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Abstract 

In the absence of pharmaceutical interventions, social distancing and lockdown have been key 

options for controlling new or reemerging respiratory infectious disease outbreaks. The timely 

implementation of these interventions is vital for effectively controlling and safeguarding the 

economy. 

Motivated by the COVID-19 pandemic, we evaluated whether, when, and to what level lockdowns 

are necessary to minimize epidemic and economic burdens of new disease outbreaks. We 

formulated the question as a sequential decision-making Markov Decision Process and solved it 

using deep Q-network algorithm. We evaluated the question under two objective functions: a 2-

objective function to minimize economic burden and hospital capacity violations, suitable for 

diseases with severe health risks but with minimal death, and a 3-objective function that 

additionally minimizes the number of deaths, suitable for diseases that have high risk of mortality. 

A key feature of the model is that we evaluated the above questions in the context of two-

geographical jurisdictions that interact through travel but make autonomous and independent 

decisions, evaluating under cross-jurisdictional cooperation and non-cooperation. 
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In the 2-objective function under cross-jurisdictional cooperation, the optimal policy was to aim 

for shutdowns at 50% and 25% per day. Though this policy avoided hospital capacity violations, 

the shutdowns extended until a large proportion of the population reached herd immunity. Delays 

in initiating this optimal policy or non-cooperation from an outside jurisdiction required shutdowns 

at a higher level of 75% per day, thus adding to economic burdens. In the 3-objective function, the 

optimal policy under cross-jurisdictional cooperation was to aim for shutdowns of up to 75% per 

day to prevent deaths by reducing infected cases. This optimal policy continued for the entire 

duration of the simulation, suggesting that, until pharmaceutical interventions such as treatment or 

vaccines become available, contact reductions through physical distancing would be necessary to 

minimize deaths. Deviating from this policy increased the number of shutdowns and led to several 

deaths. 

In summary, we present a decision-analytic methodology for identifying optimal lockdown 

strategy under the context of interactions between jurisdictions that make autonomous and 

independent decisions. The numerical analysis outcomes are intuitive and, as expected, serve as 

proof of the feasibility of such a model. 

Keywords: decision-making in epidemics, COVID-19, deep reinforcement learning, artificial 

intelligence in public health, non-pharmaceutical intervention, jurisdictional decision-making 

Abbreviations: NPI: Non-pharmaceutical Interventions, MDP: Markov Decision Process, DQN: 

Deep Q-Network, RL: Reinforcement Learning, SEIRD: susceptible(S)-exposed(E)-infected(I)-

recovered(R)-dead(D), GDP: Gross Domestic Product 

1. Introduction 

Timely implementations of pharmaceutical and non-pharmaceutical interventions (NPI) 

are critical for effective control of new infectious disease outbreaks. Delay in response causes 
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enormous disease and economic burdens, as seen during the COVID-19 outbreak caused by the 

SARS-Cov2 virus [1]. 

In the event of new respiratory infectious disease outbreaks, when pharmaceutical 

interventions are unavailable, NPIs are the only options, as was the case with COVID-19. Effective 

NPI options include facemask-use and social distancing [2]. Social distancing could include 

physical distancing (e.g., by 3ft or 6ft) or partial lockdowns. While facemasks and physical 

distancing could be the most economically feasible options, lockdowns may be necessary for 

highly contagious viruses such as the SARS-Cov2. While locking-down early in the pandemic 

would be suitable for reducing disease burden, it may unnecessarily add to the economic burden. 

On the other hand, delaying the lockdown or improper phasing of lockdowns can significantly 

amplify both economic and disease burdens [3].   

In this context, through timely implementation of lockdowns, governmental public health 

agencies play a key role in effective containment of new outbreaks. Furthermore, though public 

health decisions are autonomous to each jurisdiction, e.g., in the United States, local COVID-19 

prevention guidelines were determined by individual states [4], the epidemic can be influenced by 

outside jurisdictions through travel. 

A methodology that can help determine whether and when a lockdown is necessary, to 

what level, and how to phase out a lockdown would be a critical part of a pandemic preparedness 

plan. While surveillance systems to help identify new outbreaks would be a crucial part of this 

preparedness plan, because of the delay in diagnosis of cases, informing decisions only based on 

data collected through these systems will not be sufficient. Surveillance data combined with 

epidemic projections through the use of dynamic mathematical models can help identify optimal 

control policies, including whether a partial shutdown will be necessary [4, 5]. In this study, we 
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formulated the question of whether and when a lockdown is necessary, to what level, and how to 

phase out a lockdown as a sequential decision-making problem using Markov decision process 

(MDP) and solved using Deep Q-network (DQN), a reinforcement learning (RL) algorithm.   

RL is an area of Artificial Intelligence (AI) where optimal policies are identified through a 

learning process that involves trial and error. This iterative process includes, at each step, an agent 

based on the current system state taking an action that causes the system to transition to another 

state that is associated with a certain reward [6, 7]. Q-learning algorithm is an RL algorithm that 

builds a Q-table to store, for every discretized state(row)-action(column) pair its estimated Q-

values, which is a function of all future rewards. For every state the action that gives the maximum 

Q-value would then be the optimal action. Though it has vast successful applications, using a Q-

table is feasible only for problems with discrete state space or continuous state spaces that can be 

discretized into a finite number of states [8]. For large state and action space environments where 

discretization is not sufficient or not feasible, an artificial neural network can be trained to learn 

the Q-values as a function of a continuous state space [8]. 

Deep Q-network (DQN), is such an algorithm where Q-tables are replaced with deep 

artificial neural networks (neural network with more than three layers, including input and output). 

In DQN, input nodes of the neural network are the current state, and the output nodes are the Q-

value for each action. DQN was initially introduced in [9] and has been applied to a diverse set of 

problems, including but not limited to games [10], autonomous driving [11], recommendation 

system [12], mobile robot navigation [13], computer-aided diagnosis [14], stock trading [15], and 

very recently on COVID-19 pandemic control [15, 16]. 

In recent times, as lockdowns had been a key tool to curb COVID-19 spread, a growing 

number of RL studies have focused on identifying optimal lockdown policies with objective to 
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minimize COVID-19 cases while also minimizing economic damages. In a study by Khadilkar et 

al., RL is used to automate policy learning to optimize lockdown policies for epidemic control 

[18]. Kompella et al. [19] developed an agent-based pandemic simulator and an RL-based 

methodology to optimize fine-grained mitigation policies that minimize the economic impact 

without overwhelming hospital capacity. In a study by Arango et al., RL is used to optimize cyclic 

lockdowns as a temporary alternative to extended lockdowns using two concurrent goals of 

minimizing overshoots of ICU usage and a socio-economic goal that minimizes the time spent 

under lockdown [20]. 

We present an RL model trained using the DQN algorithm to evaluate the question of 

whether a lockdown is necessary, and if so, when it should  be initiated, to what level (proportion 

lockdown), and how it should change over time, such that it minimizes both epidemic and 

economic burdens. Though this objective is similar to other RL studies in the literature, our work 

differs from previous work in two ways. First, we evaluated the question of when to initiate a 

lockdown policy, which would be helpful for future outbreaks of similar epidemiology when 

lockdowns are a key intervention. Second, we evaluate these decisions in the context of two-

geographical jurisdictions that make autonomous, independent decisions, cooperatively or non-

cooperatively, but populations interact in the same environment through travel. Though decisions 

are made independently, because of travel between jurisdictions, the actions of one jurisdiction 

can influence the epidemic in the other jurisdiction. This scenario would especially be of interest 

for a jurisdiction that makes the optimal decisions but has travels coming from a jurisdiction with 

bad decisions. While travel between jurisdictions would be favorable for the economy, it could 

diminish the impact of its optimal actions. Therefore, taking the perspective of a jurisdiction that 

makes the optimal decision, we evaluate under travel when actions of another jurisdiction 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.18.22281063doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.18.22281063
http://creativecommons.org/licenses/by-nc-nd/4.0/


significantly add to its disease and economic burdens. This would help inform when border 

closures would need to be part of an optimal lockdown strategy.  And subsequently, whether 

decision-making control should be given to individual jurisdictions (say county-level or state-

level) or a common entity (such as state if jurisdictions are counties, and federal if jurisdictions 

are states). In this study, we assume that both jurisdictions start an outbreak at the same time, thus 

our results are limited to this scope.  

The rest of the paper is organized as follows. Section 2 presents the methodology, including 

the simulation model, MDP formulation, and RL. In section 3, we discuss the scenarios we 

analyzed in detail. Section 4 presents the results, and finally, in section 5, we conclude the study 

with a discussion. 

2. Methodology 

 Our model framework includes a compartmental simulation model that simulates the epidemic 

spread discussed in section 2.1 integrated with a Markov decision process (MDP) optimization 

framework discussed in section 2.2 and solved using deep Q-network (DQN) discussed in section 

2.3.  

2.1 Simulation Model 

 We developed a susceptible(S)-exposed(E)-infected(I)-recovered(R)-dead(D) (SEIRD) 

compartmental model based on Kermack and McKendrick [21] for simulating epidemic 

projections over time (Figure 1). An individual starts in compartment 𝑆, and upon contracting the 

disease moves to compartment 𝐸. A person in compartment 𝐸 is in the incubation phase of the 

disease (for a duration of 1/𝛼 days) and thus cannot transmit the disease. A person moves from 

compartment E to compartment I, the transmissible phase of the infection. A person in 
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compartment 𝐼 either recovers, i.e., moves to 𝑅 with rate 𝛾 per day, or succumbs to disease, i.e., 

moves to  𝐷 with rate 𝜃 per day.  

Let 

𝑆	be the number of Susceptible, 

𝐸	be the number of Exposed, 

𝐼	be the number of Infectious, 

𝑅 be the number of Recovered, 

𝐷 be the number of Dead, 

𝑁 be total population, 

𝛽: transmission rate from susceptible to infected (𝛽 = 𝑝𝑐 where 𝑝 is the probability of 

transmission per susceptible-infected contact and 𝑐 =number of contacts per person), 

𝛼: is the inverse of the average incubation period in days, 

𝛾: rate of recovery per day, and 

𝜃: rate of disease-related mortality per day. 

 

 

Figure 1. SEIRD flow diagram for infectious diseases. 

Given the short duration of the disease, we evaluate over a short analytic period of 400 days, 

assuming no births or natural deaths, and thus, the population size remains constant over time (𝑁 =

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.18.22281063doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.18.22281063
http://creativecommons.org/licenses/by-nc-nd/4.0/


𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) + 𝐷(𝑡)). The differential equation governing the dynamics of the 

disease can be written as follows: 

 𝑑𝑆
𝑑𝑡

= −𝛽𝑆
𝐼
𝑁
																𝑆(0) = 𝑆! ≥ 0 

𝑑𝐸
𝑑𝑡

= 𝛽𝑆
𝐼
𝑁
− 𝛼𝐸						𝐸(0) = 𝐸! ≥ 0 

𝑑𝐼
𝑑𝑡
= 𝛼𝐸 − 𝛾𝐼													𝐼(0) = 𝐼! ≥ 0 

𝑑𝑅
𝑑𝑡

= 𝛾𝐼																	𝑅(0) = 𝑅! ≥ 0 

𝑑𝐷
𝑑𝑡

= 𝜃𝐼																	𝐷(0) = 𝐷! ≥ 0 

(1) 

 

Population Mixing: To study the impact of travel on epidemic projections, we modified the 

standard SEIRD equations to include travel between two jurisdictions (jurisdiction A and 

jurisdiction B). 

Let  

𝑟!" be the travel rate from jurisdiction A to jurisdiction B, 

𝑟"! be the travel rate from jurisdiction B to jurisdiction A, and 

𝐼" 	be the number of infectious people in jurisdiction	B. 

Then the SEIRD model can be modified to include population mixing as follows: 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.18.22281063doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.18.22281063
http://creativecommons.org/licenses/by-nc-nd/4.0/


 𝑑𝑆"
𝑑𝑡

= −𝛽𝑆"(1 − 𝑟"#) 6
(1 − 𝑟"#)(𝐼") + (𝑟#")(𝐼#)
(1 − 𝑟"#)𝑁" + (𝑟#")𝑁#

8 − 𝛽𝑆"(𝑟"#) 6
(𝑟"#)(𝐼") + (1 − 𝑟#")(𝐼#)
(𝑟"#)𝑁" + (1 − 𝑟#")𝑁#

8 

𝑑𝐸"
𝑑𝑡

= 𝛽𝑆"(1 − 𝑟"#) 6
(1 − 𝑟"#)(𝐼") + (𝑟#")(𝐼#)
(1 − 𝑟"#)𝑁$ + (𝑟#")𝑁#

8 + 𝛽𝑆"(𝑟"#) 6
(𝑟"#)(𝐼") + (1 − 𝑟#")(𝐼#)
(𝑟"#)𝑁" + (1 − 𝑟#")𝑁#

8

− 	𝛼(𝐸") 

𝑑𝐼"
𝑑𝑡

= 	𝛼(𝐸") − 𝛾𝐼" 

𝑑𝑅"
𝑑𝑡

= 𝛾𝐼" 

𝑑𝐷"
𝑑𝑡

= 𝜃𝐼". 

(2) 

Note that setting 𝑟!" = 𝑟"! = 0 in (2) results in (1), and hence the single jurisdiction model is a 

special case of the two-jurisdiction model. For empirical analyses, we used epidemiology data 

from the SARS-Cov2 alpha variant (Table 1). 

Table 1. Parameters of the simulation model. 

Parameter Value Description 

𝛽 0.4482 Transmission rate [22]  

𝛼 0.1923 1/interval in days for incubation (incubation period ~ 5.2 days) [23] 

𝛾 0.1724 1/interval in days from infected to removal (infectious period ~ 5.8) [22, 23] 

𝜃 0.017 The mortality rate due to infections (in scenario 1 to 5, 𝜃 = 0)	[25] 

 

2.2 Markov Decision Process 

  We formulate the question of whether a lockdown is necessary, and if so, when it should be 

initiated, to what level (proportion lockdown), and how this should change over time as an MDP, 

as follows. We define the pandemic state as a multivariate parameter 𝑋 =
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:𝑆!
𝑁!
, 𝐸!
𝑁!
, 𝐼!
𝑁!
, 𝑅!
𝑁!
, 𝐷!
𝑁!
< , 𝑋 ∈ ℝ#, where 𝑆!

𝑁!
, 𝐸!
𝑁!
, 𝐼!
𝑁!
, 𝑅!
𝑁!
, and	 𝐷!

𝑁!
 are the proportion of the jurisdiction A 

population in the S, E, I, R, and D compartment, respectively, and add to 1.  

Then, using the standard form, we can define the MDP as a 5-tuple {Ω,𝒜, 𝑃$ , 𝑅$ , 𝛾}, where, 

• Ω is the state space, a set of all possible states of the pandemic, 𝑋	𝜖	Ω, 

• 𝒜 is the action space, a set of all possible actions, here choices of lockdown, 𝑎	𝜖	𝒜, 

• 𝑃$ is the one-step transition probability matrix from one state of pandemic to another 

under action 𝑎 (where 𝑃$(𝑥%|𝑎, 𝑥) is the transition probability from state 𝑥 to 𝑥% under 

action 𝑎), 

• ℛ$is a reward matrix, with each element,  ℛ$(𝑥%|𝑎, 𝑥), the immediate reward of 

transitioning from state 𝑥 to 𝑥% under action 𝑎, and 

• 𝛾 is the discount factor.  

Given the system is in state 𝑥& ∈ Ω  at time of implementation of decision, the problem is to solve 

for the optimal policy (𝒅(𝑥&)) using the following objective function to maximize the total 

expected reward over the analytic period 𝑇 (for numerical analyses we assumed 𝑇 = 400): 

max
[𝑑1,..,𝑑𝑇]𝜖𝒜𝑇

𝔼 ;<𝛾ℛ𝑎'(!(𝑥′|𝑎, 𝑥)
)

*'+

= 

 
𝒅(𝒔) = 𝑎𝑟𝑔 max

[(",..,(#].𝒜#
𝔼;<𝛾ℛ0'(!(𝑥

1|𝑎, 𝑥)
)

*'+

= 

 

(3) 

We next discuss the formulation of the 5-tuple {Ω,𝒜, 𝑃$ , ℛ$ , 𝛾}: 
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State space: We formulate the state space as Ω = [𝑆!
𝑁!
, 𝐸!
𝑁!
, 𝐼!
𝑁!
, 𝑅!
𝑁!
, 𝐷!
𝑁!
], a continuous state space 

where each element of the state space can get a value between 0 and 1, such that at each time step, 

𝑆!
𝑁!
+ 𝐸!

𝑁!
+ 𝐼!

𝑁!
+ 𝑅!

𝑁!
+ 𝐷!

𝑁!
= 1. 

Action space: We formulated the action space (𝒜) as a finite discrete set of interventions, 𝒜 =

[𝑎. = 75%, 𝑎/ = 50%, 𝑎0 = 25%, 𝑎1 = 0%], corresponding to a contact rate reduction of 75%, 

50%, 25%, and 0%, respectively, a factor multiplied to the transmission rate (𝛽) in (1) and (2). For 

these numerical analyses, to make it representative of the COVID-19 epidemic, we assumed 

contact reductions are achieved through lockdowns. We assumed about 25% of the U.S. population 

are essential personnel [25, 26] (34% of adults reported as essential personnel, and 78% of the 

population are adults) and thus the strictest lockdown, 𝑎., corresponds to a 75% reduction in 

contact rate. Value of action 𝑎1 was selected to represent no-lockdowns, and values of actions 𝑎/ 

and 𝑎0 were set at intermediate levels between 𝑎. and 𝑎1. 

Transition probabilities: As generating the transition probability for every possible transition is 

infeasible, we use our SEIRD simulation model discussed earlier to simulate each action and keep 

track of each transition in the model. 

Immediate rewards:  Immediate reward (ℛ$(𝑥)) corresponds to the per time step reward (benefits 

– costs) achieved by implementing an action when the system is in state 𝑥. We evaluated 

immediate reward ℛ$(𝑥) under two objective functions: 

• 2-term objective function: The objective is to minimize economic burden and hospital capacity 

violation. This objective function would be most suitable for diseases that have a high risk of 

hospitalization, but minimal risk of mortality.  
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• 3-term objective function: The objective is to minimize economic burden, hospital capacity 

violation, and minimize mortalities. This objective function would be most suitable for 

diseases with high risk of hospitalizations and mortality.  

Mathematically, we formulated the immediate reward ℛ$(𝑥): 

 ℛ0(𝑥) = 𝑓2(𝑎) − 𝑓3J𝐼4,"K − 𝜂M𝜃𝐼4,"𝐶5O														 (4) 

where, setting 𝜂 = X0	results	in	2 − term	objective	function1	results	in	3 − term	objective	function ,  

𝑓2(𝑎) is the per day monetary benefit of implementing action 𝑎, 

𝑓3i𝐼4,!j is the per day cost of exceeding hospital capacity in jurisdiction 𝐴, when there are 𝐼4,! 

number of infected persons,  

𝜃 is the mortality rate, and thus 𝜃𝐼4,! is the number of daily deaths in jurisdiction 𝐴 when there are 

𝐼4,! number of infected persons, and 

𝐶5 is the per person mortality cost.  

We modeled the monetary benefit (𝑓2(𝑎)) as the economic benefit,  

 																				𝑓2(𝑎) = 𝜏(𝑎)𝑀, (5) 

  

where, 𝜏(𝑎) is the monetary reduction in the economy upon implementation of action 𝑎 and 𝑀 is 

the per day monetary value generated by the economy in a no-lockdown scenario. Here, we 

assumed 𝑀 = 1𝑒 + 11, and set 𝜏(𝑎.) = 0.4, 𝜏(𝑎/) = 0.6, 𝜏(𝑎0) = 0.8, and 𝜏(𝑎1) = 1. Per day 

monetary value of 𝑀 is assumed based on US gross domestic product (GDP) per capita multiplied 

by US population in 2020 [28].   

We assumed that for every 1000 inhabitants, there is 1.5 hospital beds available (we used data in 

the state of Utah which has the lowest number of beds per capita among US sates [28]) (𝑁6278 =
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..#9!
.&&&

) and that 5% of infected people at each timestep are hospitalized [21, 24], and modeled the 

per day cost of exceeding hospital capacity (𝑓3i𝐼4,!j) as 

 																																								𝑓3J𝐼4,"K = R1𝑒 + 11																						if	5%𝐼4," ≥ 𝑁62(7
0																																													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                (6) 

  

We assumed mortality rate is 0.017 corresponding to the SARS-Cov2 virus [25], and the cost per 

mortality (𝐶5) as 1𝑒 + 10. 

2.3 Deep Reinforcement Learning 

  We solve for the optimal sequence, level, and time of initiation of lockdowns for the 

control of COVID-19 type new infectious disease outbreaks, formulated above as an MDP, using 

DQN. We solve for this under varying scenarios (see Section 3). DQN is a deep reinforcement 

learning algorithm suitable for continuous state and discrete action spaces [9]. Conceptually, the 

algorithm works as follows. At each time step, based on the state of the pandemic, i.e., values for 

[𝑆!
𝑁!
, 𝐸!
𝑁!
, 𝐼!
𝑁!
, 𝑅!
𝑁!
, 𝐷!
𝑁!
], the algorithm determines what action to take, feeds it to the simulation model 

to calculate the immediate reward of taking that action at that particular state. This process is 

repeated for multiple iterations, and at every iteration, through training of a neural network, the 

algorithm is learning to take better actions, such that, under the proper neural network architecture 

and hyper-parameters, the algorithm eventually learns to identify the decision that maximizes the 

objective function defined in (3). We developed the model using the stable_baselines library in 

Python [28]. The details of the algorithm are presented in Appendix Section A.1. 

DQN configuration and hyper-parameters: To approximate the Q-function, we used a deep 

learning network, a multi-layer perceptron with four layers that have 64, 128, 128, and 8 nodes, 

respectively. We use 𝛾=0.95 and a learning rate of 0.001 with buffer size 100000. The rest of the 
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parameters are set as default by the stable_baselines DQN library [28]. We trained each scenario 

separately for different number of MDP iterations (referred to as episodes), each 100 times with 

different random seeds.  

The initial state at the beginning of each episode is set to one person exposed for 

jurisdiction 𝐴 and two persons exposed for jurisdiction 𝐵, and rest of the population are 

susceptible. Each episode is 400 days, and at the end of each episode, the model is reset to the 

initial state. We trained the model for different episodes from 2500 to 25000 (corresponding to 1M 

to 10M time-steps). At the end of the training, we identify the optimal solution as the best among 

all the trained models, i.e., the model with the highest expected total reward (defined in (3)).  

Similar to many optimization problems, DQN does not guarantee reaching the optimal 

solution, however, by sufficiently exploring the solution space, the chance of finding an optimal 

solution could be increased. Therefore, for each scenario (Section 3), we generated 100 different 

runs of the algorithm, each with a different random seed, and identifying an optimal solution under 

each. Similar optimal solutions in multiple runs would also suggest higher chance of optimality.  

3. Analyses Scenarios  

  We analyzed seven scenarios. Scenario 1 to 5 correspond to the 2-term objective (that 

considers impact of decisions on economy and hospital capacity violation), while scenarios 6 and 

7 correspond to the 3-term objective (that consider the impact of decisions on economy, hospital 

capacity violation, and disease related mortality). Scenarios 1 and 6 correspond to a single 

jurisdiction while the rest of the scenarios correspond to two-jurisdictions with different travel 

rates. In the two-jurisdiction scenarios, decisions are made independently, and we consider two 

distinct behaviors among them. In scenarios 2 and 3, jurisdiction A implements the optimal policy 

but jurisdiction B does not implement any intervention (non-cooperative behavior), while in 
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scenario 4 and 5, jurisdiction B follows the exact same policy as A (cooperative behavior). 

However, note that, even in Scenarios 4 and 5, just as in Scenario 1 to 3, the formulation of the 

DQN focused only on the epidemic state in jurisdiction A. Thus, the DQN here was still a single-

agent RL but evaluated in the context of two interacting jurisdictions making autonomous 

independent decisions.  We further expanded these scenarios into sub-scenarios by examining the 

impact of delay in initiation of optimal policy, i.e., delaying initiation of optimal policy until day 

30, 45, 60, 75, 90, 95, 100, 105, and 110 such that each corresponds to different prevalence upon 

initiation of optimal policy. 

Intuitively, if the optimal policy is a lock-down, the more the delay in initiation of 

lockdown, the more the epidemic burden, but less of an economic burden. On the other hand, if 

the optimal policy is no-lockdown, it is equivalent to doing nothing, and so a delay in implementing 

optimal policy would not have any consequences until it reaches a time where the optimal policy 

shifts to a lockdown. Thus, the model technically considers the impact of delay and the tradeoff 

between economy and epidemic burden into its evaluation. Hence, the resulting optimal policy 

would also hold the answer to when a shutdown should be initiated. Besides, in the case of open 

borders, the optimal policy also changes based on the epidemic in the jurisdictions that the 

population interacts with through travel. However, the results would depend on how much weight 

(costs) is given to each objective function component. These costs associated with hospital 

capacity and lockdowns are likely to be subjective. For example, a jurisdiction where a significant 

fraction of jobs can seamlessly transition to remote work (e.g., IT) may differently weigh each of 

the four lockdown options (e.g., fewer days but maximum lockdown-level) compared to a 

jurisdiction where a large fraction of the jobs require physical presence (e.g., manufacturing) (e.g., 

extend days of lockdown at low lockdown-levels on each day). On the other hand, an infectious 
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disease that is not deadly may be weighed lower for disease burden (hospital capacity as proxy) 

than a more deadly disease. Therefore, we made ‘time to initiate’ the optimal policy as an 

exogenous variable and evaluated multiple values. Details of the scenarios are discussed in Table 

2. 

Table 2. Summary of the scenarios studied. 

Scenario Objective function Number of jurisdictions  Policy Travel from  𝐁	𝐭𝐨	𝐀	 Initiation of optimal policy (days) 

Scenario 1 2-term Single jurisdiction, A  A optimal policy Not applicable 30, 60, 75, 90, 95, 100, 105,110 

Scenario 2 2-term Two jurisdictions, A and B  A optimal policy,  

B no intervention 

5% 30, 60, …, 110 

Scenario 3 2-term Two jurisdictions A	 optimal policy,  

B no intervention 

10% 30, 60, …, 110 

Scenario 4 2-term Two jurisdictions A	 optimal policy,  

B optimal policy 

5% 30, 60, …, 110 

Scenario 5 2-term Two jurisdictions A	 optimal policy,  

B optimal policy 

10% 30, 60, …, 110 

Scenario 6 3-term Single jurisdiction  A  optimal policy Not applicable 30, 60, …, 110 

Scenario 7 3-term Two jurisdictions  A optimal policy,  

B no intervention 

10% 30, 60, …, 110 

 

For each scenario, 1 to 7, we present the following metrics: the frequency of occurrence of 

each action over a 400-day period, the total number of days hospitalizations exceeded hospital 

capacity (which we will refer to as “hospital capacity violation”), number of hospitalizations, and 

additionally for Scenarios 6 and 7, the number of deaths.  

We present the ‘initiation of optimal policy’ in days, which is how it was modeled, but also 

present the corresponding disease states, specifically, the observed prevalence and the actual 

prevalence. We define observed prevalence as the cumulative number of reported cases, tracked 

as part of disease surveillance, and expressed as a percentage of the total population. We define 
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actual prevalence as the cumulative number of infected cases, i.e., it additionally includes those 

cases that are not yet reported and expressed as a percentage of the total population. Therefore, 

while the ‘initiation of optimal policy’ was modeled in days, the corresponding observed 

prevalence is more relevant and trackable from a public health perspective. In the case of the 

SARS-CoV2 virus, persons in the ‘exposed’ compartment are asymptomatic, and only show 

symptoms when they transition to the ‘infectious’ compartment. Therefore, we made a simplifying 

assumption that the observed prevalence includes all cases except those in the exposed 

compartment (i.e., includes infectious + recovered + death compartments), while the actual 

prevalence also includes the exposed compartment. 

Note that, while all scenarios were modeled with the same time-points for ‘delay in 

initiation’, the epidemic projections under the different travel rates would be different and thus the 

corresponding values of observed prevalence and actual prevalence would vary by scenarios. For 

instance, 90 days of delay in scenario 1 corresponds to an observed prevalence of 1.35% and the 

actual prevalence of 2.13%, while the same days of delay in scenario 3 correspond to an observed 

prevalence of 1.9% and an actual prevalence of 3%. Therefore, we represent each sub-scenario, as 

[delay in initiation (in days), observed prevalence, and actual prevalence].  

4. Results 

 In all scenarios, as expected from the highly virulent SARS-CoV2 virus, the optimal scenarios 

involved some lockdown until a majority of the population became infected or lasted for the entire 

simulation duration. In the 2-objective function scenarios (Scenarios 1 to 5), the optimal lockdown 

strategy helped avoid hospital capacity violations while minimizing the economic burden from 

lockdowns by taking the least stringent lockdown. However, the optimal policy was to end 

lockdown only after a majority of the population became infected and reached herd-immunity 
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levels. In the 3-objective function scenarios (Scenarios 6 and 7), the optimal lockdown strategy 

helped avoid hospital capacity violations, minimize infected cases and deaths while minimizing 

the economic burden from lockdowns by taking the least stringent lockdown. However, the 

optimal strategy here was to continue the optimal pattern of lockdowns for the remaining duration 

of the simulation, suggesting that until a vaccine becomes available, there is a chance that the 

infection would spread.  We discuss these results in more detail below. 

With only one jurisdiction (Scenario 1), the optimal strategy was to initiate lockdown if 

the observed prevalence (proportion of the population infected) reached 2.3% (which 

corresponded to the actual prevalence of 3.6%). This can be seen in Figure 2 (first row), scenarios 

where lockdown initiated at the observed prevalence of 2.3% or below (corresponding to up to 95 

days from time of first case) had least lockdown and similar outcome of zero hospital capacity 

violations. Over the duration of 400 days, this optimal policy consisted of lockdown at 50% for 62 

days and lockdown at 25% for 46 days. Under this policy, lockdowns could be fully lifted on day 

209. In the optimal strategy, the number hospitalized per day never exceeded hospital capacity, 

i.e., zero days of hospital capacity violation. As expected from including only economy and 

hospital capacity in the objective function, given the high infectiousness of the virus and absence 

of other interventions, about 79% of the population were infected over the duration of the pandemic 

Figure 3 (first row).  
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Figure 2: 2-term objective function models for scenarios 1, 2, 3, 4, and 5. 
Left plots: Bar plots of frequency of occurrence of each action (75% (red), 50% (yellow), 25% 
(blue), and 0% (red) lockdown) over 400 days for different delay (x-axis) in initiation of optimal 
policy [delay in days, observed prevalence, and actual prevalence]. Middle plots: Number of 
available hospital beds (y-axis) against time (x-axis) under different delays in initiation of optimal 
policy. Right plots: Total number of days hospital capacity is violated (y-axis) against observed 
prevalence at time of initiation of optimal policy (x-axis). 
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Delaying implementation of optimal policy in Scenario 1, i.e., initiating lockdown after 

observed prevalence exceeded 2.3%, led to more prolonged or more stringent lockdowns and/or 

hospital capacity violations (Figure 3 first row). For example, delaying to until 3.8% observed 

prevalence led to 73 days of 50% shutdown, 27 days of 25% shutdown, and zero days of hospital 

capacity violation.  Delaying to 6.4% observed prevalence led to 6 days of 75% shutdown, 52 days 

of 50% shutdown, 36 days of 25% shutdown, and five days of hospital capacity violation. Delaying 

to until 10.46% observed prevalence led to 17 days of 75% shutdown, followed by 34 days of 50% 

shutdown, 41 days of 25% shutdown, and 16 days of hospital capacity violation. While the 1.35% 

observed prevalence occurred on day 90, the observed prevalence of 2.3%, 3.88%, 6.43%, and 

10.46% occurred on days 95, 100, 105, and 110, suggesting that because of the high infectiousness 

of the virus, a few days of delay could lead to significantly worse disease and economic burdens.  

When jurisdiction A interacted with jurisdiction B through travel, but jurisdiction B was 

non-cooperative and did not take the optimal decision as A (Scenarios 2 and 3 –with 5% and 10% 

travel, respectively), the optimal policy for A was to control for B’s non-cooperative actions 

through more stringent lockdowns than in Scenario 1 (0% travel). Even with the lower 5% travel 

(Scenario 2- Figure 2 second row) and initiating lockdowns when observed prevalence was as low 

as 0.002% (30 days delay), unlike in Scenario 1 (Figure 2 first row), the optimal lockdown 

involved 28 days of maximum 75% lockdown.  

In Scenario 2, the optimal lockdown strategy up until observed prevalence of 3.07% were 

similar with outcomes of zero days of hospital capacity violation. The optimal policy, over the 

period of 400 days, was lockdowns at the maximum-level of 75% for 37 days before transitioning 
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to the less stringent 50% and 25% levels. Delayed implementation of optimal policy until the 

observed prevalence reached 5.17% led to the need for more stringent lockdowns (41 days of the 

maximum 75%, 20 days of 50%, and 42 days of 25%) to avoid hospital capacity violation. 

Delaying implementation of optimal policy to beyond observed prevalence of 5.17% led to a 

situation where hospital capacity violations could not be avoided (Figure 2 second row). For 

example, delaying until 8.54% observed prevalence led to 58 days of 75% shutdown, and 11 days 

of hospital capacity violation. Delaying to until 13.73% observed prevalence led to 47 days of 75% 

shutdown, and 24 days of hospital capacity violation.  
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In Scenario 3 (Figure 2 third row), the optimal policy was to initiate a lockdown no later 

than an observed prevalence of 5.52%. The optimal policy, over the period of 400 days, was 

lockdowns at the maximum level of 75% for 57 days, which resulted in zero days of hospital 

capacity violation. Delaying implementation of optimal policy to after observed prevalence 

exceeded 5.52%, led to higher hospital capacity violations (Figure 2 third row). For example, 

Scenario 1 

  

Scenario 2 

  

Scenario 3 

  

Scenario 4 

  

Scenario 5 

  

 

 

  Figure 3: Percentage infectious among total population vs time for different delays in initiation of 
the optimal policy (left plots) and corresponding impact on percentage total infected over time 
(right plots) for scenarios 1, 2, 3, 4, and 5. 
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delaying until observed prevalence was 9.07% led to 24 days of 75% shutdown, followed by 45 

days of 50% shutdown, and 14 days of hospital capacity violation. Delaying until observed 

prevalence was 14.48% led to 33 days of 75% shutdown, followed by 36 days of 25% shutdown 

and 26 days of hospital capacity violation.  

When jurisdiction A interacted with B through travel but unlike the above scenarios, B was 

cooperative by taking optimal actions as A (Scenarios 4 and 5), the optimal policy was similar to 

that in Scenario 1 (single jurisdiction, 0% travel), suggesting that cooperative behavior would yield 

similar results as single jurisdiction, as expected. Note that, similarity in results between Scenarios 

4, 5, and 1 suggests that, though the DQN was trained as a single-agent RL by considering only 

the state space of jurisdiction A, this is a sufficient method here as we assumed that both 

jurisdictions start the epidemic at the same time.  

 In summary, results from the above 2-objective function scenarios suggest that deviating 

from the optimal policy through delays in initiating the optimal policy or through non-cooperative 

behavior by an outside but interacting jurisdiction (B in this case) would require more stringent 

lockdowns (red bar) to avoid hospital capacity violations. 
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With the 3-objective function, and only one jurisdiction (Scenario 6), the optimal policy 

was to initiate lockdown when observed prevalence was 0.01% (Figure 4 first row). Under this, 

the optimal lockdown policy continued for the remaining duration of the simulation in order to 

reduce cases and keep deaths at zero. This suggests that until pharmaceutical options are available, 

preventing highly transmissible diseases such as COVID-19 would require some level of physical 

distancing between contacts. Delaying the initiation of the optimal policy generated multiple 

deaths even though higher number of lockdowns were initiated to control for the delays. Delaying 

implementation of an optimal strategy to prevalence 10.46% (which occurred on day 110 from the 

first infection) resulted in 4374 deaths, and 16 hospital capacity violations (Figure 4 first row, and 

Appendix Table A2). 

 
 

 

 
 

 

Figure 4: 3-term objective function models for scenarios 6 and 7. 
Left plots: Bar plots of frequency of occurrences of each action (75% (red), 50% (yellow), 25% 
(blue), and 0% (red) lockdown) over 400 days for different delays (x-axis) in initiation of optimal 
policy]delays in days, observed prevalence, and actual prevalence]. 
Middle plots: Number of available hospital beds (y-axis) against time (x-axis) under different 
delays in initiation of optimal policy. 
Right plots: Total number of days hospital capacity is violated (y-axis) against observed 
prevalence at time of initiation of optimal policy (x-axis). 
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Figure 5: Percentage infectious among total population vs time for different delays in initiation 
of the optimal policy (left plots) and corresponding impact on percentage total infected over time 
(right plots) for scenarios 6 and 7. 

 

With the 3-objective function, when jurisdiction A was interacting with B through travel, 

but jurisdiction B was not implementing any interventions (Scenario 7), the optimal strategy for A 

to control for the non-cooperative behavior of B were a greater number of days and more stringent 

lockdowns. Under this, the optimal policy over the 400 days was lockdown at the highest-level of 

75% for 299 days and at 25% for an additional 47 days (Figure 4 row 2). This optimal policy 

resulted in zero days of hospital capacity violation but 1935 deaths (Figure 4 row 2). Delaying 

implementation of the optimal policy until observed prevalence reached 8.5%, led to a situation 

where the epidemic burden had already created sufficient deaths that lockdowns had a lesser 

impact and could only be implemented to reduce future deaths than to prevent deaths. The optimal 

policy in this case was 231 days of the highest-level of 75% lockdown and resulted in 4775 deaths 

and 14 days of hospital capacity violation. 

Comparing results between 2-objecive and 3-objectve functions: In the 2-term objective function, 

as the objective was to only minimize economic burden and hospital capacity violations, the 

Scenario 6 

  

Scenario 7 
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cumulative prevalence reached up to 80%, (Figure 3) i.e., the main outcome was that it reduced 

daily cases sufficient enough to keep hospitalizations below hospital capacity.  In the 3-objective 

function, as the objective additionally minimized deaths, even in the worst-case scenario the 

cumulative prevalence reached about 35%. However, a key consequence of this was that, while in 

the 2-objective function lockdowns could be lifted within the timeline of the simulation, in the 3-

objective function lockdowns continued over the full duration of the simulation. This suggests the 

need for continuing shutdowns until the availability of pharmaceutical interventions such as 

treatment to prevent deaths or vaccines to prevent transmissions. 

Details of optimal policy of each sub-scenarios of 2-objective and 3-objective are presented in 

Appendix Table A1. 

5. Conclusion and Discussion 

We formulated the question of how to control epidemics such as COVID-19 in the absence of 

pharmaceutical interventions as a sequential decision-making problem formulated as a Markov 

decision process (MDP) and solved using Deep Q-network (DQN), a reinforcement learning 

algorithm.  We propose a methodology that can help determine whether and when a lockdown is 

necessary, to what level, and how to phase out a lockdown which is a critical part of a pandemic 

preparedness plan. Furthermore, we evaluated these decisions in the context of two-geographical 

jurisdictions that make autonomous, independent decisions, cooperatively or non-cooperatively, 

but interact in the same environment through travel. We evaluated these decisions both under a 2-

term objective function that minimized economic burden and hospital capacity violations, suitable 

for diseases with high-risk of hospitalizations but low risk of mortality, and a 3-term objective 

function that additionally minimized deaths. We used a SEIRD model to simulate the disease 

progression and incorporated the impact of travel in the formulation of the transmission rate. 
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In the case of a single jurisdiction, under a 2-term objective, the optimal time for initiation of 

lockdowns would be at about an observed prevalence of 3.87% and included lockdowns at a 

combination of 50% and 25% per day. Delaying decisions led to a higher number or more stringent 

lockdowns at the maximum levels of 75% per day in addition to a higher number of hospital 

capacity violations. In the case of two-jurisdictions A and B interacting through travel, if 

jurisdiction B deviated from the optimal policy, jurisdiction A would have to implement more 

stringent lockdowns to compensate for the non-cooperative behavior of B, and if there was any 

delay in this implementation also face excess hospitalizations. This suggests that, even if 

jurisdictions make decisions independently, cooperation between jurisdictions could help 

minimize lockdowns and avoid border travel restrictions, thus minimizing overall economic 

burden. In the absence of such cooperation, the trade-offs for jurisdiction A to consider would be 

between more stringent lockdowns within its jurisdiction or border closures to remove the 

interactions with jurisdiction B. The results are intuitive, what the study contributes is a 

methodology that can be used by jurisdictions to evaluate a suitable policy, under such interactive 

environments, and the numerical analyses here serves as proof-of-concept for the method.  

In the 2-objective function scenarios (Scenarios 1 to 5), the optimal lockdown strategy helped 

avoid hospital capacity violations while minimizing the economic burden from lockdowns by 

taking the least stringent lockdown. However, as expected from the high transmissibility of the 

virus, the optimal policy was to end lockdowns only after a majority of the population became 

infected and reached herd-immunity levels. In the 3-objective function scenarios (Scenarios 6 and 

7), the optimal lockdown strategy helped avoid hospital capacity violations, minimized infected 

cases and deaths while minimizing the economic burden from lockdowns by taking the least 

stringent lockdown. However, the optimal strategy here was to continue the optimal pattern of 
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lockdowns for the remaining duration of the simulation, suggesting that shutdowns would have to 

continue until a vaccine became available. Any deviations from this optimal policy generated more 

stringent lockdowns and/or higher cases of hospitalizations and deaths. This suggests that, in the 

absence of pharmaceutical interventions, some measures of physical distancing would be 

necessary to control the epidemic even if it creates economic burdens, as deviating from this would 

only increase future economic burdens.  

Some of the limitations of our model are as follows. Motivated by the COVID-19 pandemic, for 

the numerical analyses, we assumed epidemiology staging and transmissibility of the SARS-CoV 

2 virus. Thus, the specific results here are limited to diseases caused by viruses similar to that of 

SARS-CoV 2 type. The model will have to be reparametrized and evaluated for other diseases 

with vary epidemiology structures.  In our model, the impact of lockdowns on the economy is 

scaled linearly, i.e., lockdown on any day has a similar impact on the economy's monetary value. 

This impact can be formulated as a non-linear function to consider the dynamical changes over 

time. We assumed that both jurisdictions start an outbreak at the same time, thus it was sufficient 

to train the DQN as a single-jurisdiction RL with both jurisdictions implementing the same policy 

(as evident from the similarity in results between Scenario 4, 5, and 1). Thus, our results are limited 

to this scope. For evaluating decisions between two jurisdictions that start the outbreak at different 

times leading to significantly different states of the epidemic at the time of decision-making, other 

methods such as multi-agent RL maybe more relevant. 

Despite these limitations, we believe that the methodology presented here can help decision 

makers in formulating a pandemic preparedness plan for future infectious disease outbreaks. The 

results generated by the numerical analyses are intuitive, which support the feasibility of 

application of AI algorithms for such analyses, as typically, given the computational complexity 
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of the algorithms and problem formulation, the feasibility is not always guaranteed [29]. This study 

provides a generalized framework that can be applied to any jurisdiction or infectious disease by 

adjusting the parameters accordingly, some examples are as follows. We interpreted the 

intervention options here to represent lockdowns and did not consider other options such as 

facemask use, self-isolation when infected, or 6 ft distancing. However, we modeled lockdowns 

by reducing transmission rate, assuming that the cost for that reduction represents economic loss. 

Interventions such as facemask use, self-isolation when infected, or 6 ft distancing are also 

modeled as reduction in transmission rates, but they may differ in governmental lockdowns in 

terms of the cost and impact, i.e., they may have a lesser impact on the economy (lower costs) but 

also achieve a smaller reduction in transmission rate. Therefore, the different levels of shutdowns 

and costs modeled here can also be interpreted as different types of interventions and the 

corresponding transmission rate, rewards, and costs informed specific to the setting. Design of the 

reward function is an essential step in RL models and can significantly change the optimal policy. 

Thus, this is a subjective metric that should be informed specific to the case under study. For 

example, a jurisdiction where a significant fraction of jobs can seamlessly transition to remote 

work (e.g., IT) may differently weigh each of the four lockdown options (e.g., fewer days but 

maximum lockdown-level) compared to a jurisdiction where a large fraction of the jobs require 

physical presence (e.g., manufacturing, or essential workers). On the other hand, those costs saved 

from preventing economic loss could instead be redirected to ensure safety of workers. Thus, the 

reward function would be formulated to consider economic costs, epidemic costs, and costs for 

safety measures. 
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APPENDIX  

A.1 Details of DQN Algorithm 

 Throughout the training, a Q-table gets updated in the Q-learning algorithm, where each table 

element represents a state-action value. In the case of ample state space, when building a Q-table 

is intractable, or in the case of continuous state space, a Q-function is used to map state-action pair 

to a Q-value. Deep neural networks are used as a function approximator of state-action pair to a 

Q-value. During training, the algorithm learns the weights of the deep neural network. As a result, 

given the state to the deep Q-network (DQN), the Q-value associated with each action is outputted. 

And hence, the highest Q-value corresponds to the optimal action. 

In the case of this study, the trained Q-network works as follow: 

 

Figure F: Schematic of DQN in the context of this study. 

Given the epidemic state, the Deep Q-network outputs the Q-value associate to every action. And 

hence, the highest Q-value corresponds to the optimal action in that epidemic state. 

In the DQN algorithm, there are two networks (two artificial neural networks), and an experience 

replay:  

§ Q-Neural network: is usually a deep neural network, 

§ Target Neural Network: is identical to the Q-Neural network, 
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§ Experience replay: is used to memorize the agent’s experience when interacting with the 

environment, i.e. (state, action, next state, reward) as to reduce the correlation between 

the agent’s experiences and prevent overfitting of the network. 

DQN algorithm is described as bellow [1]: 

• Initialize replay memory to some capacity.  

• Initialize Q-network with random weights. 

• For a pre-defined number of episodes: 

o At each training step, random samples from experience replay are selected. 

o Batch of training data is fed into the Q-network and target network.  

o An action is taken based on the pre-defined action selection strategy, i.e., epsilon greedy. 

o DQN and target network separately predict the Q-values of current state and all the actions. 

o The experience is stored as a pair of (state, action, next state, reward) in the replay buffer. 

o Mean squared loss gets calculated based on the Q-value of target network and Q-network. 

o  The loss gets backpropagated to the Q-network so to update the weights using gradient descent 

algorithm. 

o After a pre-defined number of time-steps, Q-network weights get copied to the target network. 

Q-network and target network become identical again. 
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A.2 Summary of Optimal Policy for Scenarios 1 to 5 

Table A3:  Summary of scenarios 1 to 5. Shaded cells are the optimal policy in terms of when to 

be implemented (number of days of delays) and how to be implemented (number of days in each 

lockdown categories). 

Delays  30 days 45 days 60 days 75 days 90 days 

Scenario 1 Observed Prevalence (%) 

Actual Prevalence (%) 

 

0.002 

0.0032 

0.01 

0.016 

0.054 

0.085 

0.272 

0.43 

1.359 

2.134 

Number shutdown 

 

 

 

0% 285 285 285 285 285 

25% 54 54 54 54 54 

50% 61 61 61 61 61 

75% 0 0 0 0 0 

Number of days of hospital 

capacity exceeded 

 

0 0 0 0 0 

Scenario 

2 & 4 

Observed Prevalence (%) 

Actual Prevalence (%) 

 

0.0023 

0.0037 

0.0127 

0.02 

0.0676 

0.1079 

0.353 

0.561 

1.805 

2.844 

Scenario 2 Number shutdown 

 

 

 

0% 292 292 292 292 292 

25% 44 44 44 44 44 

50% 27 27 27 27 27 

75% 37 37 37 37 37 

Number of days of hospital 

capacity exceeded 

 

0 0 0 0 0 

Scenario 4 Number shutdown 

 

 

0% 292 292 292 292 292 

25% 41 41 41 41 41 

50% 67 67 67 67 67 
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 75% 0 0 0 0 0 

Number of days of hospital 

capacity exceeded 

 

0 0 0 0 0 

Scenario  

3 & 5 

Observed Prevalence (%) 

Actual Prevalence (%) 

 

0.0025 

0.004 

0.0139 

0.0223 

0.0741 

0.118 

0.384 

0.610 

1.946 

3.057 

Scenario 3 Number shutdown 

 

 

 

0% 343 343 343 343 343 

25% 0 0 0 0 0 

50% 0 0 0 0 0 

75% 57 57 57 57 57 

Number of days of hospital 

capacity exceeded 

 

0 0 0 0 0 

Scenario 5 Number shutdown 

 

0% 305 305 305 44 305 

25% 24 24 24 27 24 

50% 71 71 71 37 71 

75% 0 0 0 0 0 

Number of days of hospital 

capacity exceeded 

 

0 0 0 0 0 

Delays   95 days 100 days 105 days 110 days 120 days 

Scenario 1 Observed Prevalence (%) 

Actual Prevalence (%) 

 

2.305 

3.60 

3.878 

6.019 

6.438 

9.877 

10.465 

15.763 

24.787 

34.90 

Number shutdown 

 

 

 

0% 292 300 306 308 368 

25% 46 27 36 41 1 

50% 62 73 52 34 11 

75% 0 0 6 17 20 
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Number of days of hospital 

capacity exceeded 

 

0 0 5 16 36 

Scenario 

2 & 4 

Observed Prevalence (%) 

Actual Prevalence (%) 

 

3.073 

4.811 

5.1716 

8.016 

8.544 

13.035 

13.725 

20.432 

30.86 

42.29 

Scenario 2 Number shutdown 

 

 

 

0% 292 297 342 353 353 

25% 44 42 0 0 0 

50% 27 20 0 0 0 

75% 37 41 58 47 47 

Number of days of hospital 

capacity exceeded 

 

0 0 11 24 58 

Scenario 4 Number shutdown 

 

 

0% 292 342 341 351 373 

25% 41 0 8 4 6 

50% 67 0 10 12 1 

75% 0 58 41 33 20 

Number of days of hospital 

capacity exceeded 

 

0 0 12 24 41 

Scenario  

3 & 5 

Observed Prevalence (%) 

Actual Prevalence (%) 

 

3.299 

5.150 

5.525 

8.535 

9.079 

13.792 

14.487 

21.456 

32.049 

43.618 

Scenario 3 Number shutdown 

 

 

 

0% 343 343 331 331 375 

25% 0 0 0 36 0 

50% 0 0 45 0 0 

75% 57 57 24 33 25 

Number of days of hospital 

capacity exceeded 

 

0 0 14 26 41 
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Scenario 5 Number shutdown 

 

0% 305 295 307 343 374 

25

% 

24 49 44 0 6 

50

% 

71 41 33 38 0 

75

% 
0 15 16 19 20 

Number of days of hospital 

capacity exceeded 

 

0 0 13 25 40 
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A.3 Summary of Optimal Policy for Scenarios 6 and 7 

Table A4: Summary of scenarios 6 and 7. Shaded cells are the optimal policy in terms of when 

to be implemented (number of days of delays) and how to be implemented (number of days in 

each lockdown categories) 

Delay  30 days 45 days 60 days 75 days 90 days 

Scenario 6 Observed Prevalence (%) 

Actual Prevalence (%) 

 

0.002 

0.0032 

0.01 

0.016 

0.054 

0.085 

0.272 

0.43 

1.359 

2.134 

Number shutdown: 

 

 

 

0% 118 118 120 75 90 

25% 0 0 0 74 59 

50% 0 0 0 0 0 

75% 282 282 280 251 251 

Number of days of hospital 

capacity exceeded 

 

0 0 0 0 0 

Number of deaths 152 152 159 264 789 

Scenario 7 Observed Prevalence (%) 

Actual Prevalence (%) 

 

0.0025 

0.004 

0.0139 

0.0223 

0.0741 

0.118 

0.384 

0.610 

1.946 

3.057 

Number shutdown: 

 

 

 

0% 54 53 67 75 143 

25% 47 52 53 66 0 

50% 0 0 0 0 0 

75% 299 295 280 259 257 

Number of days of hospital 

capacity exceeded 

 

0 0 0 0 0 
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Number of deaths 1935 1936 1959 2077 2703 

Delays  95 days 100 days 105 days 110 days 120 days 

Scenario 6 Observed (%) 

Actual (%) 

 

2.305 

3.60 

3.878 

6.019 

6.438 

9.877 

10.465 

15.763 

24.787 

34.90 

Number shutdown 

 

0% 95 150 105 110 172 

25% 50 0 65 90 0 

50% 0 0 0 0 0 

75% 255 250 230 200 228 

Number of days of hospital 

capacity exceeded  

 

0 0 0 16 35 

Number of deaths 1219 1992 2971 4374 7912 

Scenario 7 Observed Prevalence (%) 

Actual Prevalence (%) 

 

3.299 

5.15 

5.525 

8.535 

9.079 

13.792 

14.487 

21.456 

30.86 

42.29 

Number shutdown 

 

 

 

0% 144 152 169 195 303 

25% 0 0 0 0 0 

50% 0 0 0 0 0 

75% 256 248 231 205 97 

Number of days of hospital 

capacity exceeded 

 

0 0 14 26 40 

Number of deaths 3064 3755 4775 6136 9607 
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