 15:38271345 4 4:24167431 1.10E-07* 

Hyperplasia of Prostate 17 17:66168247 8 8:63904818 2.46E-07* 

Idiopathic Proctocolitis 3 3:51689306 3 3:51215148 2.14E-06 

Iron Deficiency 1 1:201268216 1 1:201002649 4.94E-07* 

Iron Deficiency 22 22:45594814 4 4:156510640 5.27E-08* 
Ischemic Heart Disease 12 12:6287428 10 10:93068004 1.06E-05 
MDD 15 15:58475374 2 2:26628863 5.68E-06 

Cancer of Digestive Organs 4 4:48783587 4 4:48493237 3.48E-06 

MS 19 19:49194880 19 19:13514610 2.96E-07* 
MS 6 6:32648500 6 6:32364667 4.96E-10* 

Pancreatitis 20 20:45562611 13 13:39174411 1.79E-06 

Psoriasis 12 12:114954298 9 9:130002630 4.53E-07* 
Psoriasis 14 14:86260029 5 5:58499153 2.87E-07* 

Psoriasis 4 4:79179009 3 3:134787497 1.64E-07* 

SCZ 11 11:39275165 8 8:116432183 5.53E-07* 

SCZ 9 9:95674613 5 5:146534330 3.30E-07* 

Tonsilitis 3 3:164060391 3 3:163803419 1.42E-06 

Ulcerative Colitis 3 3:51689306 3 3:51215148 2.17E-06 

Viral Infection 12 12:105965951 6 6:67707841 2.76E-06 

Breast Cancer 4 4:155839500 4 4:150941758 1.02E-05 
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Asterisk (*) denotes significant p-values after Bonferroni correction. Shown here are the top SNP-SNP 

models of each unique chromosomal pairing across all phenotypes. 
 

We next tested all SNP-SNP pairs mapping to each of the 15 significant cyto-cyto models for 

associations with their corresponding phenotypes in the eMERGE dataset. The Bonferroni 

corrected threshold for eMERGE was adjusted for the 15 cytoband-cytoband models tested (p-

value = 0.05 / 15 = 3.3 ́  10-3). Only one of the 15 cyto-cyto models reached statistical significance 

in the eMERGE data. This model was associated with type 2 diabetes (T2D; chromosome 

16:p13.3 ´ chromosome 14:q31.3; p-value = 0.001344; Table 2). Several other models came 

close to statistical significance: two associated with multiple sclerosis (MS; chromosome 

19:q13.33 ́  chromosome 19:p13.2 and chromosome 6:p21.32 ́  chromosome 6:p21.32; p-values 

= 0.003466 and 0.003616, respectively), one associated with psoriasis (chromosome 14:q31.3 ´ 

chromosome 5:q11.2; p-value = 0.004205), and one associated with schizophrenia (SCZ; 

chromosome 11:p12 ´ chromosome 8:q23.3; p-value = 0.007327). The significant and nearly 

significant models are referred to hereafter as “top models” and are shown in Table 2. A graphical 

representation of the top models is shown in Fig. 2, highlighting the intrachromosomal and 

interchromosomal interactions between genes in the cytoband regions. All eMERGE top model 

FastEpistasis summary statistics can be found in supplemental files. 

 
Table 2: Cytoband-cytoband models that were significant or nearly significant in both the UKBB 
and eMERGE datasets. The SNP-SNP model with the lowest p-value from each unique cytoband-
cytoband bin was tested in the eMERGE dataset if it met Bonferroni significance in the UKBB dataset. A 

total of 15 models (* in Table 1) were tested for replication, of which one reached significance in the 

eMERGE dataset (**) and four reached near-significance (*) at a significance threshold of P = 3.3 ´ 10-3. 
 

The MS intrachromosomal model for chromosome 6:p21.32 mapped to the HLA region 

(chromosome 6:p21.3), which is well characterized in the literature for its dynamic role encoding 

cell-surface proteins responsible for regulation of the immune system (Dendrou et al., 2018). MS, 

as well as numerous other conditions including Alzheimer’s disease (AD), type 1 diabetes, and 

rheumatic heart disease, have been linked to the HLA region (Auckland et al., 2020; Jiang et al., 

   UKBB eMERGE 
Phenotype  Cyto A Cyto B SNP A Gene A SNP B Gene B P-value SNP A Gene A SNP B Gene B P-value 
T2D p13.3 q31.3 16:7788521 RBFOX1 14:86160697 FLRT2 2.29E-07 16:6426717 RBFOX1 14:86186113 FLRT2 0.001344** 

MS q13.33 p13.2 19:49194880 FUT2 19:13514610 CACNA1A 2.96E-07 19:49196722 FUT2 19:13514610 CACNA1A 0.003466* 

MS p21.32 p21.32 6:32648500 HLA-DQB1 6:32364667 BTNL2, HCG23 4.96E-10 6:32665629 MTCO3P1 6:32397863  BTNL2 0.003616* 

Psoriasis q31.3 q11.2 14:86260029 FLRT2 5:58499153 PDE4D 2.87E-07 14:85403658 LOC100421611 5:58499153 PDE4D 0.004205* 
SCZ p12 q23.3 11:39275165 RPL18P8 8:116432183 TRPS1 5.53E-07 11:41251442 LRRC4C 8:116351905 TRPS1 0.007327* 
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n.d.; R.-C. Lu et al., 2017; Patsopoulos et al., 2013). This highlights the strong genetic effect that 

combinations of alleles in the HLA region have on disease susceptibility and protection. These 

results are promising and may serve to substantiate previous findings; however, a focus on results 

on the HLA region is out of the scope of this study, given the current challenges in sequencing 

the HLA region for interpretation. 

 
Fig. 2: Models that were significant based on UKBB data and were replicated in the eMERGE data. 
Interchromosomal and intrachromosomal interactions and disease associations of the top models that 

replicated in both datasets are shown. 
 

Univariate analysis to test if interacting SNPs function as main effects 

Next, individual SNPs in each significant cyto-cyto model were tested in a univariate regression 

framework to determine if they function as main effects for their respective phenotype(s). In 

addition to the SNPs used to determine the p-values for the cyto-cyto models, we tested any proxy 

SNPs that were also in LD (R2 ³ 0.5) and within 1MB upstream or downstream of the 

representative SNPs. The plots in Fig. S1 A–J depict the results of the univariate analyses of the 

SNPs in each model, with the chromosome with lowest p-values for each model shown. 

Bonferroni correction was based on the number of proxy SNPs tested. No statistically significant 

main effects were found, although the results for chromosome 6 overlapped with GWAS hits for 

various traits, as expected given the dynamic nature of the HLA region. Summary statistics for 

main effects analysis can be found in supplementary files.  
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Network analysis to predict molecular mechanisms linking epistatic gene pairs in MS 

To probe molecular mechanisms that might explain the epistatic interactions between the top 

gene pairs from our analysis, we created biological process gene networks using HumanBase 

(Greene et al., 2015). We selected the biological process terms that best described each gene in 

a pair one at a time to generate molecular networks of interaction. For each gene in the network, 

a score was generated to indicate the average weight of connections to the epistatic gene pair, 

subsequently referred to as query genes. The networks in which the query genes had the highest 

connection scores were evaluated further, with focus given to first- and second-degree neighbors 

interacting with the query genes. Fig. 3 shows three biological process gene networks for the 

intrachromosomal interaction between FUT2 and CACNA1A (chromosome 19). CACNA1A is part 

of a family of genes that provide instructions for making calcium channels, so we generated 

networks for both “calcium ion transport” and “calcium-mediated signaling” pathways. FUT2 and 

CACNA1A both had connection scores of 0.46 in the calcium ion transport network and 0.24 in 

the calcium-mediated signaling network, suggesting that calcium ion transport better describes 

the functional context of their interaction. This is further reflected by the high number of high-

confidence interactions between primary neighbor nodes connected to both genes in the calcium 

ion transport network, in contrast to the lower number and lower confidence of interactions 

between primary neighbor nodes and query genes in the calcium-mediated signaling network. 

Because FUT2 is responsible for the composition and functional properties of glycans in bodily 

secretions, we also generated a “proteoglycan biosynthetic process” network; however, the low 

confidence scores and the low number of primary neighbor nodes connecting both genes in this 

network do not seem to support a molecular interaction hypothesis for FUT2 and CACNA1A in 

the proteoglycan biosynthetic process as strongly. 
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Fig. 3: A biological function network analysis of FUT2 and CACNA1A interaction. Biological function 

networks are shown for different selected processes potentially involving the FUT2 ´ CACNA1A interaction 

(associated with MS and AD). The interaction confidence scale reflects the strength of the edge weights. 

FUT2 and CACNA1A are both green nodes, as well as all nodes directly connected to both query genes 

(primary neighbors). Yellow nodes are secondary neighbors, connected to one query gene or the other. A. 

The calcium ion transport process has many first-degree nodes common to FUT2 and CACNA1A, as well 

as high-confidence edges, suggesting a strong fit as a process common to both genes. B. The calcium-

mediated signaling network has more secondary neighbors, suggesting a less strong fit. C. The 

proteoglycan biosynthetic process network has few primary neighbors to both genes, and the edges have 

low interaction confidence, suggesting this is less likely to be a biological process linking FUT2 and 
CACNA1A. 
 
 
 
Discussion 
 

We hypothesized that long-range epistatic interactions in chromosomal regions with high 

LD are implicated in mechanisms underlying complex diseases. To test this, we looked for 

associations between 23 complex disease phenotypes and 5,625,845 epistatic pairs of SNPs with 

strong, long-range LD. Although we tested associations for specific pairs of SNPs, we interpreted 

the results in terms of the cytoband regions containing the SNPs. There is substantial debate in 

the genomics community about how to best link non-coding and intergenic SNPs to corresponding 

functional genes. Our approach using cytoband regions enabled us to make functional 

hypotheses about non-coding or intergenic SNPs based on the nearby genes that were most 

likely to have significant effects on the phenotypes in question.  

One interesting finding was that none of the SNPs in our top models had significant effects 

on the phenotypes of interest in univariate analyses (Fig. S1), indicating that the phenotypic 

associations were driven by interactions between the SNPs rather than by the main effects of 

each SNP alone. The genes linked to top models seem to be particularly enriched for dynamic 

roles as part of large, conserved gene families active during development.  
 
Chromosomes 16p13.3 and 14q31.3 in type 2 diabetes 

Our FastEpistasis analysis identifies the top replicating model to be an interchromosomal 

interaction between FLRT2 (chromosome 14q31.3) and RBFOX1 (chromosome 16p13.3), 

associated with T2D. The interacting SNPs in the UKBB dataset map to an intergenic region 

66,427 bp downstream of FLRT2 and an intergenic region 25,181 bp downstream of RBFOX1, 

respectively. RBFOX1, one of three mammalian paralogs of the RBFOX gene family, regulates 
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tissue-specific alternative splicing and post-transcriptional regulation in the brain and heart 

(Damianov et al., 2016). FLRT2 is part of the FLRT gene family encoding membrane proteins 

involved in the regulation of cell adhesion and repulsion, cell migration, cell signaling, and axon 

guidance (Li et al., 2021a). RBFOX1 has been associated with neurodegenerative and 

cardiometabolic traits (Zhao, 2013). Previous studies support a role for RBFOX1 in regulating 

beta cell gene expression through neuron-like alternative splicing regulation (Juan-Mateu et al., 

2017a; Nutter et al., 2017). One explanation for this could be because the pancreas is highly 

innervated, causing increased neuron-specific transcriptional programs. Another could be that 

neurons share many phenotypic traits with pancreatic beta cells since both use similar exocytotic 

machinery to secrete insulin and neurotransmitters (Juan-Mateu et al., 2017;Arntfield & van der 

Kooy, 2011). Given that FLRT2 is known to interact with proteins such as ADGRL3, FGFR2, and 

UNC5D to mediate various cell signaling pathways, we hypothesize that the interaction between 

chromosomes 14 and 16 regulates transcriptomic activity in T2D through an alternative splicing 

program (K. Wei et al., 2011). 

 

Chromosome 5q11.2 and chromosome 14q31.3 in psoriasis 

FLRT2 was also found to affect psoriasis through an interaction with the intronic region of 

PDE4D on chromosome 5q11.2. PDE4D is part of the cyclic nucleotide phosphodiesterase family 

of enzymes that hydrolyze the intracellular second messenger cAMP, a key signal transduction 

molecule in numerous biological processes (Ong et al., 2009). Patients with psoriasis display 

overexpression of PDE4D mRNA in peripheral blood mononuclear cells compared with control 

individuals (Schafer et al., 2016). Apremilast, an oral small-molecule inhibitor of PDE4D, is used 

to treat psoriasis and other chronic inflammatory disorders such as asthma and Behçet's disease 

through inhibition of the Th17 pathway (Afra et al., 2019; Chen et al., 2020; Schett et al., 2010). 

Our results corroborate the established proinflammatory link between PDE4D and psoriasis; 

however, the mechanistic basis for a PDE4D and FLRT2 interaction association with psoriasis is 

unknown. 

FLRT2 functions as a cell-surface signaling protein that interacts dynamically with various 

proteins during developmental events, especially axon guidance (Li et al., 2021b). Given the role 

of FLRT2 in modulating cortical migration during nervous system development, Akita et al. 

proposed an analogous guidance function for FLRT2 in vascular development (Akita et al., 2016). 

FLRT2 is one of the primary ligands that binds and activates the adhesion G protein-coupled 

receptor LPHN2, which acts as a repulsive guidance receptor that controls blood vessel structure 

and function in model systems (Camillo et al., 2021). FLRT2 has also been identified as an 
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autoantigen, or cell-surface target, of anti-endothelial cell antibodies in the vascular systems of 

patients with systemic lupus erythematosus (Shirai et al., 2012). Once LPHN2 is activated by 

FLRT2 it elicits the synthesis of cAMP, which is hydrolyzed by PDE4D (Ong et al., 2009; Sando 

& Südhof, 2021). Our results together with the previous findings suggest that interaction between 

PDE4D and FLRT2 has a proinflammatory effect in patients with psoriasis, potentially acting 

through an autoimmune pathology in the vascular system. Further functional experiments are 

needed to understand the mechanism. 

 

Chromosome 8q23.3 and chromosome 11p12 in schizophrenia 

We found that an interaction between TRPS1 (chromosome 8q23.3) and LRRC4C 

(chromosome 11p12) is associated with schizophrenia. The SNP on chromosome 8 is 531,181 

bp upstream of TRPS1, whereas the SNP on chromosome 11 falls in intron 1 of the LRRC4C 

gene. TRPS1 is a transcriptional repressor that binds to GATA-regulated genes during different 

stages of embryonic development to influence chondrocyte proliferation and differentiation (Wang 

et al., 2018). LRRC4C encodes a post-synaptic adhesion molecule that binds with the conserved 

family of netrin G ligand (NGL) proteins (Choi et al., 2019) to regulate synaptic organization. There 

is no previous evidence that TRPS1 and LRRC4C interact to influence schizophrenia; however, 

LRRC4C has been implicated in brain disorders including schizophrenia, bipolar disorder, autism 

spectrum disorder, and developmental delay (Maussion et al., 2017; Zhang et al., 2021). Mouse 

models have shown that mice lacking NGL-1 exhibit hyperactivity and anxiolytic-like behavior due 

to widespread excitation of neurons in the brain. This suggests that LRRC4C plays a role in 

suppression or dampening of neuronal activity (Choi et al., 2019). We hypothesize that TRPS1 

acts as a repressor of LRRC4C, which is supported by a previous analysis of GTEx bulk tissue 

expression data (GTEx Consortium, 2013) showing that LRRC4C (ENSG00000148948.7) is 

highly expressed in brain tissues, whereas TRPS1 (ENSG00000104447.12) is expressed at low 

levels in brain tissue compared with all other tissues. 

 
Chromosome 19p13.2 and 19q13.33 in multiple sclerosis 

An intrachromosomal interaction between FUT2 (chromosome 19p13.2) and CACNA1A 

(chromosome 19q13.33) was found to be associated with MS. The FUT2 gene determines blood 

group secretor status. Being homozygous for the inactive “non-secretor” allele confers 

susceptibility and resistance to certain infections (Azad et al., 2018). FUT2 non-secretor status 

has been shown to result in significantly increased lymphocyte infiltration levels during infection 

(Santos-Cortez et al., 2018). Previous work highlights the role of lymphocyte-mediated calcium 
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influx patterns observed in autoimmune conditions, including MS (Orbán et al., 2013). Thus, a 

genetic interaction between FUT2 and CACNA1A could inform a calcium-dependent autoimmune 

mechanism. We conducted post-hoc network analysis using HumanBase to identify pathways or 

functions that would explain the context of the molecular interaction between CACNA1A and 

FUT2 (Fig. 2). The gene connections in networks generated for known pathways involving each 

gene (calcium ion transport, calcium-mediated signaling, and proteoglycan biosynthetic process) 

suggested that the calcium ion transport network best explains the FUT2 and CACNA1A 

interaction. The primary neighbors connecting both genes in the calcium ion transport network 

provide supporting evidence for etiologic hypotheses of MS. BTNL3, which has also been 

associated with AD, was previously found to be associated with high-density lipoprotein (HDL) 

cholesterol levels (Liu et al., 2022). In another study, high HDL cholesterol levels were associated 

with reduced brain atrophy and demyelination in MS (Blumenfeld Kan et al., 2019). Unexpectedly, 

the calcium ion transport network also included OPRPN and ODF1. OPRPN encodes the PROL1 

protein, which functions in penile erection. ODF1 encodes the protein that forms the outer dense 

fibers surrounding the sperm tail, which are essential for maintaining the elastic sperm tail 

structure (Yang et al., 2012). Variation in OPRPN and ODF1 is linked to infertility in men. A 

previous longitudinal study showed an association between male infertility and MS, which was 

likely caused in part by a shared genetic component of both conditions (Glazer et al., 2018). These 

results suggest that interaction between FUT2 and CACNA1A might explain male infertility in MS. 

Another gene in the calcium ion transport network, MC5R, encodes the melanocortin 5 receptor, 

which exerts immunomodulatory effects by converting primed T cells to regulatory T (Treg) cells 

(Taylor & Namba, 2001). Reduced Treg cell signaling in chronic inflammation can lead to an 

increase in the number of autoimmune antigen-presenting cells that ultimately cause a self-

destructive central nervous system environment in MS. Our association test does not define a 

direct link between MC5R and MS; however, the network analysis of FUT2 and CACNA1A 

supports MC5R as a potential molecular connection underlying the epistatic effects of FUT2 and 

CACNA1A on MS. 

 

Pleiotropy 

Pleiotropy, whereby one gene or mutation influences multiple distinct and seemingly 

unrelated phenotypic traits, has been extensively modeled in animal systems and studied in 

humans using statistical models. Recent work has found pleiotropy to be a highly prevalent, if not 

ubiquitous, phenomenon in human genotype-phenotype mapping (Chesmore et al., 2018). Tyler 

et al. provide a comprehensive review of the relationship between epistasis in pleiotropy, citing 
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that these phenomena are not isolated incidents. Rather, they are inherent properties of 

biomolecular networks that are critical to the understanding of genetics underlying common 

human disease and should be modeled extensively (Tyler et al., 2009). Despite substantial 

evidence, there is no empirical basis for pleiotropy in humans (Paaby & Rockman, 2013; 

Sivakumaran et al., 2011). Our analysis yields top interaction models that are associated with 

multiple phenotypes, suggesting a potential pleiotropic etiology for certain clinical pathologies. 

We further hypothesize molecular mechanisms that could explain our results supporting epistatic 

and pleiotropic relationships. 

 

Chromosome 19 in Alzheimer’s disease and multiple sclerosis 

Chromosome 19 has long been linked to AD in the GWAS literature by way of variation in 

genes such as APOE (19q13.32), ABCA7 (19q13,3), and CD33 (19q13.41) (Moreno-Grau et al., 

2018). We found chromosome 19 to play a pleiotropic role in mediating AD and MS through 

epistatic interactions. 

A long-range, intrachromosomal interaction between chromosome 19q13.33 and 

chromosome 19p13.2 (chr19:13514610) was associated with both AD and MS in our 

FastEpistasis analysis. In the UKBB dataset, the association of this model with MS (Table 1) was 

statistically significant, whereas the association with AD was nearly significant with p-value = 1.79 

´ 10-6 (Supplementary files). In eMERGE, the model associated with MS with a near significant 

p-value (Table 2) but associated with AD with statistical significance of p-value = 1.27 ´ 10-4 

(Supplementary files). The chromosome 19p13.2 variant maps to an intron of CACNA1A, which 

belongs to a highly conserved gene family that provides instructions for making calcium channels. 

CACNA1A is one of the strongest known genetic risk factors for a variety of neurodevelopmental 

and neurodegenerative conditions including familial AD, trinucleotide repeat conditions, and SCZ; 

however, its role in the pathogenesis of these conditions is largely unknown (Grosso et al., 2022; 

Psychiatric GWAS Consortium Bipolar Disorder Working Group, 2011). Located within 2MB 

upstream of CACNA1A are TRMT1 and LDLR, which are both linked to AD and MS (Gopalraj et 

al., 2005; Y. Lu et al., 2022; Mailleux et al., 2017). The SNP in the intron of CACNA1A might 

regulate that gene in tandem with the SNP on chromosome 19q13.33, or the interaction might be 

regulating other genes via longer-range effects. The SNP on chromosome 19q13.33 falls in an 

intergenic region between FUT2 and SEC1P. FUT2 has been associated with vitamin B 

deficiency, cholesterol levels, type 1 diabetes, and dysregulated gut microbiota, all of which have 

been linked to AD and MS (Blumenfeld Kan et al., n.d.-b; Ellinghaus et al., 2012; Hazra et al., 

2008; Najafi et al., 2012; Schepici et al., 2019; Smyth et al., 2011). Previous work has aimed to 
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detect overlap between autoimmune pathways related to MS pathology and blood lipid pathways 

related to AD pathology, but no common mechanism for MS and AD pathologies has been 

identified (Podbielska et al., 2021). We hypothesize that a shared cardiometabolic and 

autoimmune molecular etiology underpins both AD and MS. Functional experiments are needed 

to elucidate the mechanism. 

 

Chromosome 14q31.3 in type 2 diabetes and psoriasis 

Chromosome 14q31.3 encodes FLRT2, a gene known to play a role in cell-cell adhesion, 

cell migration, and axon guidance. Our findings implicate FLRT2 in two interchromosomal 

interactions, a psoriasis-associated interaction with PDE4D (chromosome 5) and a T2D-

associated interaction with RBFOX1 (chromosome 16). While the shared etiology of diabetes and 

psoriasis is unknown, a breadth of work has shown overlap between T2D and psoriasis by way 

of shared lipid abnormalities, heightened insulin resistance, and cardiovascular risk biomarkers 

(Brazzelli et al., 2021). To evaluate if this region is predisposed to pleiotropic activity, we 

determined if other Mendelian traits and syndromes are linked to genes within 14q31.3 based on 

the Online Mendelian Inheritance in Man (OMIM) database, shown in Fig. 4 (Hamosh et al., 2005). 

 

Bardet-Biedl syndrome (BBS) is a pleiotropic ciliopathy with a wide range of clinical 

variability. While BBS individuals have a high propensity towards T2D due to obesity, it is unclear 

Fig. 4: Evidence of pleiotropy on 
chromosome 14q31.3. Chromosome 

14q31.3 interacts with chromosome 

16p13.3 to affect T2D and with 

chromosome 5q11.2 to affect psoriasis. 

To determine a clinical basis for the 

pleiotropy observed on chromosome 
14q31.3, we used Online Mendelian 

Inheritance in Man (OMIM) to identify 

Mendelian conditions known to be 

associated with this region. 
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whether diabetes is a comorbidity or a risk independent of obesity. However, recent mouse 

models of BBS do support dysregulation of the immune and hematopoietic systems as obesity-

independent drivers of T2D (Tsyklauri et al., 2021). Krabbe disease, a rare autosomal recessive 

lysosomal storage disease, has phenotypic overlap with MS in that its hallmark is demyelination 

caused by the buildup of unmetabolized lipids throughout the central nervous system (Mar & 

Noetzel, 2010). Retinitis pigmentosa (RP), a genetic retinopathy that causes vision loss over time, 

presents varying type of vision loss (e.g., night vision, central vision, or color vision) and severity 

in different individuals. How lipid dysregulation plays a role in RP disease pathology is not well 

understood. A previous study found RP to be a result of abetalipoproteinemia (Berson, 2000; 

Gouras et al., 1971). An understanding of energy metabolism in retinal cells is critical to 

uncovering the vascular changes that drive the different stages of RP (Fu et al., 2019). Leber 

congenital amaurosis (LCA) is a group of rare monogenic diseases that frequently result in rapid 

or progressive vision loss accompanied by other symptoms such as intellectual disability, hearing 

loss, and cataracts. Lipid changes are not known to be associated with LCA. 

The genetic links between chromosome 14q31.3 and BBS, Krabbe disease, RP, and LCA 

suggest that lipid dysregulation may be the mechanism connecting psoriasis and T2D, as well as 

playing a role in driving some of these conditions. We hypothesize that epistatic interactions can 

“modify” and manifest variable expressivity such that the nature of the same condition can vary 

among individuals. For example, some individuals with BBS who have alleles supporting an 

interaction involving FLRT2 may have a higher risk of developing diabetes than individuals with 

BBS who do not have those alleles. We can only speculate as to why alleles on chromosome 

14q31.3 might predispose individuals to cardiometabolic dysregulation in the context of complex 

and Mendelian conditions. However, our data support the hypothesis that genetic heterogeneity 

manifests as phenotypic heterogeneity in the context of epistatic interactions. 

 

Epistasis in essential gene families 
To further understand epistatic selection in the context of human disease, we asked 

whether the genes in our top models function as essential genes, given that essential genes are 

highly conserved and function in numerous pathways. Previous long-range epistasis work 

provides a basis for interactions between high-LD SNPs to be thought of as integral to essential 

biological processes (Kulminski et al., 2013). Essential genes are critical for the survival of 

organisms under most conditions and commonly drive cell growth and proliferation. The vast 

majority of human genes are non-essential but still confer some degree of selective advantage. 

Out of 19,850 known human genes, 3,915 are considered essential genes (Ji et al., 2016). 
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Essential genes are likely to encode hub proteins that are widely expressed in most tissues, 

making them well-suited as dynamic disease genes that are active in the interactome (Goh et al., 

2007). Based on a previous study of essential genes by Ji et al. and the Full Spectrum of 

Intolerance to Loss-of-Function (FUSIL) database, six of the seven genes in our top models, 

LRRC4C being the exception, have been classified as essential genes (Cacheiro et al., 2020; Ji 

et al., 2016). Fig. 5 depicts the essential genes, categorized by their functional designations from 

FUSIL, as well as their essential functions in growth and development. Loss of RBFOX1 or TRPS1 

is developmentally lethal, whereas loss of FUT2 is non-lethal but results in phenotypic 

abnormality. When we evaluated the diseases associated with each essential gene, we found 

that all the essential genes except FLRT2 are associated with at least two or more related 

conditions that differ only by a subset of symptoms. A prime example is CACNA1A, which is 

implicated in a variety of neurological conditions ranging from autism spectrum disorder and 

cerebellar atrophy to epileptic encephalopathy (Damaj et al., 2015). Similarly, FUT2 has been 

associated with inflammatory bowel conditions including Crohn’s disease and ulcerative colitis 

(Wu et al., 2017). Syndromes are sets of complex symptoms that often co-occur, indicating a 

specific condition. We hypothesize that epistatic variation is a driving factor that differentiates 

certain sets of overlapping symptoms into distinct pathologies, much like syndromes. 

 
Fig. 5: Epistatic interactions map to essential gene families. The biological functions and diseases 

associated with essential genes in our top models are shown. 
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Epistatic selection may be occurring at higher rates among essential genes, giving rise to 

diverse phenotypic outcomes. Given the fundamental cellular roles that essential genes play 

during and after development, epistasis may be a highly conserved mode of genetic regulation, 

especially in the context of disease etiology. Functional studies are needed to test the molecular 

interactions of the essential genes in our top models to further characterize their role beyond 

development and in adulthood disease. 

 

Conclusion 
 

We leveraged Ohta’s D statistics to 1) identify epistatic interactions between distant 

regions of the genome that exhibit strong LD, which are typically excluded from genomic analyses, 

and 2) test association of these interactions with a range of complex diseases. After testing 

associations of 5,625,845 SNP-SNP pairs with complex diseases, we identified five interactions 

with disease associations that replicated in the UKBB and eMERGE datasets (Table 2). Most of 

the interactions were interchromosomal, which is surprising given that most long-range genomic 

and high-throughput chromosome conformation analyses are limited to single chromosomes 

(Park, 2019). Associations between specific epistatic interactions and conditions including T2D, 

psoriasis, MS, schizophrenia, and AD were identified. (Fig. 2). Furthermore, we identified epistatic 

interactions with a pleiotropic basis. In particular, chromosome 14:q31.3 had long-range 

interactions with chromosome 5 (associated with psoriasis) and chromosome 16 (associated with 

T2D). We conclude that psoriasis and T2D likely share an etiology based on dysregulation of lipid 

metabolism with an autoimmune component. Our post-hoc analysis of chromosome 14q31.3 

showed that four other Mendelian conditions with lipid dysregulation as a potential shared 

mechanism are also associated with the same cytoband (Fig. 4). We conclude from these findings 

that epistatic interactions may function at a subtle level to modify phenotypic presentation. For 

example, some individuals with the interaction between chromosome 14 and chromosome 5 may 

present a lipid-autoimmune phenotype leading to psoriasis. Similarly, individuals with the 

interaction between chromosome 14 and chromosome 16 may present a lipid-cardio metabolic 

phenotype leading to T2D, whereas other individuals may present lipid-ocular conditions such as 

RP. Different variants within the interacting genes may function differently, adding another layer 

of fine modulation. This is just one example of how epistatic genetic variation might drive variation 

of disease phenotypes. 
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Our epistatic gene models appeared to be enriched with members of highly conserved 

gene families with dynamic and essential roles. For example, TRPS1 has been associated with a 

rare autosomal condition called Tricho-rhino-phalangeal syndrome type 1 (Fig. 5), which causes 

highly variable symptoms including hypermobility, craniofacial abnormalities, and hyperhidrosis 

(Seitz et al., 2001). We hypothesize that epistatic gene interactions modulate the combination of 

symptoms which are expressed in among individuals. Our results suggest that epistasis can be 

thought of as ‘fine-tuning’, in which interactions manifest variable expressivity such that the same 

pathology can present as distinct conditions in different individuals. This is known to occur in 

Mendelian traits but there is not a concrete basis for this phenomenon in complex traits.  

It is likely that a combination of main effects, small effect variants, and interaction effects 

determines disease pathology. In this study we evaluated interaction effects and marginal effects 

of the same loci and determined that associations with disease were driven by interaction effects 

only. Further work to model these effects in tandem is needed to provide a more complete 

understanding of disease risks and mechanisms. Our findings highlight the challenges that remain 

in leveraging genomics in human health. A stronger emphasis on evaluating genetic interactions 

is needed to better understand clinical risk associations and inform personalized medicine 

solutions. 

 

 
Materials and Methods 
 
Selection of epistatic SNP pairs in the UKBB dataset: 
The UKBB contains genotype data for a total of 488,377 participants and electronic health records 

(EHRs) for nearly 400,000 participants. At the time of recruitment, participants provide information 

about their sociodemographic, lifestyle, and health-related factors. Physical measures (such as 

blood pressure and anthropometry) are also collected from all participants upon recruitment. 

UKBB genomic data are based on genome build GRCh37 (released in 2009). UKBB genotype 

data are imputed to the Haplotype Reference Consortium (HRC) panel (Bush et al., 2009). 

To identify SNP pairs that were in LD due to epistatic selection, we calculated Ohta’s D 

statistics for genome-wide SNP pairs in the UKBB European ancestry population of 1000 

Genomes phase III dataset (n = 503). As a first step, we calculated pairwise LD across all SNP 

pairs and selected the pairs with R2 > 0.3 using PLINK v2.0. Next, we determined which SNP 

pairs were in long-range LD by selecting pairs with LD that are located at least 250,000 base pairs 

(approximately 0.25cM) apart for intrachromosomal models. We considered all independent 
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SNPs for each chromosome for interchromosomal models. We then filtered the results to include 

only the SNP pairs with strong LD by setting a threshold of R2 ³ 0.7 and minor allele frequency > 

0.1 for both variants. This yielded 186,119 unique SNPs under epistatic selection that made up 

7,586,336 pairwise SNP-SNP models when considering long-range and LD. This includes 

817,892 interchromosomal models. We then tested the pairwise models for epistatic selection by 

calculating Ohta’s D statistics using the ohtadstats R package (Petrowski et al., 2019), which 

provided D and D’ statistics (D2
IT, D2

IS, D2
ST, D′2IS, and D′2ST) for all models along with the ratios of 

d2is_mat to d2st_mat (ratio1) and dp2st_mat to dp2is_mat (ratio2). Finally, we selected the 

models for which both ratio1 and ratio2 were greater than 1, suggesting epistatic selection. This 

yielded 5,625,845 SNP-SNP models comprising 136,019 unique SNPs. We then tested the 

association of these models with phenotypes in the UKBB dataset. 

 
Testing of long-range epistatic SNP-SNP models for phenotypic associations: 
We tested the 5,625,845 SNP-SNP models for associations with 23 complex disease outcomes 

in the UKBB European ancestry population of unrelated individuals (n = 384,331). Phenotype 

definitions for each disease were based on the presence or absence of ICD9/ICD10 codes in 

EHRs and inclusion criteria outlined by PheCode. We conducted epistasis association tests using 

the FastEpistasis module in PLINK v1.9 to identify epistatic SNP-SNP models that were 

significantly associated with each phenotype. FastEpistasis is a software tool that computes tests 

of epistasis for a large number of SNP pairs as an efficient parallel extension to the PLINK 

epistasis module. Epistatic effects are tested by normal linear regression of a binary response on 

the marginal effects of each SNP and an interaction effect of the SNP pair, where SNPs are coded 

as additive effects, taking values 0, 1, or 2. The test for epistasis reduces to testing whether the 

interaction term is significantly different from zero. 

 

Mapping of SNP-SNP models to cytoband regions: 
For biological interpretability, we mapped all 5,625,845 SNP-SNP models to cytoband regions to 

produce cytoband-cytoband (cyto-cyto) models. Cytoband annotation was done using the UCSC 

Genome Browser build 37 SNP-to-cytoband map files. We also annotated the SNPs to genes 

using the software tool Biofilter (Bush et al., 2009). In addition to mapping the SNPs to the closest 

upstream or downstream gene, we manually determined which nearby genes were likely to 

engage in long-range interactions using the UCSC browser. We then tested the significance of 

the cyto-cyto models with Bonferroni correction to a threshold of 1.1´10-6 based on the total 

number of unique cyto-cyto mappings (n = 44,860 unique cyto-cyto pairs). The 5,625,845 SNP-
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SNP models were binned into the unique cyto-cyto pairs, and the model in each bin with the 

smallest p-value meeting the Bonferroni threshold was selected as a significant cyto-cyto pair. A 

total of 15 cyto-cyto pairs based on the UKBB data were determined to be significant across 8 of 

23 phenotypes. 

 

Testing for replication in the eMERGE dataset: 
The eMERGE is a consortium of 12 academic medical centers across the United States that have 

contributed EHR and genotype data of approximately 100,000 individuals into a central repository. 

The eMERGE phase III genomic data uses genome build GRCh37 (released in 2009). All 

eMERGE samples have been imputed to the HRC panel using the Michigan imputation server. 

We extracted phenotype data in the form of diagnosis codes from the EHRs, with samples defined 

as cases or controls based on the occurrence or absence of ICD9/10 code(s) grouped as per 

PheCode criteria. We extracted disease status from the eMERGE data for the eight phenotypes 

that had significant associations with epistatic SNP pairs in the UKBB data. We tested all SNP-

SNP models that mapped to the 15 statistically significant cyto-cyto models for associations with 

23 disease phenotypes in the eMERGE European ancestry population of unrelated individuals’ 

dataset. We tested all SNP-SNP models that mapped to each significant cyto-cyto model because 

the causal SNPs are not known. We used a Bonferroni correction based on the 15 tested cyto-

cyto models (0.05 / 15). One of the 15 cyto-cyto models reached statistical significance after 

adjustment for multiple hypothesis testing correction with a p-value threshold of 3.5´10-3. 

 

Main effects analysis of significant results: We tested each SNP in pairs showing significance 

across the eMERGE and UKBB datasets in univariate tests for association with their 

corresponding phenotypes. For this, we first identified proxy SNPs that were in LD (R2 > 0.5) with, 

and located within 1MB in either direction of, each significant SNP, using the 1000 Genomes LD 

panel as a reference. We then used PLINK v1.90Beta4.5 to perform a logistic regression for each 

SNP including sex, age, and the first five principal components as covariates. Principle 

components for both datasets were generated from the individuals in each dataset. A Bonferroni 

threshold was calculated based on the number of SNPs (the sum of the significant SNPs and the 

proxy SNPs) tested per phenotype. We identified potential nearby association signals using 

LocusZoom plots (Boughton et al., 2021). 
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Supplementary figures 
 
Table S1 - Demographics of the UKBB and eMERGE case/control cohorts 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  UKBB EUR cohort (n = 384,331) eMERGE EUR cohort (n = 50,646) 

  Cases Controls Cases Controls 

  Female Male Female Male Female Male Female Male 

Acute Pulmonary Heart Disease 13620 26750 197294 143071 
N/A N/A N/A N/A 

AD 2301 2035 197568 157969 5096 4477 20467 20605 

COPD 25269 20039 183855 147005 
N/A N/A N/A N/A 

T2D 9923 15406 200731 155087 12871 12952 12692 12130 

Essential Hypertension 43122 49825 164113 112197 
N/A N/A N/A N/A 

Fibromyalgia 643 91 211014 171142 N/A N/A N/A N/A 

Glaucoma 4001 3848 184534 149911 
N/A N/A N/A N/A 

Hepatic Infection 461 614 197049 158063 
N/A N/A N/A N/A 

Herpes 194 158 211005 170197 5977 3271 19586 21811 

Hyperplasia of Prostate 37 21071 212186 150283 119 12454 25444 12628 

Idiopathic Proctocolitis 37095 28389 175135 143070 
N/A N/A N/A N/A 

Iron Deficiency Anemia 7281 4324 205303 167422 9258 5465 16305 19617 

Ischemic Heart Disease  13620 26750 164113 112197 
N/A N/A N/A N/A 

MDD 9294 5695 190029 153374 N/A N/A N/A N/A 

Cancer of Digestive Organs  66953 57618 145479 114094 
N/A N/A N/A N/A 

MS 1876 1283 194534 166734 834 309 24729 24773 

Pancreatitis 14587 7029 189748 156083 
N/A N/A N/A N/A 

Psoriasis 1771 1725 202679 162999 2485 1995 23078 23087 

SCZ 590 735 194937 157428 638 475 24925 24607 

Tonsilitis 104 81 212480 171665 
N/A N/A N/A N/A 

Ulcerative Colitis 36834 27910 175746 143829 
N/A N/A N/A N/A 

Viral Infection 296 397 210911 169969 
N/A N/A N/A N/A 

Breast Cancer 14528 0 191354 0 
N/A N/A N/A N/A 
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Fig. S1 - Main effect univariate analysis of significant and near-significant replicating SNPs and 
all their proxy SNPs (R2 > 0.5) within 1MB upstream or downstream 
 
A 

 
B 

 
C 

 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.22280888doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.19.22280888
http://creativecommons.org/licenses/by-nc-nd/4.0/


D 

 
E 

 
F 

 
G 

 
 
 
 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.22280888doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.19.22280888
http://creativecommons.org/licenses/by-nc-nd/4.0/


H 

 
I 
 
 

 
J 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.22280888doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.19.22280888
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 
 
Afra, T. P., Razmi, T. M., & Dogra, S. (n.d.). Apremilast in Psoriasis and Beyond: Big Hopes on 

a Small Molecule. Indian Dermatology Online Journal, 10(1), 1–12. 
https://doi.org/10.4103/idoj.IDOJ_437_18 

Akita, T., Kumada, T., Yoshihara, S. ichi, Egea, J., & Yamagishi, S. (2016). Ion channels, 
guidance molecules, intracellular signaling and transcription factors regulating nervous and 
vascular system development. In Journal of Physiological Sciences (Vol. 66, Issue 2, pp. 
175–188). Springer-Verlag Tokyo. https://doi.org/10.1007/s12576-015-0416-1 

Arntfield, M. E., & van der Kooy, D. (2011). β-Cell evolution: How the pancreas borrowed from 
the brain: The shared toolbox of genes expressed by neural and pancreatic endocrine cells 
may reflect their evolutionary relationship. BioEssays : News and Reviews in Molecular, 
Cellular and Developmental Biology, 33(8), 582–587. 
https://doi.org/10.1002/bies.201100015 

Auckland, K., Mittal, B., Cairns, B. J., Garg, N., Kumar, S., Mentzer, A. J., Kado, J., Perman, M. 
L., Steer, A. C., Hill, A. V. S., & Parks, T. (2020). The Human Leukocyte Antigen Locus and 
Rheumatic Heart Disease Susceptibility in South Asians and Europeans. Scientific 
Reports, 10(1). https://doi.org/10.1038/s41598-020-65855-8 

Azad, M. B., Wade, K. H., & Timpson, N. J. (2018). FUT2 secretor genotype and susceptibility 
to infections and chronic conditions in the ALSPAC cohort. Wellcome Open Research, 3, 
65. https://doi.org/10.12688/wellcomeopenres.14636.2 

Belton, J.-M., McCord, R. P., Gibcus, J. H., Naumova, N., Zhan, Y., & Dekker, J. (2012). Hi-C: a 
comprehensive technique to capture the conformation of genomes. Methods (San Diego, 
Calif.), 58(3), 268–276. https://doi.org/10.1016/j.ymeth.2012.05.001 

Berson, E. L. (2000). Nutrition and retinal degenerations. International Ophthalmology Clinics, 
40(4), 93–111. https://doi.org/10.1097/00004397-200010000-00008 

Blumenfeld Kan, S., Staun-Ram, E., Golan, D., & Miller, A. (n.d.-a). HDL-cholesterol elevation 
associated with fingolimod and dimethyl fumarate therapies in multiple sclerosis. Multiple 
Sclerosis Journal - Experimental, Translational and Clinical, 5(4), 2055217319882720. 
https://doi.org/10.1177/2055217319882720 

Blumenfeld Kan, S., Staun-Ram, E., Golan, D., & Miller, A. (n.d.-b). HDL-cholesterol elevation 
associated with fingolimod and dimethyl fumarate therapies in multiple sclerosis. Multiple 
Sclerosis Journal - Experimental, Translational and Clinical, 5(4), 2055217319882720. 
https://doi.org/10.1177/2055217319882720 

Boughton, A. P., Welch, R. P., Flickinger, M., VandeHaar, P., Taliun, D., Abecasis, G. R., & 
Boehnke, M. (2021). LocusZoom.js: Interactive and embeddable visualization of genetic 
association study results. Bioinformatics (Oxford, England). 
https://doi.org/10.1093/bioinformatics/btab186 

Brazzelli, V., Maffioli, P., Bolcato, V., Ciolfi, C., D’Angelo, A., Tinelli, C., & Derosa, G. (2021). 
Psoriasis and Diabetes, a Dangerous Association: Evaluation of Insulin Resistance, Lipid 
Abnormalities, and Cardiovascular Risk Biomarkers. Frontiers in Medicine, 8, 605691. 
https://doi.org/10.3389/fmed.2021.605691 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.22280888doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.19.22280888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bush, W. S., Dudek, S. M., & Ritchie, M. D. (2009). Biofilter: a knowledge-integration system for 
the multi-locus analysis of genome-wide association studies. Pacific Symposium on 
Biocomputing. Pacific Symposium on Biocomputing, 368–379. 

Calus, M. P. L., & Vandenplas, J. (2018). SNPrune: An efficient algorithm to prune large SNP 
array and sequence datasets based on high linkage disequilibrium. Genetics Selection 
Evolution, 50(1). https://doi.org/10.1186/s12711-018-0404-z 

Camillo, C., Facchinello, N., Villari, G., Mana, G., Gioelli, N., Sandri, C., Astone, M., Tortarolo, 
D., Clapero, F., Gays, D., Oberkersch, R. E., Arese, M., Tamagnone, L., Valdembri, D., 
Santoro, M. M., & Serini, G. (2021). LPHN2 inhibits vascular permeability by differential 
control of endothelial cell adhesion. Journal of Cell Biology, 220(11). 
https://doi.org/10.1083/jcb.202006033 

Charlesworth, B., & Charlesworth, D. (2010). Elements of Evolutionary Genetics. Roberts and 
Company. 

Chen, Y., Li, Z., Li, H., Su, W., Xie, Y., Pan, Y., Chen, X., & Liang, D. (2020). Apremilast 
Regulates the Teff/Treg Balance to Ameliorate Uveitis via PI3K/AKT/FoxO1 Signaling 
Pathway. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.581673 

Chesmore, K., Bartlett, J., & Williams, S. M. (2018). The ubiquity of pleiotropy in human 
disease. Human Genetics, 137(1), 39–44. https://doi.org/10.1007/s00439-017-1854-z 

Choi, Y., Park, H., Kang, S., Jung, H., Kweon, H., Kim, S., Choi, I., Lee, S. Y., Choi, Y. E., Lee, 
S. H., & Kim, E. (2019). NGL-1/LRRC4C-Mutant Mice Display Hyperactivity and Anxiolytic-
Like Behavior Associated With Widespread Suppression of Neuronal Activity. Frontiers in 
Molecular Neuroscience, 12. https://doi.org/10.3389/fnmol.2019.00250 

Clow, P. A., Du, M., Jillette, N., Taghbalout, A., Zhu, J. J., & Cheng, A. W. (2022). CRISPR-
mediated multiplexed live cell imaging of nonrepetitive genomic loci with one guide RNA 
per locus. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-29343-z 

Damaj, L., Lupien-Meilleur, A., Lortie, A., Riou, É., Ospina, L. H., Gagnon, L., Vanasse, C., & 
Rossignol, E. (2015). CACNA1A haploinsufficiency causes cognitive impairment, autism 
and epileptic encephalopathy with mild cerebellar symptoms. European Journal of Human 
Genetics : EJHG, 23(11), 1505–1512. https://doi.org/10.1038/ejhg.2015.21 

Damianov, A., Ying, Y., Lin, C. H., Lee, J. A., Tran, D., Vashisht, A. A., Bahrami-Samani, E., 
Xing, Y., Martin, K. C., Wohlschlegel, J. A., & Black, D. L. (2016). Rbfox Proteins Regulate 
Splicing as Part of a Large Multiprotein Complex LASR. Cell, 165(3), 606–619. 
https://doi.org/10.1016/j.cell.2016.03.040 

Dendrou, C. A., Petersen, J., Rossjohn, J., & Fugger, L. (2018). HLA variation and disease. In 
Nature Reviews Immunology (Vol. 18, Issue 5, pp. 325–339). Nature Publishing Group. 
https://doi.org/10.1038/nri.2017.143 

Dolan, M. (2011). The role of the Giemsa stain in cytogenetics. Biotechnic & Histochemistry : 
Official Publication of the Biological Stain Commission, 86(2), 94–97. 
https://doi.org/10.3109/10520295.2010.515493 

Draghi, J. (2019). Phenotypic variability can promote the evolution of adaptive plasticity by 
reducing the stringency of natural selection. Journal of Evolutionary Biology, 32(11), 1274–
1289. https://doi.org/10.1111/jeb.13527 

Ellinghaus, D., Ellinghaus, E., Nair, R. P., Stuart, P. E., Esko, T., Metspalu, A., Debrus, S., 
Raelson, J. v, Tejasvi, T., Belouchi, M., West, S. L., Barker, J. N., Kõks, S., Kingo, K., 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.22280888doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.19.22280888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Balschun, T., Palmieri, O., Annese, V., Gieger, C., Wichmann, H. E., … Franke, A. (2012). 
Combined analysis of genome-wide association studies for Crohn disease and psoriasis 
identifies seven shared susceptibility loci. American Journal of Human Genetics, 90(4), 
636–647. https://doi.org/10.1016/j.ajhg.2012.02.020 

Fu, Z., Chen, C. T., Cagnone, G., Heckel, E., Sun, Y., Cakir, B., Tomita, Y., Huang, S., Li, Q., 
Britton, W., Cho, S. S., Kern, T. S., Hellström, A., Joyal, J., & Smith, L. E. (2019). 
Dyslipidemia in retinal metabolic disorders. EMBO Molecular Medicine, 11(10). 
https://doi.org/10.15252/emmm.201910473 

Gandhi, M., Evdokimova, V. N., Cuenco, K. T., Nikiforova, M. N., Kelly, L. M., Stringer, J. R., 
Bakkenist, C. J., & Nikiforov, Y. E. (2012). Homologous chromosomes make contact at the 
sites of double-strand breaks in genes in somatic G 0/G 1-phase human cells. Proceedings 
of the National Academy of Sciences of the United States of America, 109(24), 9454–9459. 
https://doi.org/10.1073/pnas.1205759109 

Glazer, C. H., Tøttenborg, S. S., Giwercman, A., Bräuner, E. V., Eisenberg, M. L., Vassard, D., 
Magyari, M., Pinborg, A., Schmidt, L., & Bonde, J. P. (2018). Male factor infertility and risk 
of multiple sclerosis: A register-based cohort study. Multiple Sclerosis (Houndmills, 
Basingstoke, England), 24(14), 1835–1842. https://doi.org/10.1177/1352458517734069 

Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., & Barabási, A.-L. (2007). The human 
disease network. Proceedings of the National Academy of Sciences of the United States of 
America, 104(21), 8685–8690. https://doi.org/10.1073/pnas.0701361104 

Gopalraj, R. K., Zhu, H., Kelly, J. F., Mendiondo, M., Pulliam, J. F., Bennett, D. A., & Estus, S. 
(2005). Genetic association of low density lipoprotein receptor and Alzheimer’s disease. 
Neurobiology of Aging, 26(1), 1–7. https://doi.org/10.1016/j.neurobiolaging.2004.09.001 

Gouras, P., Carr, R. E., & Gunkel, R. D. (1971). Retinitis pigmentosa in abetalipoproteinemia: 
Effects of vitamin A. Investigative Ophthalmology, 10(10), 784–793. 

Greene, C. S., Krishnan, A., Wong, A. K., Ricciotti, E., Zelaya, R. A., Himmelstein, D. S., Zhang, 
R., Hartmann, B. M., Zaslavsky, E., Sealfon, S. C., Chasman, D. I., Fitzgerald, G. A., 
Dolinski, K., Grosser, T., & Troyanskaya, O. G. (2015). Understanding multicellular function 
and disease with human tissue-specific networks. Nature Genetics, 47(6), 569–576. 
https://doi.org/10.1038/ng.3259 

Greene, C. S., Penrod, N. M., Kiralis, J., & Moore, J. H. (2009). Spatially uniform relieff (SURF) 
for computationally-efficient filtering of gene-gene interactions. BioData Mining, 2(1), 5. 
https://doi.org/10.1186/1756-0381-2-5 

Grosso, B. J., Kramer, A. A., Tyagi, S., Bennett, D. F., Tifft, C. J., D’Souza, P., Wangler, M. F., 
Macnamara, E. F., Meza, U., & Bannister, R. A. (2022). Complex effects on CaV2.1 
channel gating caused by a CACNA1A variant associated with a severe 
neurodevelopmental disorder. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-
022-12789-y 

GTEx Consortium. (2013). The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 
45(6), 580–585. https://doi.org/10.1038/ng.2653 

Guryev, V., Smits, B. M. G., van de Belt, J., Verheul, M., Hubner, N., & Cuppen, E. (2006). 
Haplotype block structure is conserved across mammals. PLoS Genetics, 2(7), 1111–
1118. https://doi.org/10.1371/journal.pgen.0020121 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.22280888doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.19.22280888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A., & McKusick, V. A. (2005). Online 
Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic 
disorders. Nucleic Acids Research, 33(Database issue), D514-7. 
https://doi.org/10.1093/nar/gki033 

Hazra, A., Kraft, P., Selhub, J., Giovannucci, E. L., Thomas, G., Hoover, R. N., Chanock, S. J., 
& Hunter, D. J. (2008). Common variants of FUT2 are associated with plasma vitamin B12 
levels. Nature Genetics, 40(10), 1160–1162. https://doi.org/10.1038/ng.210 

Hua, B., & Springer, M. (2018). Widespread Cumulative Influence of Small Effect Size Mutations 
on Yeast Quantitative Traits. Cell Systems, 7(6), 590-600.e6. 
https://doi.org/10.1016/j.cels.2018.11.004 

Huang, W., Richards, S., Carbone, M. A., Zhu, D., Anholt, R. R. H., Ayroles, J. F., Duncan, L., 
Jordan, K. W., Lawrence, F., Magwire, M. M., Warner, C. B., Blankenburg, K., Han, Y., 
Javaid, M., Jayaseelan, J., Jhangiani, S. N., Muzny, D., Ongeri, F., Perales, L., … Mackay, 
T. F. C. (2012). Epistasis dominates the genetic architecture of Drosophila quantitative 
traits. Proceedings of the National Academy of Sciences of the United States of America, 
109(39), 15553–15559. https://doi.org/10.1073/pnas.1213423109 

Jacob, F. (1977). Evolution and tinkering. Science (New York, N.Y.), 196(4295), 1161–1166. 
https://doi.org/10.1126/science.860134 

Jeong, H., Baran, N. M., Sun, D., Chatterjee, P., Layman, T. S., Balakrishnan, C. N., Maney, D. 
L., & Yi, S. v. (2022). Dynamic molecular evolution of a supergene with suppressed 
recombination in white-throated sparrows. ELife, 11. https://doi.org/10.7554/elife.79387 

Ji, X., Kember, R. L., Brown, C. D., & Bućan, M. (2016). Increased burden of deleterious 
variants in essential genes in autism spectrum disorder. Proceedings of the National 
Academy of Sciences of the United States of America, 113(52), 15054–15059. 
https://doi.org/10.1073/pnas.1613195113 

Jiang, Z., Ren, W., Liang, H., Yan, J., Yang, D., Luo, S., Zheng, X., Lin, G.-W., Xian, Y., Xu, W., 
Yao, B., Noble, J. A., Bei, J.-X., Groop, L., & Weng, J. (n.d.). HLA class I genes modulate 
disease risk and age at onset together with DR-DQ in Chinese patients with insulin-
requiring type 1 diabetes. https://doi.org/10.1007/s00125-021-05476-6/Published 

Joron, M., Frezal, L., Jones, R. T., Chamberlain, N. L., Lee, S. F., Haag, C. R., Whibley, A., 
Becuwe, M., Baxter, S. W., Ferguson, L., Wilkinson, P. A., Salazar, C., Davidson, C., Clark, 
R., Quail, M. A., Beasley, H., Glithero, R., Lloyd, C., Sims, S., … Ffrench-Constant, R. H. 
(2011). Chromosomal rearrangements maintain a polymorphic supergene controlling 
butterfly mimicry. Nature, 477(7363), 203–206. https://doi.org/10.1038/nature10341 

Juan-Mateu, J., Rech, T. H., Villate, O., Lizarraga-Mollinedo, E., Wendt, A., Turatsinze, J. V., 
Brondani, L. A., Nardelli, T. R., Nogueira, T. C., Esguerra, J. L. S., Alvelos, M. I., Marchetti, 
P., Eliasson, L., & Eizirik, D. L. (2017a). Neuron-enriched RNA-binding proteins regulate 
pancreatic beta cell function and survival. Journal of Biological Chemistry, 292(8), 3466–
3480. https://doi.org/10.1074/jbc.M116.748335 

Juan-Mateu, J., Rech, T. H., Villate, O., Lizarraga-Mollinedo, E., Wendt, A., Turatsinze, J. V., 
Brondani, L. A., Nardelli, T. R., Nogueira, T. C., Esguerra, J. L. S., Alvelos, M. I., Marchetti, 
P., Eliasson, L., & Eizirik, D. L. (2017b). Neuron-enriched RNA-binding proteins regulate 
pancreatic beta cell function and survival. Journal of Biological Chemistry, 292(8), 3466–
3480. https://doi.org/10.1074/jbc.M116.748335 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.22280888doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.19.22280888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Koch, E., Ristroph, M., & Kirkpatrick, M. (2013). Long range linkage disequilibrium across the 
human genome. PLoS ONE, 8(12). https://doi.org/10.1371/journal.pone.0080754 

Krueger, C., King, M. R., Krueger, F., Branco, M. R., Osborne, C. S., Niakan, K. K., Higgins, M. 
J., & Reik, W. (2012). Pairing of homologous regions in the mouse genome is associated 
with transcription but not imprinting status. PLoS ONE, 7(7). 
https://doi.org/10.1371/journal.pone.0038983 

Kulminski, A. M., Culminskaya, I., & Yashin, A. I. (2013). Inter-chromosomal level of genome 
organization and longevity-related phenotypes in humans. Age (Dordrecht, Netherlands), 
35(2), 501–518. https://doi.org/10.1007/s11357-011-9374-6 

Lehner, B. (2007). Modelling genotype-phenotype relationships and human disease with genetic 
interaction networks. In Journal of Experimental Biology (Vol. 210, Issue 9, pp. 1559–
1566). https://doi.org/10.1242/jeb.002311 

Li, J., Shinoda, Y., Ogawa, S., Ikegaya, S., Li, S., Matsuyama, Y., Sato, K., & Yamagishi, S. 
(2021a). Expression of FLRT2 in Postnatal Central Nervous System Development and 
After Spinal Cord Injury. Frontiers in Molecular Neuroscience, 14. 
https://doi.org/10.3389/fnmol.2021.756264 

Li, J., Shinoda, Y., Ogawa, S., Ikegaya, S., Li, S., Matsuyama, Y., Sato, K., & Yamagishi, S. 
(2021b). Expression of FLRT2 in Postnatal Central Nervous System Development and 
After Spinal Cord Injury. Frontiers in Molecular Neuroscience, 14. 
https://doi.org/10.3389/fnmol.2021.756264 

Liu, N., Guo, Y.-N., Wang, X.-J., Ma, J., He, Y.-T., Zhang, F., He, H., Xie, J.-L., Zhuang, X., Liu, 
M., Sun, J.-H., Chen, Y., Lin, J.-H., Gong, L.-K., & Wang, B.-S. (2022). Copy Number 
Analyses Identified a Novel Gene: APOBEC3A Related to Lipid Metabolism in the 
Pathogenesis of Preeclampsia. Frontiers in Cardiovascular Medicine, 9. 
https://doi.org/10.3389/fcvm.2022.841249 

Lu, R.-C., Yang, W., Tan, L., Sun, F.-R., Tan, M.-S., Zhang, W., Wang, H.-F., & Tan, L. (2017). 
Association of HLA-DRB1 polymorphism with Alzheimer’s disease: a replication and meta-
analysis. Oncotarget, 8(54), 93219–93226. https://doi.org/10.18632/oncotarget.21479 

Lu, Y., Yue, D., Xie, J., Cheng, L., & Wang, X. (2022). Ontology Specific Alternative Splicing 
Changes in Alzheimer’s Disease. Frontiers in Genetics, 13, 926049. 
https://doi.org/10.3389/fgene.2022.926049 

Lynch, M. (2007). The frailty of adaptive hypotheses for the origins of organismal complexity. 
Proceedings of the National Academy of Sciences of the United States of America, 104 
Suppl 1, 8597–8604. https://doi.org/10.1073/pnas.0702207104 

Maass, P. G., Barutcu, A. R., & Rinn, J. L. (2019). Interchromosomal interactions: A genomic 
love story of kissing chromosomes. In Journal of Cell Biology (Vol. 218, Issue 1, pp. 27–
38). Rockefeller University Press. https://doi.org/10.1083/jcb.201806052 

Maass, P. G., Rump, A., Schulz, H., Stricker, S., Schulze, L., Platzer, K., Aydin, A., Tinschert, 
S., Goldring, M. B., Luft, F. C., & Bähring, S. (2012a). A misplaced lncRNA causes 
brachydactyly in humans. The Journal of Clinical Investigation, 122(11), 3990–4002. 
https://doi.org/10.1172/JCI65508 

Maass, P. G., Rump, A., Schulz, H., Stricker, S., Schulze, L., Platzer, K., Aydin, A., Tinschert, 
S., Goldring, M. B., Luft, F. C., & Bähring, S. (2012b). A misplaced IncRNA causes 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.22280888doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.19.22280888
http://creativecommons.org/licenses/by-nc-nd/4.0/


brachydactyly in humans. Journal of Clinical Investigation, 122(11), 3990–4002. 
https://doi.org/10.1172/JCI65508 

Mackay, T. F. C. (2014). Epistasis and quantitative traits: using model organisms to study gene-
gene interactions. Nature Reviews. Genetics, 15(1), 22–33. 
https://doi.org/10.1038/nrg3627 

Mackay, T. F. C., & Moore, J. H. (2014a). Why epistasis is important for tackling complex 
human disease genetics. In Genome Medicine (Vol. 6, Issue 6). BioMed Central Ltd. 
https://doi.org/10.1186/gm561 

Mackay, T. F. C., & Moore, J. H. (2014b). Why epistasis is important for tackling complex 
human disease genetics. In Genome Medicine (Vol. 6, Issue 6). BioMed Central Ltd. 
https://doi.org/10.1186/gm561 

Mailleux, J., Timmermans, S., Nelissen, K., Vanmol, J., Vanmierlo, T., van Horssen, J., Bogie, J. 
F. J., & Hendriks, J. J. A. (2017). Low-Density Lipoprotein Receptor Deficiency Attenuates 
Neuroinflammation through the Induction of Apolipoprotein E. Frontiers in Immunology, 8, 
1701. https://doi.org/10.3389/fimmu.2017.01701 

Mar, S., & Noetzel, M. (2010). Axonal damage in leukodystrophies. Pediatric Neurology, 42(4), 
239–242. https://doi.org/10.1016/j.pediatrneurol.2009.08.011 

Maussion, G., Cruceanu, C., Rosenfeld, J. A., Bell, S. C., Jollant, F., Szatkiewicz, J., Collins, R. 
L., Hanscom, C., Kolobova, I., de Champfleur, N. M., Blumenthal, I., Chiang, C., Ota, V., 
Hultman, C., O’Dushlaine, C., McCarroll, S., Alda, M., Jacquemont, S., Ordulu, Z., … Ernst, 
C. (2017). Implication of LRRC4C and DPP6 in neurodevelopmental disorders. American 
Journal of Medical Genetics. Part A, 173(2), 395–406. 
https://doi.org/10.1002/ajmg.a.38021 

McCarty, C. A., Chisholm, R. L., Chute, C. G., Kullo, I. J., Jarvik, G. P., Larson, E. B., Li, R., 
Masys, D. R., Ritchie, M. D., Roden, D. M., Struewing, J. P., & Wolf, W. A. (2011). The 
eMERGE Network: A consortium of biorepositories linked to electronic medical records 
data for conducting genomic studies. BMC Medical Genomics, 4. 
https://doi.org/10.1186/1755-8794-4-13 

Miele, A., & Dekker, J. (2008). Long-range chromosomal interactions and gene regulation. 
Molecular BioSystems, 4(11), 1046–1058. https://doi.org/10.1039/b803580f 

Moore, J. H. (2003). The ubiquitous nature of epistasis in determining susceptibility to common 
human diseases. Human Heredity, 56(1–3), 73–82. https://doi.org/10.1159/000073735 

Moreno-Grau, S., Hernández, I., Heilmann-Heimbach, S., Ruiz, S., Rosende-Roca, M., 
Mauleón, A., Vargas, L., Rodríguez-Gómez, O., Alegret, M., Espinosa, A., Ortega, G., 
Aguilera, N., Abdelnour, C., Neuroimaging Initiative, A. D., Gil, S., Maier, W., Sotolongo-
Grau, O., Tárraga, L., Ramirez, A., … Ruiz, A. (2018). Genome-wide significant risk factors 
on chromosome 19 and the APOE locus. Oncotarget, 9(37), 24590–24600. 
https://doi.org/10.18632/oncotarget.25083 

Najafi, M. R., Shaygannajad, V., Mirpourian, M., & Gholamrezaei, A. (2012). Vitamin B(12) 
Deficiency and Multiple Sclerosis; Is there Any Association? International Journal of 
Preventive Medicine, 3(4), 286–289. 

Navarro-Dominguez, B., Chang, C.-H., Brand, C. L., Muirhead, C. A., Presgraves, D. C., & 
Larracuente, A. M. (2022). Epistatic selection on a selfish Segregation Distorter supergene 
- drive, recombination, and genetic load. ELife, 11. https://doi.org/10.7554/eLife.78981 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.22280888doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.19.22280888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nutter, C. A., Jaworski, E., Verma, S. K., Perez-Carrasco, Y., & Kuyumcu-Martinez, M. N. 
(2017). Developmentally regulated alternative splicing is perturbed in type 1 diabetic 
skeletal muscle. Muscle and Nerve, 56(4), 744–749. https://doi.org/10.1002/mus.25599 

Ohta, T. (1982). Linkage disequilibrium due to random genetic drift in finite subdivided 
populations. Proceedings of the National Academy of Sciences of the United States of 
America, 79(6), 1940–1944. https://doi.org/10.1073/pnas.79.6.1940 

Ong, W. K., Gribble, F. M., Reimann, F., Lynch, M. J., Houslay, M. D., Baillie, G. S., Furman, B. 
L., & Pyne, N. J. (2009). The role of the PDE4D cAMP phosphodiesterase in the regulation 
of glucagon-like peptide-1 release. British Journal of Pharmacology, 157(4), 633–644. 
https://doi.org/10.1111/j.1476-5381.2009.00194.x 

Orbán, C., Biró, E., Grozdics, E., Bajnok, A., & Toldi, G. (2013). Modulation of T lymphocyte 
calcium influx patterns via the inhibition of Kv1.3 and IKCa1 potassium channels in 
autoimmune disorders. Frontiers in Immunology, 4(AUG). 
https://doi.org/10.3389/fimmu.2013.00234 

Paaby, A. B., & Rockman, M. v. (2013). The many faces of pleiotropy. Trends in Genetics : TIG, 
29(2), 66–73. https://doi.org/10.1016/j.tig.2012.10.010 

Park, L. (2019). Population-specific long-range linkage disequilibrium in the human genome and 
its influence on identifying common disease variants. Scientific Reports, 9(1). 
https://doi.org/10.1038/s41598-019-47832-y 

Patsopoulos, N. A., Barcellos, L. F., Hintzen, R. Q., Schaefer, C., van Duijn, C. M., Noble, J. A., 
Raj, T., Gourraud, P. A., Stranger, B. E., Oksenberg, J., Olsson, T., Taylor, B. v., Sawcer, 
S., Hafler, D. A., Carrington, M., de Jager, P. L., de Bakker, P. I. W., Bernardinelli, L., 
Booth, D., … Kermode, A. G. (2013). Fine-Mapping the Genetic Association of the Major 
Histocompatibility Complex in Multiple Sclerosis: HLA and Non-HLA Effects. PLoS 
Genetics, 9(11). https://doi.org/10.1371/journal.pgen.1003926 

Petrowski, P. F., King, E. G., & Beissinger, T. M. (2019). An R framework for the partitioning of 
linkage disequilibrium between and within populations. Journal of Open Research 
Software, 7(1). https://doi.org/10.5334/jors.250 

Phillips, P. C. (2008). Epistasis - The essential role of gene interactions in the structure and 
evolution of genetic systems. In Nature Reviews Genetics (Vol. 9, Issue 11, pp. 855–867). 
https://doi.org/10.1038/nrg2452 

Podbielska, M., O’Keeffe, J., & Pokryszko-Dragan, A. (2021). New Insights into Multiple 
Sclerosis Mechanisms: Lipids on the Track to Control Inflammation and 
Neurodegeneration. International Journal of Molecular Sciences, 22(14). 
https://doi.org/10.3390/ijms22147319 

Psychiatric GWAS Consortium Bipolar Disorder Working Group. (2011). Large-scale genome-
wide association analysis of bipolar disorder identifies a new susceptibility locus near 
ODZ4. Nature Genetics, 43(10), 977–983. https://doi.org/10.1038/ng.943 

Sando, R., & Südhof, T. C. (2021). Latrophilin GPCR signaling mediates synapse formation. 
ELife, 10. https://doi.org/10.7554/eLife.65717 

Santos-Cortez, R. L. P., Chiong, C. M., Frank, D. N., Ryan, A. F., Giese, A. P. J., Bootpetch 
Roberts, T., Daly, K. A., Steritz, M. J., Szeremeta, W., Pedro, M., Pine, H., Yarza, T. K. L., 
Scholes, M. A., Llanes, E. G. D. v, Yousaf, S., Friedman, N., Tantoco, M. L. C., Wine, T. 
M., Labra, P. J., … Ahmed, Z. M. (2018). FUT2 Variants Confer Susceptibility to Familial 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.22280888doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.19.22280888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Otitis Media. American Journal of Human Genetics, 103(5), 679–690. 
https://doi.org/10.1016/j.ajhg.2018.09.010 

Schaeffer, S. W., & Miller, E. L. (1993). Estimates of linkage disequilibrium and the 
recombination parameter determined from segregating nucleotide sites in the alcohol 
dehydrogenase region of Drosophila pseudoobscura. Genetics, 135(2), 541–552. 
https://doi.org/10.1093/genetics/135.2.541 

Schafer, P. H., Truzzi, F., Parton, A., Wu, L., Kosek, J., Zhang, L. H., Horan, G., Saltari, A., 
Quadri, M., Lotti, R., Marconi, A., & Pincelli, C. (2016). Phosphodiesterase 4 in 
inflammatory diseases: Effects of apremilast in psoriatic blood and in dermal 
myofibroblasts through the PDE4/CD271 complex. Cellular Signalling, 28(7), 753–763. 
https://doi.org/10.1016/j.cellsig.2016.01.007 

Schepici, G., Silvestro, S., Bramanti, P., & Mazzon, E. (2019). The Gut Microbiota in Multiple 
Sclerosis: An Overview of Clinical Trials. Cell Transplantation, 28(12), 1507–1527. 
https://doi.org/10.1177/0963689719873890 

Schett, G., Sloan, V. S., Stevens, R. M., & Schafer, P. (2010). Apremilast: A novel PDE4 
inhibitor in the treatment of autoimmune and inflammatory diseases. In Therapeutic 
Advances in Musculoskeletal Disease (Vol. 2, Issue 5, pp. 271–278). 
https://doi.org/10.1177/1759720X10381432 

Schüpbach, T., Xenarios, I., Bergmann, S., & Kapur, K. (2010). FastEpistasis: A high 
performance computing solution for quantitative trait epistasis. Bioinformatics, 26(11). 
https://doi.org/10.1093/bioinformatics/btq147 

Seitz, C. S., Lü, H.-J., Wagner, N., Bröcker, E.-B., & Hamm, H. (n.d.). Trichorhinophalangeal 
Syndrome Type I Clinical and Molecular Characterization of 3 Members of a Family and 1 
Sporadic Case. https://jamanetwork.com/ 

Sella, G., & Barton, N. H. (2019). Thinking About the Evolution of Complex Traits in the Era of 
Genome-Wide Association Studies. Annu. Rev. Genom. Hum. Genet, 20, 461–493. 
https://doi.org/10.1146/annurev-genom-083115 

Shirai, T., Fujii, H., Ono, M., Nakamura, K., Watanabe, R., Tajima, Y., Takasawa, N., Ishii, T., & 
Harigae, H. (2012). A novel autoantibody against fibronectin leucine-rich transmembrane 
protein 2 expressed on the endothelial cell surface identified by retroviral vector system in 
systemic lupus erythematosus. Arthritis Research & Therapy, 14(4), R157. 
https://doi.org/10.1186/ar3897 

Sivakumaran, S., Agakov, F., Theodoratou, E., Prendergast, J. G., Zgaga, L., Manolio, T., 
Rudan, I., McKeigue, P., Wilson, J. F., & Campbell, H. (2011). Abundant pleiotropy in 
human complex diseases and traits. American Journal of Human Genetics, 89(5), 607–
618. https://doi.org/10.1016/j.ajhg.2011.10.004 

Slatkin, M. (2008). Linkage disequilibrium - Understanding the evolutionary past and mapping 
the medical future. In Nature Reviews Genetics (Vol. 9, Issue 6, pp. 477–485). 
https://doi.org/10.1038/nrg2361 

Smyth, D. J., Cooper, J. D., Howson, J. M. M., Clarke, P., Downes, K., Mistry, T., Stevens, H., 
Walker, N. M., & Todd, J. A. (2011). FUT2 nonsecretor status links type 1 diabetes 
susceptibility and resistance to infection. Diabetes, 60(11), 3081–3084. 
https://doi.org/10.2337/db11-0638 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.22280888doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.19.22280888
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., 
Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., 
Sprosen, T., Peakman, T., & Collins, R. (2015). UK Biobank: An Open Access Resource 
for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. 
PLoS Medicine, 12(3). https://doi.org/10.1371/journal.pmed.1001779 

Taylor, A., & Namba, K. (2001). In vitro induction of CD25+ CD4+ regulatory T cells by the 
neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH). Immunology and Cell 
Biology, 79(4), 358–367. https://doi.org/10.1046/j.1440-1711.2001.01022.x 

Thompson, M. J., & Jiggins, C. D. (2014). Supergenes and their role in evolution. In Heredity 
(Vol. 113, Issue 1, pp. 1–8). Nature Publishing Group. https://doi.org/10.1038/hdy.2014.20 

Tsyklauri, O., Niederlova, V., Forsythe, E., Prasai, A., Drobek, A., Kasparek, P., Sparks, K., 
Trachtulec, Z., Prochazka, J., Sedlacek, R., Beales, P., Huranova, M., & Stepanek, O. 
(2021). Bardet-Biedl Syndrome ciliopathy is linked to altered hematopoiesis and 
dysregulated self-tolerance. EMBO Reports, 22(2), e50785. 
https://doi.org/10.15252/embr.202050785 

Tyler, A. L., Asselbergs, F. W., Williams, S. M., & Moore, J. H. (2009). Shadows of complexity: 
what biological networks reveal about epistasis and pleiotropy. BioEssays : News and 
Reviews in Molecular, Cellular and Developmental Biology, 31(2), 220–227. 
https://doi.org/10.1002/bies.200800022 

Wang, Y., Lin, X., Gong, X., Wu, L., Zhang, J., Liu, W., Li, J., & Chen, L. (2018). Atypical GATA 
transcription factor TRPS1 represses gene expression by recruiting CHD4/NuRD(MTA2) 
and suppresses cell migration and invasion by repressing TP63 expression. Oncogenesis, 
7(12). https://doi.org/10.1038/s41389-018-0108-9 

Wei, K., Xu, Y., Tse, H., Manolson, M. F., & Gong, S. G. (2011). Mouse FLRT2 interacts with 
the extracellular and intracellular regions of FGFR2. Journal of Dental Research, 90(10), 
1234–1239. https://doi.org/10.1177/0022034511415272 

Wei, W. Q., Bastarache, L. A., Carroll, R. J., Marlo, J. E., Osterman, T. J., Gamazon, E. R., Cox, 
N. J., Roden, D. M., & Denny, J. C. (2017). Evaluating phecodes, clinical classification 
software, and ICD-9-CM codes for phenome-wide association studies in the electronic 
health record. PLoS ONE, 12(7). https://doi.org/10.1371/journal.pone.0175508 

Wu, H., Sun, L., Lin, D.-P., Shao, X.-X., Xia, S.-L., & Lv, M. (2017). Association of 
Fucosyltransferase 2 Gene Polymorphisms with Inflammatory Bowel Disease in Patients 
from Southeast China. Gastroenterology Research and Practice, 2017, 4148651. 
https://doi.org/10.1155/2017/4148651 

Yang, K., Meinhardt, A., Zhang, B., Grzmil, P., Adham, I. M., & Hoyer-Fender, S. (2012). The 
small heat shock protein ODF1/HSPB10 is essential for tight linkage of sperm head to tail 
and male fertility in mice. Molecular and Cellular Biology, 32(1), 216–225. 
https://doi.org/10.1128/MCB.06158-11 

Zhang, Y., Li, D., Zeng, Q., Feng, J., Fu, H., Luo, Z., Xiao, B., Yang, H., & Wu, M. (2021). 
LRRC4 functions as a neuron-protective role in experimental autoimmune 
encephalomyelitis. Molecular Medicine, 27(1). https://doi.org/10.1186/s10020-021-00304-4 
Zhao, W. W. (2013). Intragenic deletion of RBFOX1 associated with neurodevelopmental/ 

neuropsychiatric disorders and possibly other clinical presentations. Molecular 
Cytogenetics, 6(1). https://doi.org/10.1186/1755-8166-6-26 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.19.22280888doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.19.22280888
http://creativecommons.org/licenses/by-nc-nd/4.0/

