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Abstract 
Background: Ciprofloxacin is a widely used antibiotic that has lost efficiency due to 

extensive resistance. We developed machine learning (ML) models that predict the 

probability of ciprofloxacin resistance in hospitalized patients.  

Methods: Data were collected from electronic records of hospitalized patients with positive 

bacterial cultures, during 2016-2019. Susceptibility results to ciprofloxacin (n=10,053 

cultures) were obtained for E. coli, K. pneumoniae, M. morganii, P.aeruginosa, P. mirabilis 

and S. aureus. An ensemble model, combining several base models, was developed to predict 

ciprofloxacin resistant cultures, either with (gnostic) or without (agnostic) information on the 

infecting bacterial species.  

Results: The ensemble models’ predictions were well-calibrated, and yielded ROC-AUCs 

(area under the receiver operating characteristic curve) of 0.763 (95%CI 0.634-0.785) and 

0.849 (95%CI 0.799-0.921) on independent test-sets for the agnostic and gnostic datasets, 

respectively. Shapley additive explanations analysis identified that influential variables were 

related to resistance of previous infections, where patients arrived from (hospital, nursing 

home, etc.), sex, and recent resistance frequencies in the hospital. A decision curve analysis 

revealed that implementing our models can be beneficial in a wide range of cost-benefits 

considerations of ciprofloxacin administration.  

Conclusions: This study develops ML models to predict ciprofloxacin resistance in 

hospitalized patients. The models achieved high predictive ability, were well calibrated, had 

substantial net-benefit across a wide range of conditions, and relied on predictors consistent 

with the literature. This is a further step on the way to inclusion of ML decision support 

systems into clinical practice.  
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Introduction 
Antimicrobial resistance (AMR) has developed into a global public health crisis. AMR often 

emerges rapidly in bacterial populations, and the effectiveness of newly introduced 

antibiotics can substantially drop after a few years of clinical use (1, 2). In settings of high 

resistance levels, such as treatment of hospitalized patients, it may become challenging to 

find empiric antibiotic treatments which will be effective, while minimizing collateral 

resistance (3). Such inappropriate empirical treatment is associated with the prevalence of 

AMR (4). Despite guidelines (5), literature on collateral damage of antibiotics (5, 6), and 

stewardship initiatives (7), the frequency of bug-drug mismatch in empiric treatment often 

remains high (4, 8). 

 

A notable example of a broadly used antibiotic, with increasing concerns about its resistance 

frequencies, is ciprofloxacin. Ciprofloxacin is a fluoroquinolone antibiotic, which has been 

widely used since the early 2000s and is currently on the World Health Organization's List of 

Essential Medicines (9). Ciprofloxacin is effective against various gram-negative bacteria, 

and to a lesser extent gram-positive bacteria, and is used in the treatment of urinary tract, 

respiratory tract, bone and joint, intra-abdominal, and other infections (10, 11). Hence, 

ciprofloxacin has been the drug of choice for many infections both in in- and out-patient 

settings. High consumption rates over decades inevitably increased resistance to the drug 

(12–14), with an additional indirect effect on non-consumers (15), impeding effective therapy 

(16). However, reversion to high levels of sensitivity to quinolones is rapid upon decrease in 

quinolone consumption (17). Therefore, minimizing unnecessary ciprofloxacin use can have 

substantial public health impact.  

 

The use of machine learning (ML) in the context of AMR has been rapidly increasing with 

the availability of electronic medical records (EMRs) and development of new algorithms. 

ML models are potentially nearing the point where they can support clinicians’ decisions of 

empiric therapy, by providing rapid predictions of resistance (18, 19). Hence, constant 

improvement of the methodology and outcomes of such models is of high importance. In the 

context of ciprofloxacin, prediction models have been scarce and limited to community-

acquired urinary tract infections (20), only to intensive care units (21), specific site of 

infection (22), or to specific subsets of patients (23). 
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In this study, we developed an ensemble ML model that predicts resistance to ciprofloxacin 

based on hospitalized patients’ EMRs. Importantly, we include as variables relevant 

frequencies of resistance within the hospital, and not solely the examined patient’s EMR. Our 

models are applied to two settings: assuming that the infecting bacterial species is unknown 

(a bacteria-agnostic dataset) or known (the bacteria-gnostic dataset). Furthermore, 

explainability methods are used to analyze important predictors of resistance in our ML 

models 

Methods 

Data 

Data were retrieved from Meir Medical Center, a hospital in Israel which serves 

approximately 600,000 residents. EMRs of patients who had positive bacterial cultures that 

were tested for ciprofloxacin susceptibility between the years 2016-2019 were retrieved. The 

data contained information regarding patients’ demographics, functional status, previous 

antibiotics usage and previous hospitalization within the previous year, bacterial pathogen 

and susceptibility results. Bacterial cultures demonstrating intermediate resistance results 

were regarded as resistant. 

 

Additional features related to previous infections with resistant bacteria, previous antibiotic 

usage, and previous hospitalizations were engineered from the patients’ EMRs. The final 

dataset contained 10,053 susceptibility test results of 5,540 patients and 73 variables (see 

Supplementary Table S1). These data were used to create two data sets: bacteria gnostic (the 

whole data) and bacteria agnostic (without 20 features related to the bacteria). Each dataset 

was divided into a training set (75% of all samples) and a test set (25% of all samples), based 

on the date the culture was taken (Figure 1). All the presented results were obtained when 

training the models solely on the training set, and testing them on the independent test set.  
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Figure 1: Ciprofloxacin resistance time-trends stratified by bacterial species. Points 

connected by solid lines are the average monthly ciprofloxacin resistance frequencies. The 

dotted horizontal lines represent the average resistance in the training and test sets, which are 

separated by the black vertical lines. 

Machine learning algorithms 

We used an ensemble of several ML algorithms, which we term ‘base learners’: LASSO 

penalized logistic regression (24), random forest (25), gradient-boosted trees (25), and neural 

networks (25). The base learners’ hyperparameters were optimized using 200 random 

searches (26) with a five-fold, time series cross-validation. To improve the predictions of the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 20, 2022. ; https://doi.org/10.1101/2022.10.18.22281205doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.18.22281205
http://creativecommons.org/licenses/by-nc-nd/4.0/


four base learners, a stacking technique was applied. In this technique, the predictions of the 

base learners are given as inputs to a second-level learning algorithm (super learner). The 

super learner was a logistic regression algorithm trained to optimize the predictions (27). We 

adopted a process described elsewhere (28) to train the super learner on time series data 

(Figure S1 in the Supplementary Material). This resulted in a single ensemble model whose 

output is the predicted probability of the culture result to have resistance to ciprofloxacin. 

The tuned hyperparameters are shown at Supplementary Table S2. Model performance was 

evaluated using the area under the receiver operating characteristic curve (ROC-AUC) 

metric. Confidence intervals (CI) were calculated using 5,000 bootstrap samples of the test-

set data. Model agnostic approximation of the Shapley additive explanations (SHAP) was 

performed with “kernel SHAP” (29), employing 300 background samples from the training 

data and calculating the SAHP values of the entire test set. 

 

Decision curve analysis 

A decision (also known as a utility) curve analysis was performed using the predictions of 

our ensemble model on the test-set. In this analysis, the standardized net benefit (sNB) of a 

decision is defined by the following equation (30, 31): 

 𝑠𝑁𝐵 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅	 1!"!"#
"!"#

	 #$	
1!#$	

 

where TPR and FPR are the true- and false-positive rates, respectively; 𝑝$	is a threshold 

probability; and 𝑓&'(	is the frequency of resistant infections. In our case, 𝑝$	is the threshold 

probability above which a decision maker (i.e., clinician) is willing to act as if the infection is 

resistant to ciprofloxacin. This implies that the cost of falsely deciding that an infection is 

susceptible to ciprofloxacin is 𝑝$	/(1− 𝑝$	) fold the benefit of correctly deciding it is 

susceptible to ciprofloxacin. Hence 𝑝$	/(1− 𝑝$	) is also termed the cost-benefit ratio. For 

example, assume a clinician may not treat an infection with ciprofloxacin when she knows 

that the probability of ciprofloxacin resistance is above 0.2, but will treat them with 

ciprofloxacin otherwise. The clinician is hence implicitly willing to inefficiently treat one 

patient with a ciprofloxacin resistant infection for every four patients with susceptible 

infections, yielding a cost-benefit ratio of 1:4. The sNB of the model is compared to two 

simple decision strategies: assuming that every infection is resistant (all resistant) and that no 

infection is resistant (all susceptible). The sNB can reach a maximum value of 1, equivalent 

to assuming that all resistant and susceptible cases are treated correctly (TPR=1 and FPR=0). 
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Analyses were performed with Python 3.7, using the following packages: Numpy 1.20.3, 

Pandas 1.3.5 and Scikit-learn 1.0.1 for data processing; Scikit-learn, Xgboost 1.5.0, and 

Tensorflow 2.4.1 for modeling; Matplotlib 3.5.0 for plotting; and SHAP 0.40.0 for variable 

influence. 

Results 

We trained four base learners, and an ensemble model composed of these base learners, to 

predict ciprofloxacin resistance for six bacterial species. The demographics and basic clinical 

characteristics corresponding to the cultures’ patients are shown in Table 1. We note that 

K.pneumoniae and M.morganii had a higher proportion of resistant samples in the test set, 

which potentially may harm predictions. Regardless, our algorithms were able to generalize 

successfully and achieve high ROC-AUC scores. 

 

  Overall Susceptible Resistant 

n (%)  10053 7289 (72.5) 2764 (27.5) 

Age, median (IQR) 

 73.75 

(61.78,84.44) 

73.40 

(60.10,84.10) 

74.60 

(64.56,85.06

) 

Patient arrived from, n (%) 

another hospital 302 (3.40) 188 (2.93) 114 (4.59) 

institution 1596 (17.94) 922 (14.38) 674 (27.14) 

medical clinic 95 (1.07) 63 (0.98) 32 (1.29) 

other 760 (8.55) 544 (8.49) 216 (8.70) 

home 6141 (69.05) 4694 (73.22) 1447 (58.28) 

Bacterial Species, n (%) 

E.coli 4160 (41.38) 2821 (38.70) 1339 (48.44) 

K.pneumoniae 1427 (14.19) 1139 (15.63) 288 (10.42) 

M.morganii 282 (2.81) 179 (2.46) 103 (3.73) 

P.mirabilis 944 (9.39) 524 (7.19) 420 (15.20) 

P.aeruginosa 2076 (20.65) 1771 (24.30) 305 (11.03) 
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S.aureus 1164 (11.58) 855 (11.73) 309 (11.18) 

Sample location, n (%) 

blood 1440 (14.32) 1138 (15.61) 302 (10.93) 

sputum 863 (8.58) 670 (9.19) 193 (6.98) 

urine 4933 (49.07) 3429 (47.04) 1504 (54.41) 

wound 2817 (28.02) 2052 (28.15) 765 (27.68) 

Sex, n (%) 
female 5232 (52.04) 3937 (54.01) 1295 (46.85) 

male 4821 (47.96) 3352 (45.99) 1469 (53.15) 

Functional dependence 

status n (%) 

dependent 5343 (62.48) 3616 (58.66) 1727 (72.35) 

Table 1: Distribution of variable values, stratified by ciprofloxacin resistance. IQR - 

interquartile range; SD - standard deviation. 

 

ROC-AUC scores and calibration plots were calculated for all of the base learners (Figure 2 

A-B). The ensemble consistently outperformed all base learners, on both datasets, achieving 

high ROC-AUC scores. For the bacteria-agnostic dataset, the ROC-AUC scores were 0.742 

for the neural network, 0.739 for the logistic regression (LASSO), 0.743 for the random 

forest, 0.727 for the xgboost and 0.763 (95% CI 0.634-0.785) for the ensemble. On the 

bacteria-gnostic dataset the scores were 0.84 for the neural network, 0.84 for the LASSO, 

0.823 for the random forest, 0.843 for the xgboost and 0.849 (95% CI 0.799-0.921) for the 

ensemble. Furthermore, all base learners and our ensemble models were relatively well-

calibrated (Figure 2C-D). 
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Figure 2: ROC curves (A, B) and calibration plots (C, D) for bacteria-agnostic and bacteria-

gnostic datasets, respectively. ROC-AUC results of each model, on the test set, are presented 

within A and B. The colors represent different algorithms, where the black bold lines are the 

results of the ensemble model. Data points presented on the calibration plots are aggregated 

by deciles of predicted probability. 

 

In an effort to improve the ensemble’s transparency and gain a better comprehension of the 

variables influencing its predictions, we used Kernel SHAP. This method estimates the 

contribution of each variable to the model’s prediction by approximating their SHAP values 
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(29). These SHAP values allow us to understand the magnitude and direction of influence of 

variables, which implies variable importance (Figure 3). 

For the agnostic dataset, the five most influential variables in the bacteria agnostic dataset, as 

measured by the mean absolute SHAP values (Figure 3A), were: previous resistance to 

ciprofloxacin in the past 60 days, whether the patient arrived from an institution, recent 

resistance to any antibiotic in same type of units (e.g., internal medicine or orthopedic units), 

male sex, and whether the sample source was sputum. Analogously, the five most influential 

variables in the bacteria gnostic dataset were (Figure 3B): average resistance of the same 

bacterial species to any antibiotic in the past 30 days, across the hospital; the number of 

previous fluoroquinolone resistant infections the patient had in the past 60 days; whether the 

bacterial species was P. aeruginosa; the number of non-ciprofloxacin antibiotics that the 

same bacterial species had resistance to in the past 60 days, in the same patient; and whether 

the patient arrived from an institution. In both agnostic and gnostic settings, higher values of 

the influential variables consistently yielded positive influence on the ensemble's prediction, 

as can be seen by the swarm plots of the SHAP values (Figure 3). This is simply the result of 

our coding of the binary variables’ (i.e., deciding which variable levels are set to zero or one) 

as risk factors. 

 

Figure 3: SHAP values of the ensemble model for the five most influential variables in the 

agnostic (A) and gnostic (B) datasets. The absolute SHAP values are presented in the left 

column. A swarm plot is presented in the right column, wherein colors (from blue to red) 

correspond to variable values (from low to high), whereas the influence of those variables on 

the log-OR of predictions is given on the x-axis. Previous resistance to ciprofloxacin - 
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whether the patient had a ciprofloxacin resistant infection in the past 60 days. Resistance to 

any antibiotic in similar units - past 30 days moving average of resistance to any antibiotic in 

the same type of units (orthopedic, gynecology etc.). Resistance of the same bacterial species 

to any antibiotic - past 30 days moving average across the hospital. Resistance to other 

species to fluoroquinolones - the past 60 days, in the same patient. Non-ciprofloxacin 

resistance - number of non-ciprofloxacin antibiotics that the same bacterial species was 

resistant to in the last 60 days, in the same patient.  

 
Figure 4: agnostic (A) and gnostic (B) decision curves. The standardized net benefit is 

plotted against the threshold probability and cost-benefit ratio of deciding that an infection is 

resistant to ciprofloxacin. Curves of the benefit when assuming all infections are susceptible 

(dashed horizontal line), all infections are resistant (black curve), and relying on the ensemble 

model predictions (red curve) are plotted. Positive differences in standardized net benefit of 

the model predictions vs the treat all and treat none curves are shaded in red. 

 

Finally, we have performed a decision curve analysis (see Methods). Figure 4 shows that 

relying on predictions of our model improves assuming that every infection is resistant for 

cost-benefit ratios >1:9. For the gnostic model, our model always outperforms the decision 

rule in which we assume that every infection is susceptible (Figure 4B). However, for the 

agnostic model, this is true only up to a cost-benefit ratio of approximately 3:2. 
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Discussion 

In this study, we developed two ensemble ML models to predict resistance to ciprofloxacin of 

hospitalized patients’ infections. The first model was trained on the bacteria agnostic dataset, 

i.e., without any knowledge of the infecting bacterial species. This represents the most 

common situation before the start of antibiotic treatment. The second ensemble was trained 

on the bacteria gnostic dataset, i.e., with primary information of the infecting bacterial 

species. Both models achieved high ROC-AUC metrics on an independent test set: 0.763 

(95% CI 0.634, 0.785) and 0.849 (95% CI 0.799, 0.921) for the agnostic and gnostic datasets, 

respectively, and were well calibrated. Moreover, a decision curve analysis revealed that 

implementing our models can be beneficial in a wide range of cost-benefit considerations of 

withholding vs prescribing ciprofloxacin.  

  

Our ML models include several innovative components in the field of AMR prediction. First, 

we use a super learner that is trained to effectively combine the outputs of several base 

learners. This increases our final ROC-AUC by up to 0.036 with respect to the base-learners. 

Second, we incorporate variables representing recent and local resistant patterns within the 

hospital, in addition to a specific patient’s EMR. Consequently, and despite the limited ability 

to compare such results between different settings, our models achieve high predictive 

abilities relative to previous studies (20, 21). Importantly, our models perform well on a very 

heterogeneous dataset, comprising various bacterial species, sample sources and multiple 

departments of the hospital. For example, Feretzakis et al. predicted ciprofloxacin resistance 

using data from a single internal medicine department, conditioned on the sample’s Gram 

stain result, and reached an ROC-AUC of 0.726 (21). Yelin et al. predicted ciprofloxacin 

resistance only in outpatients, strictly using urine samples, and limited to three bacterial 

species, reaching an ROC-AUC of 0.83 (20). Other studies either did not calculate ROC-

AUC (23, 32) or used cultures derived from a single sample source (22, 23), a single bacterial 

species (32), or a single hospital unit (33). 

 

An additional advantage of our ensemble modeling approach is built-in model calibration. 

Due to the logistic transformation the single-model outputs undergo, we are able to provide 

an output of well-calibrated probabilities of resistance. Prescribing antibiotics forces the 

clinician to make a compromise between patient’s care and population-level consequences 

(34). Hence, providing clinicians with unbiased probabilities of resistance can facilitate 
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incorporation of other considerations into their decision. However, we note that continuous 

outputs from antibiotic prescription decision-support systems have been suggested to promote 

over-prescription of antibiotics, and hence decisions on output forms should be made with 

caution (35). 
 

Our models’ predictions were analyzed using SHAP values, which can aid in assessing the 

influence of different covariates on predictions when applying complex ML models (36). We 

note that SHAP values contain inherent flaws (37) in approximating the impact of variables 

on predictions, and certainly do not aim to estimate causal effects. Despite these drawbacks, 

SHAP values can be useful for validating model outcomes against prior knowledge of risk 

factors and increase models’ transparency. This can in turn facilitate increasing clinicians’ 

trust in using ML decision support systems in their practice (38). 

 

The results of our SHAP analyses are indeed consistent with the literature. Highly influential 

variables on the ensemble models’ predictions were related to previous infections containing 

resistant bacteria, either to ciprofloxacin or other antibiotics. Whereas previous resistance to 

ciprofloxacin is an obvious risk factor for current resistance, the importance of previous 

resistance to other antibiotics may be explained by cross-resistance (39–41), or confounding 

by the patients' exposure to resistant bacteria or to antibiotics. Patients' origin (home, another 

hospital, nursing home, medical clinic, or other) had substantial influence on predictions and 

was also found to be an important variable by others (22, 42). This is a known risk factor, as 

antibiotics are administered more frequently in medical facilities and nursing homes, leading 

to high selection for resistance (43). Another influential variable was sex. Associations 

between antibiotic resistance and sex have been observed repeatedly and may stem from 

differential antibiotic consumption patterns (21, 22). Local resistance frequencies, which we 

introduced into the data as moving averages of resistance frequencies, were also found highly 

influential on prediction. This is consistent with previous research and clinical use of local 

antibiograms, representing the susceptibility patterns of different bacteria (44). Furthermore, 

our moving average of resistance frequencies is potentially more sensitive to resistance trends 

than yearly or monthly antibiograms. In the gnostic model, P. aeruginosa was selected as an 

influential variable. This stems from the binary encoding of the bacterial species, which 

defined the reference species as E. coli. Since P. aeruginosa was the second-most common 

bacterial species in the dataset, and was less resistant than E. coli (Table 1), it was determined 

to be influential in reducing the predicted probability of a resistant infection.  
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Our study has several limitations. First, our dataset lacks relevant community-related patient 

information, such as antibiotic consumption in the community (43), and antibiotic 

consumption in the patients’ surroundings, including neighborhoods (15) and households 

(45). Our models can be easily extended to accommodate these covariates, which will likely 

further improve the models’ predictive abilities. Second, our models are not necessarily 

immediately generalizable to other settings, or even the same setting, in different time 

periods. Variations in antibiotic consumption and the dynamic nature of AMR may lead to 

variation in risk factors over space and time (46, 47). Retraining of the models on site-

specific data will likely be required to fine-tune predictions in different settings. However, 

the rates of ciprofloxacin resistance and patient covariates in our dataset are comparable with 

those of other developed countries (48). We therefore expect a reasonable degree of 

consistency in our results, if our models would have been developed on a dataset from 

comparable settings.  

Conclusions 

The models developed in this study represent a further step on the way to inclusion of ML 

decision support systems into clinical practice. Improvement of such models depends on 

advances in algorithm development, specific feature engineering, and the augmentation of the 

quantity and quality of EMR data. As we have shown, modern ML models can achieve high 

prediction while autonomously imparting high influence to risk factors that are known to be 

clinically relevant to AMR. Hopefully, future studies can further leverage the presented 

models and the vast EMR data available to improve prediction of AMR and consequently 

reduce antibiotic misuse.  
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